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Laser powder bed fusion (LPBF) is the most used metal additive manufacturing technique, and it is based on the

efficient interaction between a high-energy laser and a metal powder feedstock. The reuse of the powder feedstock

is crucial to make the process cost-efficient and environmentally friendly. However, since studies of the mechanical

and microstructural properties of parts produced with reused powders show scattered results, a closer look to the

powder, heat source and shielding gas properties and to how they interact during the LPBF process is presented.
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1. The LPBF Process

The powder bed is a layer of powder characterized by a packing density (which depends on the arrangement of the

particles and the unfilled areas between them), which is then subjected to the action of the laser, which melts the

requested areas of the bed. The remaining unmelted powder serves, layer-upon-layer, as additional support to the

part under construction, and some areas of the bed close to the laser action can be heated several times during

the overall process performed to obtain a 3D object.

The interaction between the metal powder and the laser radiation during the process is associated with energy

deposition following the powder coupling (absorption of radiation by metal particles, which appear as gray bodies

due to their morphology) and bulk coupling (absorption of radiation by a metallic surface, related to the intrinsic

properties of the considered metal) mechanisms . The optical penetration is often evaluated comparing the

powder bed to a bulk, but this is not completely right. The interaction with particles can, indeed, generate multiple

reflections , which enhance the penetration depth of the laser. Since the action of the laser is very short in time

and characterized by a very high energy (resulting cooling rates of about ~10 –10  K/s ), evaporation and melting

of the exposed powder particles can easily occur .

In addition to studying the full LPBF process to realize parts and samples for tensile and fatigue tests, single-track

experiments are extensively used to understand the powder–laser interaction . These experiments allow

highlighting the presence of stability zones, where the track is continuous, and instability zones, whose

irregularities (i.e., distortions, balling) are highly dependent on the scanning speed values, on the laser power, on

the thickness of the powder layer and the substrate material on which it is spread, and on the powder particle

morphology and granulometry .
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2. Powder Feedstock Features

The quality of samples and parts built with laser powder bed fusion is strongly influenced by the properties of the

metal powders particles themselves , as also outlined by official regulation agencies such as ASTM

(ASTMF2924-14 ). Granulometry, flowability, particle size, density, and chemical composition are among the

most crucial properties which are typically checked before processing the selected powder .

The quality and properties of the feedstock materials depend a lot on the manufacturing process, which, in the

case of metal powders for LPBF, can be quite varied , ranging from rotary, water, and gas

atomization  to the plasma rotating electrode process (PREP) . Furthermore, in order to make

the additive manufacturing process more cost-efficient and to reduce the price of the feedstock, the reuse of scraps

and chips produced by traditional manufacturing of expensive metals and alloys (i.e., Ti-6Al-4V, aluminum) was

proposed via spheroidization  and milling .

The literature shows that powder recycling, when referring to the LPBF process, can be done in a variety of ways

, ranging from the reintroduction of sieved powder after each build and adding the used and sieved powder

together with the virgin one with or without mixing, to the mixing of used powder with powder of the same age after

each cycle (defined as the number of jobs after which the amount of feedstock in not enough to perform further

jobs). According to literature, the first two procedures seem to be the most used . Denti et al. 

recently suggested a parameter called “average usage time” (AUT) to account for the real duration of laser–powder

interaction, instead of the number of jobs performed, which could be widely adopted as a reliable method to

evaluate the level of interaction. Modifications of powder properties with reuse in LPBF are highly influenced by the

starting material, the process parameters, and the environment inside the build chamber. In the case of highly

reactive powders (i.e., Al- and Ti-based powders), even the storage and handling conditions might affect the quality

of the powder .

What is most striking from the results of studies performed on many different alloys (stainless steels, Ti-6Al-4V,

Alsi10Mg, IN718 and IN625, Co–Cr, Scalmalloy) , in terms of reused powder

characterization and, most importantly, of the microstructural and mechanical properties of the final parts, is that,

while the former are quite similar for the same alloy, the latter are characterized by very scattered results .

Mechanical properties could be improved, decreased, or unaffected by the reuse of feedstock material, as shown

by the results reported in Table 1. This result suggests that more attention should be paid to what really happens

inside the chamber during the laser–powder interaction and not only to the metal powder quality itself.

Table 1. Summary of studies on powder recycling (IED—input energy density, UTS—ultimate tensile strength, ND

—not determined).
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(P/v)

(J/m)

Ti-6Al-4V 12 Sieving ND

Virgin: 1030

MPa

Reused: up to

1101 MPa but

plateau at

1072 from 6 to

12 reuses

ND ND

Ti-6Al-4V 31

Powder

sampled

from trap

capsules

(double

cone

shape);

sieving

ND

Virgin: 984.3 ±

0.6

Reused:

1002.7 ± 1.2

(all samples

subjected to

hot isostatic

pressing)

ND ND

Ti-6Al-4V 15 Sieving 233.3 Comparable ND

No differences

in as-built

condition

 

Longer life

with the

reused

powder at a

strain of 0.004

mm/mm with

machined

surface

condition
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Ti-6Al-4V ND Sieving ND Comparable
Decrease

with reuse
ND

Ti-6Al-4V 100

Addition of

virgin

powder

when

needed

233.3

Scattered

results but no

decrease

(stress relieved

samples)

ND ND

IN718 14
Sieving

and drying
ND ND

Variations

with the

number of

reuses but

no clear

trend

ND

IN718 10 Sieving ND

Consistent

from build to

build (samples

were stress-

relieved, hot

isostatically

pressed,

solution-

treated, and

aged)

ND

Comparable

low cycle

fatigue

AlSi10Mg 1 Sieving 284.6 Comparable ND ND

AlSi10Mg 1 Sieving 284.6 Comparable ND ND

AlSi10Mg 8 Sieving ND Decrease with

reuse

ND High cycle

fatigue
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3. Heat Source

The interaction between metal power particles and laser radiation during LPBF is quite complex and includes a

number of physical phenomena, such as chemical reactions and phase transformation, heat transfer, and a

complex fluid flow within the melt pool due to the surface-tension gradient, as well as absorption and scattering of

the laser radiation . The high-energy solid-state lasers typically employed in LPBF have an axisymmetric

Gaussian profile of the power density distribution, with beam diameters between 50 and 100 µm for fine resolution,

and an intensity which decreases upon penetration through the powder layers deposited on top of each other 

, since the radiation also penetrates through the pores between the particles in the bed.

The connection between the shape of the laser beam profile and the melt pool was extensively studied in the

literature . Furthermore, the top-hat shape employed in laser welding  was shown to produce keyholes

having a shorter depth and, for this reason, Tenbrock et al.  recently applied this profile in laser powder bed

decreases

with reuse

AlSi10Mg 18 Sieving 284.6 No effects ND ND

17-4 PH 1 Sieving 237.5

Similar trend

for spatter-rich

and non-

spatter-rich

samples.

Abrupt failure

for spatter-rich

samples and

5% lower

ductility

ND ND

17-4 PH 10 Sieving 243.7

Similar UTS

but failure

strain of print

10 parts

decreased by

~7%.

ND ND
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fusion of 316 L stainless steel, showing that an efficient LPBF processes can also be realized by applying diode

lasers as long as a proper defined intensity threshold is exceeded (I ≈ 8–10 × 10  W/cm  ).

The use of ultrafast lasers (i.e., femtosecond lasers) is also under study since they could allow processing metal

and alloys with high melting temperatures and thermal conductivity (i.e., rhenium) and ceramics .

4. Shielding Gas Flow

The laser powder bed fusion process is always performed under inert atmosphere, in order to avoid any possible

interaction between the metal particles (very reactive with a high specific surface area) and impurities such as

humidity and light elements (i.e., oxygen, carbon oxides), which might affect the local chemical composition and

the resulting mechanical properties of the manufactured parts . Furthermore, a continuous flow of inert gas

is essential in order to limit the redeposition on the powder bed of by-products during the process; this is crucial

because should the removal of by-products by the shielding gas flow not be effective, there is a high risk of laser

attenuation . Owing to the formation of metal vapor plume during the laser–powder interaction, the incident

laser energy could be absorbed partially. These effects were particularly studied by Grünberger and Domröse ,

who generated the so-called splashy process by changing the focal position of the laser and concluded that a

proper gas flow rate is mandatory in order to avoid the occurrence of this phenomenon, since, in areas of the build

chamber where the local gas flow velocity is slow, there is a higher beam scattering. The gas flow in the process

chamber was found to be a crucial parameter to limit the presence of defects in parts obtained by laser powder bed

fusion .

The most used inert gases are argon and nitrogen, although, in the case of highly reactive materials prone to

nitride formation, Ar is the only available option . However, Pauzon et al.  recently studied combinations of Ar

and He to process Ti-6Al-4V, and their results showed improved cooling rates and an impressively higher build rate

(up to 40%).
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