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The restoration of an intact epidermal barrier after wound injury is the culmination of a highly complex and

exquisitely regulated physiological process involving multiple cells and tissues, overlapping dynamic events and

protein synthesis and regulation. Central to this process is the cytoskeleton, a system of intracellular proteins that

are instrumental in regulating important processes involved in wound repair including chemotaxis, cytokinesis,

proliferation, migration, and phagocytosis. One highly conserved family of cytoskeletal proteins that are emerging

as major regulators of actin and microtubule nucleation, polymerization, and stabilization are the formins. The

formin family includes 15 different proteins categorized into seven subfamilies based on three formin homology

domains (FH1, FH2, and FH3). The formins themselves are regulated in different ways including autoinhibition,

activation, and localization by a range of proteins, including Rho GTPases
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1. Formins in Inflammation

Formins are involved in the regulation of the inflammation phase of healing through their fundamental role in

controlling cell polarity, dynamics, and the migration of inflammatory cells (Figure 1). Neutrophils are the first

inflammatory cells that migrate towards the wound bed from blood vessels, and actin reorganization plays an

essential role in neutrophil chemotaxis . The predominant actin nucleating proteins found in neutrophils are Dia

proteins . The deletion of mDia1 has been shown to impair neutrophil polarization and directed migration, a

function that was found to be associated with WASP at the leading edge of these cells . Leukocytes such as

neutrophils, B and T cells, and monocytes migrate to the wound site from blood vessels, a process called

transendothelial migration (TEM) . TEM is a multi-step process that includes the capture of leukocytes on

endothelial cells by rolling, crawling, and the adhesion of leukocytes on an endothelial monolayer and eventually

migrating over the monolayer . The depletion of mDia1 impairs the ability of cells to undergo TEM .
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Figure 1. Formins’ role in inflammation. Formins play an essential role in inflammation by regulating actin

polymerization in inflammatory cells. (a) Formins control cell polarity, cell protrusions and directed migration in

inflammatory cells. (b) Formins are involved in podosome and phagocytic cup formation and the phagocytosis

process. (c) Trans-endothelial migration of inflammatory cells requires several steps including, cell capture,

adhesion, crawling and TEM which are all regulated by formin-mediated actin polymerization.

Macrophages are additional important inflammatory cells that are recruited to the wound to remove pathogens and

debris through their phagocytosis ability . Macrophages have actin-rich protrusions, called podosomes, which are

adhesion structures that facilitate tissue invasion and macrophage movements through complex tissues for

immune surveillance . The phagocytic uptake of antigens by macrophages depends on the polymerization of

actin filaments . Formins (FMNL1) are the main regulator of actin reorganization in podosomes, and any

reduction in FMNL1 activity disrupts podosome structures . Macrophage phagocytosis also relies on the activity

of formins (mDia1, mDia2, FMNL1) , which are enriched at macrophage pseudopodia and regulate actin re-

organization in the phagocytic cup during complement receptor (CR3)-mediated phagocytosis as a downstream

effector of RhoA–ROCK signaling .

The migration and entry of lymphocytes, including B and T cells, to damaged tissue, is essential for the adaptive

immune response of the body. Impaired T cell trafficking is observed in FMNL1 knock-out mouse models, which
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were shown to have inflamed tissues, indicating the important role of formins in T-cell morphology and mobility.

This role is likely due to formin’s function in actin nucleation and polymerization at the back of migrating T cells .

Indeed, T cells of mDia1−/− mice have reduced actin polymerization in vitro, and T cell trafficking is disrupted and

inefficient in vivo . Diminished T cell populations in lymphoid tissues have also been observed in DRF1−/− mice.

Isolated T cells from the spleen of DRF1−/− mice were less adhesive to the extracellular matrix and showed

impaired migration . mDia1−/− mice also have impaired adhesion and spread to the cellular matrix in dendritic

cells. Furthermore, T-cell stimulation is also impaired in these mice .

Formins are important regulators of the T cell synapse. Actin assembly and cytoskeleton rearrangement are

involved in immunological synapses . mDia1 and FMNL1 have been found to be localized in the lamellipodium

of T cells, forming the immunological synapse . These formins also regulate MTOC polarization in T cells when

they encounter an antigen-presenting cell (APC) in immunological synapses .

2. Formins in Skin Cell Migration

Cell migration relies on the reorganization of the actin cytoskeleton into complex actin-rich structures, such as

filopodia and lamellipodia, at the front edge of migrating cells . These thin protrusive extensions are required for

directed migration, exploring the extracellular matrix, and penetrating tissue spaces. They are also well suited for

intercalating between cells, such as during the migration of leukocytes across endothelial layers . Formins are

involved in filopodia formation, which is a highly dynamic process creating thin protrusions that are rich in parallel

unbranched actin filaments . The extension of these protrusions occurs by the elongation and capping of the

barbed ends of actin filaments . Rho GTPase family proteins are known to be the main regulator of filopodia

formation and rearrangements . Rho GTPase blocks the autoinhibitory switch of DRFs, and active DRFs are

able to nucleate actin filaments  and cap the barbed ends by their FH2 domain, stabilizing the formation of an

adjacent actin dimer . The capping action allows the actin nucleus to elongate from its barbed end . The

role of formins in filopodia formation can be disrupted by the interaction between formins and either the WASP or

Arp2/3 complex, which strikes a balance between the formation of filopodia and lamellipodia in migrating cells 

.

Lamellipodia are actin-rich protrusions that are composed of a branched actin filament meshwork assembled by

the Arp2/3 complex and the WASP family . However, several studies show an important role for formins (mainly

mDia2) in the formation of lamellipodia, which is mediated by nucleating the actin filaments and protecting them

from capping .

In addition to actin filaments, formins (mainly mDia1 and mDia2) regulate microtubule dynamics, which is essential

for cell polarity and directed migration. Not only do formins bind and stabilize the microtubules , but mDia1 has

been found to polarize microtubules from the cell center microtubule-organizing center (MTOC) to the periphery in

migrating cells towards the direction of cell migration . Furthermore, mDia2 stabilizes microtubules, which is

essential for cell migration to occur .
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3. Formins in Cell Proliferation

To replace damaged tissue during wound healing, cell proliferation occurs, leading to the restoration of the

epidermis and the formation of new dermis through the production of granulation tissue . Cytokinesis is the final

stage of cell division that divides the cytoplasm of a cell into two cells following mitosis. Cytokinesis begins with the

assembly of an actomyosin-rich contractile ring. When the ring contracts, a cleavage furrow forms, which

eventually separates the two sides of the ring . The positioning and induction of a cleavage furrow on the

metaphase plate are regulated by microtubules . Clusters of recycled endosomes are required as the main

source of the additional membrane around the cleavage furrow to increase cell surface area and the

accommodation of the cell shape and polarity changes during cytokinesis . The accumulation of endosomes

occurs in the midbody area near MTOC, which relies upon activity of microtubule motors .

Formins play a critical role in cytokinesis. Several studies have shown the failure of cytokinesis following a mutation

or the genetic deletion of formin proteins. There are different functions of formin proteins during cytokinesis, which

rely on their role in actin reorganization and microtubule stabilization. Rho-regulated DRFs are the main stimulator

of actin assembly in the contractile cortex . Formins have been identified as essential factors for the

formation/activity of contractile rings during cytokinesis in drosophila , C. elegans , yeasts , and

mammals . DRFs localize in pericentrosomal dividing cells near the contractile ring and furrow, which is

mediated by Rho-GTPase regulation . mDia1 and mDia2 localize to the microtubules of proliferating cells and

facilitate cytokinesis by stabilizing the microtubules . Formins are also known to act as a link between

microtubules and actin filaments during cytokinesis and regulate their positioning. The overexpression of formins

leads to the disruption of the alignment of microtubules and actin filaments . A study on fibroblasts and Xenopus

embryos showed that the Rhod–hDia2C–Src pathway involves the interaction of endosomal vesicles with

microtubules and actin . In addition, RhoA-activated DRFs are involved in the stability of the cytokinesis furrow

by assembling β-actin filaments at the site of cytokinesis and directly at the furrow .

4. Formins in Epithelial-to-Mesenchymal Transition (EMT)

Epithelial-to-mesenchymal transition (EMT) is a vital part of the wound-healing process that occurs during re-

epithelization and is mediated by inflammatory cells and fibroblasts . During re-epithelization, keratinocytes

proliferate and migrate to restore the epithelial barrier. Re-epithelialization is supported by the conversion of cells

from a stationary state to a migratory one, mediated by EMT . Keratinocytes go through cytoskeleton

rearrangement, lose their polarity and cell–cell adhesions, modulate their interaction with the ECM, and obtain

mesenchymal features . The cytoskeleton rearrangement during EMT is regulated by transforming growth factor

β1 (TGF-β1) and its downstream effectors RhoA GTPase and formins including DIAPH1 and DIAPH3 FHOD1 and

FMNL2 .

5. Formins in Angiogenesis
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The process of new blood vessel formation, called angiogenesis, is critical for effective wound healing. Following

the resolution of inflammation, newly branched blood vessels invade granulation tissue to provide nutrition and

oxygen to the newly formed tissue . Actin reorganization is required for endothelial cell (EC) polarization,

proliferation, migration, and adherence . Formins are one of the cytoskeletal regulators of angiogenesis with

conflicting effects on this process. Due to formin’s role in actin polymerization, these proteins, especially FMNL3,

are required for filopodia formation in migrating endothelial cells during angiogenesis . Several studies show an

extending role of formins beyond their effect on EC migration. ECs are highly flattened cells in a quiescent state.

However, during angiogenesis, these cells undergo a change in their morphology and polarity in order to initiate

migration . EC microtubules realign and stabilize during angiogenesis, leading to a change in the morphology of

ECs. Formin screening has identified FMNL3 as the regulator of angiogenic ECs′ morphogenesis, and silencing

FMNL3 has led to the inhibition of blood vessel formation. FMNL3 has been shown to act as a downstream effector

of Cdc42 and RhoJ and regulates microtubule alignment during EC morphogenesis . During angiogenesis,

ECs establish cell–cell junctions and rearrange for new vessel formation and stabilization. Actin filaments

polymerize and assemble in these EC junctions. FMNL3 has been shown to localize in EC junctions where they

promote actin filament polymerization. FMNL3 knockdown has also led to impaired actin filaments′ polymerization

and stabilization highlighting the importance of this formin in maintaining EC junctions .

DAAM1 formin has been identified as a promoting factor of both the microtubule stabilization and actin

polymerization of ECs. However, the overexpression of DAAM1 elevates microtubule stabilization rather than actin

polymerization and inhibits angiogenesis by inhibiting the proliferation and migration of ECs .

Growth factors such as vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) promote

angiogenesis through two different signaling pathways. VEGF increases endothelial cell permeability through the

activation of Src kinase via its receptor VEGFR. Ang-1 inhibits VEGF-stimulated permeability by activating RhoA

and its downstream effector mDia . mDia has been shown to interact directly with Src and inhibits its activity

by sequestering it from the VEGFR pool, which ultimately blocks EC permeability and promotes barrier integrity.

This function of Ang-1 is important in protecting blood vessels in chronic wounds with persistent inflammation .

6. Formins in Tissue Maturation and Fibrosis

Maturation is the final stage of wound healing, which involves the remodeling of granulation tissue. Myofibroblast

differentiation is a crucial aspect of this process as they promote wound contraction and the realignment of ECM

components, which restores tissue integrity. Fibroblasts differentiate into myofibroblasts under the mechanical

stress of the ECM. During this transition, myofibroblasts develop highly organized and contractile actin filament

bundles called stress fibers . Stress fibers are assembled by formin (mDia1/mDia2)-driven actin polymerization

at focal adhesions, and silencing mDia1/2 in stress fibers disrupts myofibroblast differentiation . One of the main

regulators of myofibroblast differentiation is TGF-β1, which promotes the formation of stress fibers and giant focal

adhesions in myofibroblasts . mDia proteins are recruited to stress fibers via TGF-β1/RhoA signaling and

facilitate myofibroblast differentiation by promoting actin filament polymerization (Figure 2). In addition,

myofibroblast differentiation is regulated by the interactions of the microtubule system and actin cytoskeleton via
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mechanical coupling. TGF-β1 signaling is blocked by microtubule polymerization, preventing myofibroblast

differentiation. mDia2 interacts with microtubules and its localization to stress fibers can be regulated by

microtubules .

Figure 2. Formins’ role in myofibroblast contraction. (a) Stress fiber generation by formin-mediated actin assembly.

TGF-β1 signaling promotes stress fiber formation in myofibroblasts by mediating the activation of RhoGTPase,

which blocks the autoinhibition of formins and promotes actin assembly. (b) Stress fibers locate in the focal

adhesions of myofibroblasts and facilitate the contraction and maturation of new ECM.
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