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Autonomous vehicle systems (AVS) have advanced at an exponential rate, particularly due to improvements in

artificial intelligence, which have had a significant impact on social as well as road safety and the future of

transportation systems. Deep learning is fast becoming a successful alternative approach for perception-based

AVS as it reduces both cost and dependency on sensor fusion.

autonomous controlling  deep learning  decision making

1. Introduction

Recently, the autonomous vehicle system (AVS) has become one of the most trending research domains that focus

on driverless intelligent transport for better safety and reliability on roads . One of the main motives for enhancing

AVS developments is its ability to overcome human driving mistakes, including distraction, discomfort and lack of

experience, that cause nearly 94% of accidents, according to a statistical survey by the National Highway Traffic

Safety Administration (NHTSA) . In addition, almost 50 million people are severely injured by road collisions, and

over 1.25 million people worldwide are killed annually in highway accidents. The possible reasons for these injuries

may derive from less emphasis on educating drivers with behavior guidance and poorly developed drivers’ training

procedures, fatigue while driving, visual complexities, that is, human error, which can be potentially solved by

adopting highly efficient self-driving vehicles . The NHTSA and the U.S. Department of Transportation formed

the SAE International levels of driving automation, identifying autonomous vehicles (AV) from ‘level 0′ to the ‘level

5′ , where levels 3 to 5 are considered to be fully AV. However, as of 2019, the manufacturing of level 1 to 3

vehicle systems has been achieved but level 4 vehicle systems are in the testing phase . Moreover, it is highly

anticipated that autonomous vehicles will be employed to support people in need of mobility as well as reduce the

costs and times of transport systems and provide assistance to people who cannot drive . In the past couple of

years, not only the autonomous driving academic institutions but also giant tech companies like Google, Baidu,

Uber and Nvidia have shown great interest  and vehicle manufacturing companies such as Toyota, BMW

and Tesla are already working on launching AVSes within the first half of this decade . Although different sensors

such as radar, lidar, geodimetric, computer views, Kinect and GPS are used by conventional AVS to perceive the

environment , it is indeed expensive to equip vehicles with these sensors and the high costs of these

sensors are often limited to on-road vehicles . Table 1 shows a comparison of three major vision sensors based

on a total of nine factors. While the concept of driverless vehicles has existed for decades, the exorbitant costs

have inhibited development for large-scale deployment . To resolve this issue and build a system that is cost

efficient with high accuracy, deep learning applied vision-based systems are becoming more popular where RGB
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vision is used as the only camera sensor. The recent developments in this field of deep learning have accelerated

the potential of profound learning applications for the solution of complex real-world challenges .

Table 1. Comparison of vision sensors.

VS = Vision Sensor, VR = Visibility Range, FoV = Field of View, PT = Processing Time, DA = Distance Accuracy,

AAD = AI Algorithm Deployment, FE = Feature Engineering, LLP = Low-Light Performance, AWP = All-Weather

Performance.

2. Vision-Based Autonomous Vehicle Systems Based on
Deep Learning

In addition, a good amount of attention was given to developing safe AVS systems for pedestrian detection.

Multiple deep learning approaches such as DNN, CNN, YOLO V3-Tiny, DeepSort R-CNN, single-shot late-fusion

CNN, Faster R-CNN, R-CNN combined ACF model, dark channel prior-based SVM, attention-guided encoder–

decoder CNN outperformed the baseline of applied datasets that presented a faster warning area by bounding

each pedestrian in real time , detection in crowded environments, and dim lighting or haze scenarios  for

position estimation , minimizing computational cost and outperforming state-of-the-art methods . The

approaches offer an ideal pedestrian method once their technical challenges have been overcome, for example,

dependency on preliminary boxing during detection, presumption of constant depths in input image and

improvement to avoid missing rate when dealing with a complex environment.

Moreover, to estimate steering angles, velocity alongside controlling for lane keeping or changing, overcome slow

drifting, take action on a human’s weak zone such as a blind spot and decreasing manual labelling for data

training, multiple methods, such as multimodal multitask-based CNN , CNN with LSTM  and ST-LSTM ,

were studied in this research for AVS’s end-to-end control system.

Furthermore, one of the most predominant segments of AVS, traffic scene analysis, was covered to understand

scenes from a challenging and crowded movable environment , improve performance by making more

expensive spatial-feature risk prediction  and on-road damage detection . For this purpose, HRNet +

contrastive loss , Multi-Stage Deep CNN , 2D-LSTM with RNN , DNN with Hadamard layer , Spatial

CNN , OP-DNN  and the methods mentioned in Table 2 were reviewed. However, there are still some

limitations, for instance, data dependency or relying on pre-labelled data, decreased accuracy in challenging traffic

or at nighttime.

Table 2. Summary of multiple deep learning methods for traffic scene analysis.
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VS VR FoV Cost PT DA AAD FE LLP AWP

Camera High High Low Medium Medium High High Medium Medium

Lidar High Medium High Medium High Medium Medium High Medium

Radar Medium Low Medium High High Low Low High Low
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Ref. Method Outcomes Advantages Limitations
VGG-19 SegNet Highest 91%

classification
Efficient in specified scene

understanding, reducing the
Showed false rate for not

having high-resolution
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Ref. Method Outcomes Advantages Limitations
accuracy. person manipulation. labelled dataset.

Markov Chain
Monte Carlo

Identify intersections
with 90% accuracy.

Identified intersections from
challenging and crowded

urban scenario.

Independent tractlets
caused unpredictable
collision in complex

scenarios.

HRNet 81.1% mIoU.
Able to perform semantic
segmentation with high

resolution.

Required huge memory
size.

HRNet +
contrastive loss

82.2% mIoU.
Contrastive loss with pixel-

to-pixel dependencies
enhanced performance.

Did not show success of
contrastive learning in

limited data-labelled cases.

DeepLabV3 and
ResNet-50

79% mIoU with 50%
less labelled

dataset.

Reduce dependency on
huge labelled data with

softmax fine-tuning.

Dependency on labelled
dataset.

Multistage Deep
CNN

Highest 92.90%
accuracy.

Less model complexity and
three times less time

complexity than GoogleNet.

Did not demonstrate for
challenging scenes.

Fine- and coarse-
resolution CNN

13.2% error rate. Applicable at different scale.
Multilabel classification from

scene was missing.

2D-LSTM with
RNN

78.52% accuracy.
Able to avoid the confusion

of ambiguous labels by
increasing the contrast.

Suffered scene
segmentation in foggy

vision.

CDN
Achieved 80.5%

mean IoU.

Fixed image semantic
information and

outperformed expressive
spatial feature.

Unable to focus on each
object in low-resolution

images.

DNN with
Hadamard layer

0.65 F1 score, 0.67
precision and 0.64

recall.

Foresaw road topology with
pixel-dense categorization
and less computing cost.

Restrictions by the double-
loss function caused

difficulties in optimizing the
process.

CNN with
pyramid pooling

Scored 54.5 mIoU.
Developed novel image
augmentation technique

from fisheye images.

Not applicable for far field of
view.

Spatial CNN
96.53% accuracy
and 68.2% mIoU.

Re-architected CNN for long
continuous road and traffic

scenarios.

Performance dropped
significantly during low-light

and rainy scenarios.

OP-DNN 91.1% accuracy
after 7000 iterations.

Decreased the issue of
overfitting in small-scale

training set.

Required re-weighting for
improved result but
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Taking into account all taxonomies as features, the decision-making process for AVS was broadly analyzed where

driving decisions such as overtaking, emergency braking, lane shifting with collision and driving safety in

intersections adopting methods such as deep recurrent reinforcement learning , actor-critic-based DRL with

DDPG , double DQN, TD3, SAC , dueling DQN , gradient boosting decision tree , deep RL using Q-

masking and autonomically generated curriculum-based DRL . Despite solving most of the tasks for safe

deployment in level 4 or 5 AVS, challenges remain, such as complex training cost, lack of proper surrounding

vehicles’ behavior analysis and unfinished case in complex scenarios. Some problems remain to be resolved for

better outcomes, such as the requirement of a larger labelled dataset , struggle to classify in blurry visual

conditions  and small traffic signs from a far field of view , background complexity  and detecting two traffic

signs rather than one, which occurred for different locations of the proposed region . Apart from these, one of

the most complicated tasks for AVS, only vision-based path and motion planning were analyzed by reviewing

approaches such as deep inverse reinforcement learning, DQN time-to-go method, MPC, Dijkstra with TEB

method, DNN, discrete optimizer-based approach, artificial potential field, MPC with LSTM-RNN, advance dynamic

window using, 3D-CNN, spatio-temporal LSTM and fuzzy logic, where solutions were provided by avoiding cost

function and manual labelling, reducing the limitation of rule-based methods for safe navigation  and better path

planning for intersections , motion planning by analyzing risks and predicting motions of surrounding vehicles

, hazard detection-based safe navigation , avoiding obstacles for smooth planning in multilane scenarios ,

decreasing computational cost  and path planning by replicating human-like control thinking in ambiguous

circumstances. Nevertheless, these approaches faced challenges such as lack of live testing, low accuracy in far

predicted horizon, impaired performance in complex situations or being limited to non-rule-based approaches and

constrained kinematics or even difficulty in establishing a rule base to tackle unstructured conditions.

Finally, to visualize overlaying outcomes generated from the previous methods superimposed on the front head-up

display or smart windshield, augmented reality-based approaches combining deep learning methods were

reviewed in the last section. AR-HUD based solutions such as 3D surface reconstruction, object marking, path

overlaying, reducing drivers’ attention, boosting visualization in tough hazy or low-light conditions by overlapping

Ref. Method Outcomes Advantages Limitations
inapplicable in uncertain

environment.

CNN and LSTM 90% accuracy in 3 s.
Predict risk of accidents

lane merging, tollgate and
unsigned intersections.

Slower computational time
and tested in similar kinds of

traffic scenes.

DNN
68.95% accuracy
and 77% recall.

Determined risk of class
from traffic scene.

Sensitivity analysis was not
used for crack detection.

Graph-Q and
DeepScene-Q

Obtained p-value of
0.0011.

Developed dynamic
interaction-aware-based
scene understanding for

AVS.

Unable to see fast lane
result and slow performance

of agent.

PCA with CNN
High accuracy for

transverse
classification.

Identified damages and
cracks in the road, without

pre-processing.

Required manual labelling
which was time consuming.

CNN
92.51%, 89.65%

recall and F1 score,
respectively.

Automatic learning feature
and tested in complex

background.

Had not performed in real-
time driving environment.

SegNet and
SqueezedNet

Highest accuracy
(98.93%) in GAPs

dataset.

Identified potholes with
texture-reliant approach.

Failed cases due to
confusing with texture of the

restoration patches.
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lanes, traffic signs as well as on-road objects to reduce accidents using deep CNN, RANSAC, TTC methods and

so on. However, there are still many challenges for practical execution, such as human adoption of AR-based HUD

UI, limited visualization in bright daytime conditions, overlapping non-superior objects as well as visualization delay

for fast moving on-road objects. In summary, the research established for vision-based deep learning approaches

of 10 taxonomies for AVS with discussion of outcomes, challenges and limitations could be a pathway to improve

and rapidly develop cost-efficient level 4 or 5 AVS without depending on expensive and complex sensor fusion.
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