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Traffic incidents have negative impacts on traffic flow and the gross domestic product of most countries. In addition, they

may result in fatalities and injuries. Thus, efficient incident detection systems have a vital role in restoring normal traffic

conditions on the roads and saving lives and properties. Researchers have realized the importance of Automatic Incident

Detection (AID) systems and conducted several studies to develop AID systems to quickly detect traffic incidents with an

acceptable performance level. AID can be categorized into four categories: comparative, statistical, artificial intelligence-

based and video–image processing algorithms.
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1. Comparative (Pattern Recognition) Algorithms

The comparative algorithms have predefined thresholds that represent normal traffic conditions. The collected traffic flow

parameters (i.e., speed, occupancy and/or flow) are compared against these thresholds. If there are significant deviations

from these thresholds, incident alarms are triggered . This category includes the California algorithm , which is the

first and the most known algorithm in this category, the Pattern Recognition (PATREG) algorithm , the All Purpose

Incident Detection (APID) algorithm  and many other algorithms.

The California algorithm, also known as the Traffic Services Corporation (TSC) algorithm, is one of the pioneering

algorithms and one of the most known comparative algorithms. It is based on the concept that the occurrence of traffic

incidents significantly increases the occupancy in the upstream section of the road while decreasing the occupancy in the

downstream section of the road. Thus, it uses the occupancy measured from two adjacent fixed detectors. Three tests are

applied to the measured occupancies by the two detectors and if the values from the three tests surpass predefined

thresholds, an alarm of incidents is set off .

Here, O  is the difference between the occupancy of the upstream detector and the occupancy of the downstream

detector; O  is the relative difference between the occupancy of the upstream detector and the occupancy of the

downstream detector; O  is the temporal difference in downstream occupancy; T , T  and T  are the test thresholds .

One of the major drawbacks and limitations of this algorithm is that it depends on the readings of the fixed detectors.

Thus, the performance of this algorithm will be significantly affected by any breakdowns or defects in the detectors. In

addition, the predefined thresholds are determined based on historical data of normal traffic and incident conditions, which

may vary from one location to another. Additionally, the algorithm requires extensive calculations . Moreover, in some

situations, the traffic might exhibit incident-like patterns even though there is no incident such as the presence of ramps,

grade changes or lane drops between detector stations . These situations may cause false alarms and thus impact the

performance of the algorithm. The algorithm has a good Detection Rate (DR) and acceptable False Alarm Rate (FAR) but

these are achieved at a cost of delays in detecting the occurrence of incidents and a high Mean Time to Detect (MTTD)

that can reach up to 4 min . Payne and Tignor modified the original algorithm to overcome some of its limitations and

improve its performance. Based on that, 10 algorithms were developed out of it such as California algorithm #7 and

California algorithm #8, which were proved to have the best performance . Guo et al. modified the original California

algorithm to be able to detect traffic incidents in urban areas instead of freeways . Since traffic flow in urban roads is

discontinuous and varies with time unlike freeways, which have stable and continuous traffic flow, they suggested using

dynamic thresholds, derived from iterative formulas, instead of constant predefined thresholds.

APID algorithm was developed as a component of the COMPASS software, which was designed to be implemented in the

traffic management center in Toronto, Canada . This algorithm integrates the elements of the California algorithm and

expands it to consider different traffic conditions since it has incident detection algorithms for heavy, medium and low

traffic conditions plus an incident termination detection routine, a routine to search for the presence of compression waves

and persistence of incident condition testing routine .
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Moreover, the McMaster algorithm was developed to overcome some of the limitations of the California algorithm .

Instead of using occupancy only as the input parameter, this algorithm considers the flow, occupancy, and speed from a

single station as input parameters. The detection algorithm analyzes the changes in three parameters simultaneously. If a

sudden and sharp change in one of the three variables is observed, while the change in the remaining variables is smooth

and continuous, this can indicate the occurrence of an incident . The algorithm utilizes historical data of normal and

incident conditions to develop flow–occupancy–speed charts and sets boundaries between the normal and incident

conditions. If the observed traffic parameters exceed the normal condition threshold for consecutive periods, an alarm is

triggered to indicate the occurrence of an incident. Using the three parameters together instead of using the occupancy

only leads to the main advantage of this algorithm, which is a high incident detection rate compared to the California

algorithm. Therefore, this algorithm has higher DR and lower MTTD, compared to the California algorithm. In addition, this

algorithm depends on the data obtained from a single station instead of two adjacent stations. Hence, the number of false

alarms triggered by the normal variations that mimic incident-like patterns is reduced. However, the major flaw of this

algorithm is that the weather conditions can impact its detection capability. The algorithm was assessed during a

snowstorm and the FAR was increased significantly because during snowstorms, vehicles had to decrease their speeds

sharply and drive more cautiously. This reduction was incorrectly detected as incidents thus the number of FAR was

increased in this situation .

To alleviate the issue of the random fluctuations that may cause false alarms in the California algorithm, in 1993,

Stephanedes and Chassiakos developed the Minnesota algorithm . The algorithm collects the occupancy from two

adjacent detector stations upstream and downstream over 30 s intervals. The algorithm calculates the average of the

spatial occupancy difference between the two stations over six intervals (three minutes). This process is called short-term

time averaging. Then, the algorithm inspects the discontinuity in the spatial occupancy difference over the past three

minutes. If the spatial difference exceeds certain thresholds, this will trigger an incident alarm. The advantage of using

short-term time averaging is to smooth up the random fluctuations in the data, filter the data, and remove the noise that

triggers false alarms that affect the detection capability of the algorithm . The performance of this algorithm was

compared to the performance of the California, Standard Deviation, and Double Exponential algorithms (these will be

discussed in the following subsection). This comparison showed that the Minnesota algorithm achieved the highest DR

and produced the lowest FAR compared to the other three algorithms . However, the main weakness of this algorithm

is the detection time, which can be three minutes or more since it collects and evaluates the average spatial occupancy

difference over three minutes. In addition, this algorithm depends only on occupancy as the input variable to detect the

occurrence of an incident. This may cause undesirable incident alarms especially during low traffic flow. If the flow of the

vehicles over the detector stations is low thus the occupancy will be low as well, which may be misclassified as an

incident.

The Technical University of Munich developed an Automatic Incident Detection (AID) system using Bluetooth detectors

instead of an inductive loop as part of a project called iRoute . These detectors were used to measure the actual travel

time of the vehicles and then the speed of the vehicles between two consecutive detector stations, with known distances,

can be calculated. A considerable increase in travel time and decrease in speed can be used as a sign of the existence of

an incident on the road. The advantage of this system is that it uses Bluetooth detectors instead of inductive loop

detectors, which are less expensive, have low installation and maintenance costs, and also have high scanning and

detection range compared to inductive loops. Thus, a low number of detectors can provide a wider coverage area.

Additionally, their power consumption is very low and the collected data can be easily transferred via The Global System

for Mobile Communications (GSM), which has low service costs. Nevertheless, the performance of this system is highly

affected by the distance between the Bluetooth detectors since the DR decreases with the increase in the distance

between the detectors as the incidents can be smoothed quickly before their impacts reach the downstream detectors .

2. Statistical Algorithms

These algorithms use statistical techniques to estimate traffic characteristics and compare them with the observed traffic

data obtained from the road to determine if there is a statistical difference between them, which indicates potential

incidents . The contributions and the limitations of these algorithms are discussed in this subsection.

In 1974, the Texas Transportation Institute (TTI) developed the Standard Normal Deviate (SND) Algorithm and applied it

on the Houston Gulf Freeway (I-45) . This algorithm uses historical data on the traffic parameters and calculates the

mean (x ) and the standard deviation (σ) of these variables and then compares them to the current values of the variables

collected from the field to calculate the SND using Equation (4).
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(1)

where x  is the current value and x  is the mean and σ is the standard deviation.

The incident detection logic for this algorithm is that a significant deviation of the traffic variable from its mean is a sign of

the occurrence of an incident . Therefore, if the calculated SND exceeded a certain threshold, this will trigger an incident

alarm . This algorithm was tested and it achieved a high DR of about 92% and FAR of 1.3% and MTTD of around 1

min . Nevertheless, the SND has two main shortcomings. First, calculating the mean and the standard deviation of the

variables and determining the thresholds is tedious and time-consuming. Second, the presence of outliers in the data has

a significant impact on the performance of the algorithm since they can inflate the mean and the standard deviation of the

variables and hence reduce the DR. This phenomenon is called masking .

To overcome the masking problem in the SND algorithm, Pranamesh et al. established a new algorithm based on the

Inter-Quartile Distance (IQD) to investigate irregularities in the observed traffic speed that can indicate the presence of an

incident . The difference between this algorithm and the SND algorithm is that it uses the median or the second

quartile instead of the mean and the Inter-Quartile score Q instead of the standard deviation to calculate IQD. The Inter-

Quartile score Q is the difference between the third quartile and the first quartile of the values divided by 1.35 . The IQD

is used to measure the deviation from the normal condition and if it is less than a certain threshold, this indicates the

existence of an incident. Although this algorithm alleviates the masking phenomenon, it suffers from another phenomenon

called swamping. This phenomenon occurs when most of the values (more than 50%) are close to each other hence the

first and third quartiles will be almost equal, and therefore the IQD will be approximately zero. Consequently, any

measured speed from the field that is different than the median value will be an outlier and incorrectly detected as an

incident, thus the FAR will be high. However, the Federal Highway Administration (FHWA) recommended that if the

average speed of the freeways is less than 45 mph, this is a sign of the occurrence of congestion. Therefore, by following

FHWA guidelines, incident alarms should be triggered only if the average speed of the freeway falls below 45 mph .

This algorithm has achieved a DR of about 97% and a FAR of 4.8% .

Additionally, some researchers utilized some smoothing and filtering techniques to smooth the data, average out the

random fluctuations, and refine the noises in the data thus reducing the FAR. Double Exponential Smoothing (DES) is one

of the smoothing techniques used to remove the noise or the fluctuations of normal traffic data that masks the underlying

trends and produces false alarms . Cook et al. developed an incident detection algorithm using DES . This

algorithm uses recent and past observations of some of the traffic parameters such as volume, occupancy and speed to

perform short-term prediction of traffic conditions and assumes that they represent normal traffic conditions. The algorithm

weighs past and recent traffic observations differently by using a double exponential smoothing function, which assigns

higher weights to the most recent observation. A tracking signal, which is the errors between the predicted and observed

traffic parameters, is calculated to detect incidents.

3. Artificial Intelligence Algorithms

With the development of computational intelligence, Artificial Intelligence (AI) and Machine Learning (ML) are used

extensively in the transportation sector . They are used in managing and controlling traffic volume , predicting

the traffic flow of autonomous vehicles , traffic management and planning  and detecting traffic incidents 

. Artificial Intelligence algorithms apply AI and ML models to identify the normal and abnormal traffic patterns and then

classify the given input data as either incident or normal conditions . These algorithms include Artificial Neural Networks

(ANNs), fuzzy logic, random forest, decision trees, support vector machine (SVM) and a combination of these models 

.

4. Video–Image Processing Algorithms

CCTV cameras are used for traffic management on roadways. The video–image processing algorithms use traffic videos

captured from CCTV cameras installed on the roads to detect traffic incidents . They break the recorded videos

into a sequence of image frames and then extract the background roads and subtract moving vehicles from them. These

frames are analyzed by video–image processing algorithms that track the moving vehicles to determine the spatial-

temporal characteristics of the traffic variables and then analyze these to identify incident or incident-free states .

Figure 1 shows the steps of video–image processing incident detection algorithms.
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Figure 1. Flowchart of video–image incident detection .

The Autoscope Incident Detection Algorithm (AIDA) is one of the video–image processing-based incident detection

algorithms that analyze spatial-temporal characteristics of the traffic variables. It looks for a sharp decrease in speed or a

substantial increase in occupancy to detect traffic incidents .

The performance of these algorithms will degrade as the visibility decreases. Thus, severe weather conditions (rain, snow,

fog, and/or lighting) and the cameras’ position can have a significant impact on the detection capability of these algorithms

.

Table 1 summarizes the advantages and disadvantages of the aforementioned categories of incident detection systems.

Table 1. Advantages and disadvantages of incident detection algorithms.
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Category Contributions and Advantages Limitations and Drawbacks

Comparative
algorithms

California
algorithms

Look for discrepancies in traffic parameters
between adjacent loop detectors to identify the

presence of an incident .
It has good DR and a tolerable FAR.

It has a long MTTD that can reach
about 4 min .

The performance of the algorithm is
affected by any malfunction in any

detector.
Some factors can cause incident-like
patterns and increase the number of

false alarms.

McMaster
algorithms

Overcome the weaknesses of the California
algorithm series .

It uses the data from a single detector station
instead of two adjacent stations and considers the
relationship between speed, flow and occupancy.

It is sensitive to severe weather
conditions such as rain or snow,

which may result in an increase in
the number of false alarms.

Minnesota
algorithm

Investigates the discontinuity in the average spatial
occupancy difference between the two stations

over six intervals. The algorithm uses short-term
time averages to smooth up the random

fluctuations in the data, filter the data, and remove
the noise that triggers false alarms, which affects

the detection capability of the algorithm .

The detection time can be three
minutes or more.

It depends on the occupancy only to
detect incidents, which can cause

false alarms during low traffic
conditions.

Bluetooth
based

algorithms

Uses Bluetooth detectors instead of an inductive
loop, which provides a reliable, cost-efficient and

fast method for detecting traffic incidents or
congestion .

Some factors such as detectors
spacing, operating conditions,

duration and severity of the incident
and the location of the incident

relative to the detectors can impact
the performance of the algorithm.

GPS-based
algorithms

Utilizes driver’s mobile phones or GPS trackers in
the vehicles to establish spatio-temporal traces of

the vehicles to detect traffic congestion and
incidents .

The range and the placement of the
sensors can affect the efficiency of

the sensors or may cause false
alarms.

FCD-based
algorithms

Uses probe vehicles to collect real-time traffic data
and detect the occurrence of incidents.

Cost-effective method that can be used instead of
fixed detectors .

Penetration rate of the tracked
vehicles on the road and data

latency affect the performance of the
algorithm.

V2V- and
V2I-based
algorithms

Use V2V and V2I communications to monitor traffic
and detect incidents and congestion 

.

Impacted by the availability of the
communications protocols among

different entities (vehicles and
infrastructure).

Statistical
Algorithms

SND
algorithm

Evaluates the deviation of a variable from the
means to identify potential incidents .

Sensitive to the presence of outliers,
which can cause the masking

phenomenon.

IQD-based
algorithm

Overcomes the masking phenomenon in the SND
algorithm by using the median or the second

quartile instead of the mean and Inter-Quartile
score Q instead of the standard deviation to

calculate IQD .

It is prone to swamping
phenomenon, which can increase

FAR.

DES
algorithm

Removes the noise and heterogeneity from the
traffic data to clarify the true traffic patterns to help

the system to detect incidents easily and reduce
false alarms .

It predicts the traffic variables under
normal traffic conditions and

assumes that the traffic will follow
the predicted pattern over time.

Additionally, it requires extensive
computational efforts.

Time Series
Algorithms

Uses historical data of traffic variables to employ
statistical short-term forecasting of normal traffic

conditions. Significant deviations between the
observed and predicted conditions indicate the

existence of incidents .

Time-consuming and require
extensive computational efforts.

Additionally, they assume the traffic
follows a predictable pattern over

time.
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Category Contributions and Advantages Limitations and Drawbacks

Artificial
Intelligence
Algorithms

ANN
algorithms

Uses machine learning to classify the provided
traffic data as incident or non-incident situations 

.

The accuracy of the algorithm
depends on the performance of the

model which needs optimization and
tuning.

There is no rule to determine the
structure of the network, the

appropriate structure is achieved
through trial and error.

Fuzzy logic
algorithms

Deal with the complex and stochastic nature of
traffic variables. They provide the likelihood for an

incident .

The performance depends on the
rules and membership functions that

are set.
They completely depend on human

knowledge and expertise.
It does not give a clear signal of

incident or no incident.

Support
Vector

Machine

Provides a computationally efficient nonlinear
classifier that can be used in real-time incident

detection .

The accuracy of the model is highly
dependent on the kernel function
used. Nevertheless, selecting the

appropriate kernel function is
complex.

SVM is suitable for large datasets
because this will make the training

process very time-consuming.

Ensemble
Learning

Algorithms

Combine multiple machine learning models to build
a powerful prediction model that has better

predictive performance than any constituent
machine learning model alone .

The models should be selected
carefully to improve the predictive

performance of the model.
The ensemble can be complex and

less interpretable and can cost more
time during creating and training.

Video–image
Processing
Algorithms

 
Analyze videos of real-time traffic captured by

surveillance cameras to detect traffic congestions
and incidents .

The lighting conditions, extreme
weather conditions and coverage

range of the camera that is used to
capture traffic video have a major

impact on the algorithm’s
performance .
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