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Liver transplantation outcomes have improved. Looking for the best Donor-Recipient matching (D-R matching) as always

been a challenge for the liver transplantation surgeons. Most of the proposed scores based on conventional biostatistics

are not good classifiers of a problem that is considered “unbalanced.” The implementation of artificial intelligence in

medicine has experienced exponential growth. Deep learning, a branch of artificial intelligence with capability to handle a

large number of variables with speed and multi-objective analysis. Artificial neural networks and random forests are the

most widely used deep-learning classifiers in this field. Both classifiers have been able to show a high predictive ability in

the graft survival of a D-R pair compared to traditional classifiers. There are even researchers that have successfully

created a matching model based on one of them.
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1. Current State of Art

The problem of liver donor–recipient (D–R) matching is not new and is inherent to organ transplantation. However, the

Achilles’ heel of liver transplantation continues to be the shortage in donors pool and the increase of waitlisted patients. A

long time on waiting list (can reach as high as 20%) can lead to the death of patients waiting for an organ . The current

expansion of inclusion criteria have aggravated this problem.

The imbalance between candidates and grafts is further complicated by organ allocation policies since there exist as

many policies as decisions about what to prioritize. Briefly, researchers have policies based on the principle of urgency

(the “sickest-first” principle), on “individual transplant benefit principle” and “population-based transplant benefit principle”

. However, not all organs and not all recipients are equal. A high-risk donor-recipient matching may lead to the futility of

the transplant, penalizing these patients on waiting lists. The development of perfusion machines has enabled the use of

marginal grafts using normothermic machine perfusion (NMP) to serve high-risk candidates (NAPLES initiative) .

The classical models used to design organ allocation policies consider systems based on patient characteristics or donor

risks, or a combination of donor and recipient characteristics. These D–R systems use conventional biostatistics such as

logistic regression  but have important limitations : Although these models have been analyzed in-depth, none offers

an adequate response to D–R matching . The reason is that these models are unable to identify the candidate on the

waiting list with the highest probability of death and identify, from all available grafts, the one with the highest probability of

post-transplantation success for this candidate.

In allocation policies based on the sickest-first principle, the Mayo Model for End-Stage Liver Disease (MELD) score is the

most commonly used score to prioritize waitlisted candidates. Despite its utility, however, MELD (and its modifications)

shows poor predictive capacity (C-statistic of 0.55) in post-transplant survival and lacks precision in prioritizing indications

other than liver dysfunction (e.g., in pediatric recipients or hepatocarcinoma) . This has led to the development of special

systems based on extra points . Other liver scoring systems, such as the Balance of Risk (BAR) score  or the

Survival Outcome Following Liver Transplantation (SOFT) score , have been validated and are being used as tools in

the clinical decision-making process. The BAR score is the best measure to predict 90-day morbidity with reasonable

accuracy (AUC>0.70), as it can detect unfavorable D–R factor combinations before liver graft allocation . Unfortunately,

both BAR and SOFT are unable to identify which of several D–R pairs will achieve the best outcome; that is, they are not

“matching” systems .

2. Concepts: Artificial Intelligence, Machine Learning and Deep Learning

AI is a branch of computational science that studies computational models capable of performing human-like activities

based on two fundamental characteristics: behavior and reasoning. Its applications are diverse, including data analysis.

Machine learning is defined as a branch of AI that focuses on the use of data and algorithms to mimic the way humans
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learn and gradually improve the algorithms’ accuracy. This learning process is understood as the ability to identify a series

of complex patterns determined by a large number of variables. Therefore, the machine does not learn by itself, but the

algorithm modifies itself automatically depending on the data input in its interface, thus allowing scenarios and conditions

to be predicted in an automated way. For this reason, AI is being increasingly applied in the health sciences to predict

clinical outcomes .

Machine learning and deep learning are not on the same level, but the second is part of the first. Even so, it is possible to

compare both and establish some differences. While machine learning uses algorithms to analyze data, learn, and

generate results or make decisions based on what it learns, deep learning structures the algorithms into layers of

convolutional neural networks that help it learn and generate more accurate results. Data used by machine learning

algorithms are structured and labeled for their predictions. This does not mean that they cannot work from unstructured

data, but to do so, they need to perform some information pre-processing. Deep learning algorithms eliminate some of

these pre-processing needs, as they can work with unstructured data and extract features in an automated or

independent way. Finally, deep learning algorithms work in layers that reduce the margin of error. Each layer makes a

judgment and combines that judgment with the result of the previous layer. The more information it receives and

processes, the more accurate it becomes.This is the reason why AI and particularly deep-learning classifiers are an

interesting alternative to traditional models .

3. Applications: Deep Learning in Liver Transplantation

Deep learning provides a variety of classifiers that can be utilized in almost any field of medicine . Most studies

on liver transplantation have focused on the development of models to predict post-transplant graft survival. ANNs and

random forests are the most frequently used classifiers in this field, and studies aimed at improving D–R matching may

use any of them.

3.1. Artificial Neural Networks

ANN classifiers imitate the design of human neuronal networks (Figure 1). Briefly, they consist of several groups of units

(neurons) organized in different layers. A basic neural network consists of an input layer, a hidden layer, and an output

layer. The number of layers and the ANN training can vary. Both the neurons and the relationships established between

them are mathematical algorithms. The relationships (weights) between the neurons in the different layers vary as

increasing data are introduced, which the model learns from. In a clinical problem, a series of input variables are

introduced into the neural network, which then processes them, according to the training received, to provide output

variables of clinical interest.

Figure 1. Representation of a basic neural network. Different layers are represented in blue (input layer), gray (hidden

layer), and yellow (output layer). The arrows represent the relationships between neurons (weights).

To understand the advantages of ANNs in the field of liver transplantation, it is important to consider that the most

common scenario is graft survival, while graft failure is rare, which is why it is said to be an unbalanced problem.

Traditional biostatistics models are good predictors for outcomes that occur frequently; that is, they predict graft survival

very well (majority class). However, they show a poor ability to predict graft failure (minority class) because it is not the

usual outcome. In this regard, ANNs are able to predict both probabilities independently as they handle a large amount of
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data (variables). The “surviving class or majority class” prediction is based on the concept of correct classification rate

(CCR, accuracy), which refers to the proportion of training patterns classified correctly by the ANN. On the other hand, the

“non-surviving class or minority class” prediction capability is measured using the concept of minimum sensitivity (MS).

However is necessary to establish certain conditions for organ allocation (rules-based system). If this does not occur, the

allocation would be biased, and the best candidates would receive the best grafts (i.e., those with a higher probability of

success). All these concepts applied to D–R matching are schematized in Figure 2.

Figure 2. Diagram of an ANN-based on a multi-objective algorithm. Liver transplantation outcomes are shown as an

unbalanced problem, and researchers classify them into the majority class (probability of surviving after liver

transplantation, NN-CCR) and the minority class (probability of not surviving, NN-MS). By combining both probabilities

(NN-CCR and NN-MS) based on input variables, researchers obtain a final D–R matching according to a rules-based

system. ANN, artificial neural network; NN-CCR, neural network based on the correct classification rate or accuracy; NN-

MS, neural network based on the minimum sensitivity.

From a clinical point of view, Briceño et al.  were the first to apply a neural network combined with a system of rules to

create a donor-recipient allocation model (M.A.D.R.E model). Firstly, ANN-CCR predicted a 90.79% probability of graft

survival with an area under the curve (AUC) of 0.80, while ANN-MS predicted a 71.42% probability of graft loss with an

AUC of 0.82. Secondly, the authors demonstrated the superiority of ANNs in donor allocation over biostatistics-based

prioritization scores (MELD, D-MELD, SOFT, P-SOFT, DRI, and BAR). Finally, the allocation system used the results

obtained by the constructed ANNs and successfully assigned the best candidate for a graft according to the different

probabilities (CCR and MS) from among a group of patients with higher MELD, using its rules-based system. These

authors validated externally this methodology with a second study  achieving excellent prediction results at 3 months

[CCR-AUC 0.94; MS-AUC 0.94] and 12 months (CCR-AUC 0.78; MS-AUC 0.82). The main reason for these findings was

that a homogenous database with a low number of missing values was used. In their most recent study, Guijo-Rubio et al.

 analyzed how ANNs work using the United Network for Organ Sharing (UNOS) dataset. For the 5-year endpoint,

machine learning techniques, such as ANN (AUC = 0.599) or random forest (AUC = 0.644), were outperformed by logistic

regression (AUC = 0.654). The predictive capacity of the AI models (including ANNs) was very similar to that obtained by

traditional models (C-statistic ≤ 0.66). The reason was these classifiers were trained on a database with a high

percentage of missing values. 

In clinical scenarios, neural networks are very useful for finding patterns that are far too complex or numerous since they

can generate near-perfect predictions using the data on which they are fit . In addition, data processing is performed

quickly—an essential aspect of graft allocation. However, ANNs are inherently opaque and lack interpretability because

the set of weights or algorithms in hidden layers is unknown. This is called the “black-box” issue, which has made many

clinicians skeptical of their use because it is necessary to know all the details of the process .

The predictability of an AI model depends on the robustness of the database and results are conditioned by the population

in which they are trained. This is why ANNs may work very well in local and regional liver transplantation programs but

cannot be extrapolated to other centers, thus requiring regional-specific ANN models. Although the results of predictive

models are good, most databases are small, have a high number of missing values, or can only be applied to the

population where the ANN has been trained. In addition, neural networks depend on a system of rules to properly perform

donor–recipient matching but are based on the sickest-first principle. Therefore, nowadays, ANNs can only assist, but not

carry out, the matching decision in all aspects of organ transplantation .
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3.2. Random Forests

Random forests are deep-learning classifiers based on decision trees. It is an ensemble-type methodology (i.e., a model

of models), and it is necessary to determine the number of models that will form the final model and verify that these

models are not correlated because their results will not be very adequate. For each of the possible outputs, a different

decision tree is built. The database is “split” by the researcher into different nodes. The database requires a previous

treatment filter to avoid over-training and overfitting the data.

Lau et al.  examined how models based on random forests could predict post-transplant graft failure compared with

other scores. The random forest demonstrated its superiority with an AUC of 0.787 compared to ANN (AUC = 0.734) and

DRI (AUC = 0.595), as well as with other scores. The percentage of missing values in the variables used in this study,

ranged from 0% to 72.22%, demonstrating the ability of random forest models to work with a high percentage of

incomplete data.

The most important advantages of random forest classifiers are that a) unlike ANNs, they perform very well with a small

database and a high percentage of missing values ; and b) they have excellent predictive power. Unfortunately, they

are not useful with larger datasets (the number of decision trees they generate could be unmanageable) and they have a

high risk of “over-fitting,” that is, their effectiveness on the training dataset is sometimes much higher than that obtained

on the validation and/or generalization dataset.

4. Current Applicability: What is on the Horizon?

AI has contributed to the field of liver transplantation through different classifiers, such as ANNs or random forests . On

the one hand, machine learning classifiers operate impartially as they are not affected by subjective factors. On the other,

they can handle a multitude of variables of clinical interest in a quick and easy way (faster than humans) to identify the

best outcome. These are the main reasons that make the use of AI so attractive from a clinical point of view. AI-based

classifiers may improve D–R matching in terms such as procedure costs or individual and social benefits .

Deep learning is the branch of artificial intelligence that appears to be undergoing the greatest development in this field. In

addition to the advances mentioned above, researchers have examples such as the application of deep learning to

assess CT volumetry in living donors , the prediction of hepatocellular carcinoma recurrence after liver resection , or

the identification of hepatic steatosis in living donors . However, while the scientific production related to AI is more

abundant in other areas of liver disease, D–R matching remains controversial. The data published to date show promising

results but have not reached clinical applicability. Currently, there are three key points to implement these models in

clinical decisions: 

a) Overcome three ethical barriers. The first is the “black box issue,” which may cause mistrust among clinicians because

they do not know the weight of the variables in the models. The second is data privacy and cyber security. The last is

finding an adequate answer to the following question: Who is responsible if the model fails?

b) Collect data without missing values to build large and robust datasets. However, external validation may be

questionable since classifiers based on deep learning perform better in populations where they are trained. Thus, the

most realistic and suitable option would be to use region-specific models.

c) Do not consider AI-based tools as “self-driving cars,” but as tools to support decisions and complement current

systems.
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