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Endothelial cells comprise the intimal layer of the vasculature, playing a crucial role in facilitating and regulating

aspects such nutrient transport, vascular homeostasis, and inflammatory response. Endothelial dysfunction is

believed to be a key driver for vein graft disease—a pathology in which vein grafts utilised in coronary artery

bypass graft surgery develop intimal hyperplasia and accelerated atherosclerosis, resulting in poor long-term

patency rates. Activation and denudation of the endothelium following surgical trauma and implantation of the graft

encourage a host of immune, inflammatory, and cellular differentiation responses that risk driving the graft to

failure. Several approaches have been developed to mitigate the onset and progression of this pathology both

clincally and surgically, including optimisation of surgical technique, vein preservation conditions and pharma-

modulation. Novel approaches are also under investigation in recent years, including the use of topical gene

therapy and the utilisation of endothelial progenitor/colony-forming cells to regenerate vein grafts with the view to

improving patient outcomes.

endothelial dysfunction  vein graft disease  intimal hyperplasia

1. Harvesting Techniques

The conventional technique (CT) for vein harvest as initially described by Favaloro et al.  entails vein exposure

along its length through a longitudinal incision following the contours of the leg and is then harvested in a

skeletonised fashion, stripped of surrounding peri-vascular tissue. This induces a degree of venospasm that is

subsequently counteracted with manual distention of the vein using crystalloid or blood solutions. Moreover,

inflating the vein during the harvest to check for side branches at pressures significantly greater than that of the

human vascular system disrupts the endothelium , promotes thrombosis  and damages the tunica within the

vein wall . Damage to the endothelium alters the release of endothelial-derived vasoactive substances including

NO, prostanoids, and endothelin-1. In response to damage, the EC production of NO and prostacyclin is reduced

but production of prothrombotic factors such as thromboxane and endothelin-1 is increased . Damaged

endothelium is pro-coagulant and acute thrombosis is a primary cause of early graft failure .

The no-touch technique (NTT) was first described by de Souza in 1996 . Souza proposed that the vein could be

harvested with surrounding adventitia, and by doing so, the vein is cushioned by a border of soft tissue which

contains the important perivascular structures such as vasa vasorum (VV) and nerves. Importantly, the vein is not

directly handled during this process. This technique preserves both the endothelium of the vessel and the
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microvasculature that nourishes the vein wall. The VV has been shown to maintain perfusion of the vein wall

through direct contact with the vein lumen after harvest  and demonstrate much greater intimal density and

penetration compared to arterial grafts, suggesting a greater significance in the maintenance of luminal viability

after harvest. Stripping of the VV by CT therefore promotes ischaemia within the LSV wall with a subsequent

detrimental impact on patency,  which is likely of larger impact than the associated ischaemia of arteries

harvested by CT. The NTT therefore avoids physical disruption to these surrounding tissues, limiting ischaemic

injury to the endothelium and provides a physical buffer to limit inadvertent kinking of the graft.

Most of the surrounding ‘cushion’ with which the vein is harvested is composed of fat. Lipocytes have been

demonstrated to be a vital source of locally derived vasoactive factors essential for the regulation of vascular tone

, especially NO. There is compelling evidence that NO expression in vein grafts after CABG plays a key role in

the reduction of both IH and atherosclerosis in mouse models . Dashwood et al.  demonstrated the presence

of eNOS and NO within the periadventitial fat surrounding the LSV following harvest using NTT. This suggests that

another benefit of the NTT is not only avoidance of direct physical insults, but also by preservation of the

vasoactive sources local to the vein. A further benefit of the NTT relates to the minimised distention of the vein

during preparation, which is known to impact on EC integrity, and was previously demonstrated by Angelini et al. 

 who confirmed previously that elevated distention pressure causes a reduction in the concentration of

adenosine triphosphate (ATP) within the vein and that preservation fluids have the potential to improve ATP levels.

The superiority of the NTT was more recently confirmed clinically with higher patency rates of veins harvested by

this method as compared to radial arteries or veins harvested conventionally. Furthermore, this also appears to

translate into better outcomes as demonstrated by Tian et al.  in their multicentre randomised control trial of

2533 patients. It is essential to note that the NTT is more challenging in patients who are obese and when the LSV

is very superficial due to anatomical variation .

2. Storage Conditions

Once harvested, the LSV is stored in a preservation solution of the surgeon’s choice whilst the heart is prepared for

grafting. The solution of choice is a spectrum of crystalloid to autologous blood solutions with various additives

intended to buffer pH, confer osmotic impact, act as antioxidants, and mimic the normal composition of bodily

intracellular fluid. During this time spent following harvest and prior to implantation, the LSV is in a period of relative

ischaemia. The role of preservation fluids is therefore to attenuate EC damage where possible . The primary

source of ATP within the LSV is SMCs within the vein media and so the metabolic function of SMCs can be

considered by the available concentration of ATP. Heparinised autologous whole blood (AWB) has been shown to

better preserve ATP levels compared to normal saline. In fact, AWB has been shown in several studies to improve

the vascular contractile reserve and EC function compared to normal saline  through maintenance of SMC

tone and integral EC functions such as vasoactivity and platelet activation. Whilst heparin itself exhibits toxicity to

the endothelium , the addition of whole blood appears to be protective which may be a consequence of its

natural contents of energy sources, pH buffers, free-radical scavengers .
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Papaverine is a commonly evaluated component of preservation fluid to induce SMC relaxation . It is suggested

that it may cause chemical damage to the endothelium due to its acidic pH and may also reduce local prostacyclin

production. However, it has been demonstrated to reduce venospasm and EC preservation compared to AWB or

isotonic crystalloids alone. The vein wall reacts to most local stimuli by undergoing prolonged muscular contraction,

which disrupts the endothelium by reducing luminal surface area and causing herniation of SMCs into the lumen

which, in turn, denudates the EC layer . Increased SMC relaxation by vasodilators such as papaverine therefore

mitigates venospasm, allowing the use of lower distention pressures during harvesting, thereby attenuating loss of

ECs and EC damage.

More recently, new solutions have come to market. DuraGraft  (Somahlution, Jupiter, FL, USA) is marketed as a

one-time intraoperative treatment for the purposes of reducing vascular EC damage. It is a physiological salt

solution (PSS) with additives to attenuate ischaemia and reperfusion injury . Although, theoretically, solutions

like these can make a difference, there is very limited data available to compare the efficacy of such solutions. A

prospective ex vivo analysis  of 26 LSV segments (2 per patient) of which half (n = 13) had been preserved with

DuraGraft   and the other half with heparinised Ringer’s lactate for ≥90 min. Veins treated with

DuraGraft  demonstrated greater CD31 staining (p < 0.05) and reduced intimal swelling. There was also greater

cell viability as demonstrated by Ki67 staining (p < 0.01) and analysis of cell death and senescence marker γH2AX

demonstrated reduced numbers of arrested cells or cells with DNA damage in the EC layer of the DuraGraft  group

(p < 0.05). Furthermore, using phosphorylated-p53 as a marker of apoptosis, there was a significant reduction of

cell death in veins treated with DuraGraft  compared to Ringer’s lactate. Features of hypoxic stress were identified

more frequently in non-DuraGraft   treated conduits, although there was no clear reduction of ROS in this group.

This study suggests that DuraGraft   attenuates hypoxic injury and better preserves endothelium compared to

Ringer’s lactate. Additionally, a comparison of PPS, AWB and DuraGraft   to evaluate endothelial integrity of

venous segments was undertaken by Toto et al. , which identified a statistically significant reduction in apoptotic

cells in the DuraGraft  storage sample after 2 h incubation versus PPS, with apoptotic cells identified using DNA

fragmentation detection with fluorescein-12-dUTP. A further evaluation of DuraGraft   by Tekin et al.  showed

significantly lower total oxidative status (i.e., total oxidant molecules present) for DuraGraft   stored samples,

compared to both saline and AWB (p < 0.0001). The total antioxidant status (i.e., the ability to neutralise ROS) was

lowest in the saline group and equal between both AWB and DuraGraft . Combined, these findings suggest that

the veins stored in DuraGraft  had higher capacity to combat oxidative stress from ischaemia and therefore better

protect EC function.

3. Pharma-Modulation

Pharmacological intervention plays a key role in secondary prevention of vein graft failure. Antiplatelet therapy has

played a crucial role in improving outcomes after CABG and reducing vein graft failure, with administration of

antiplatelets such as aspirin frequently utilised in clinical practice to mitigate complications following surgery .

3.1. Aspirin
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The long-term benefit of aspirin after CABG is mediated through reduction and prevention of platelet aggregation

and a resultant reduction of thrombus formation, largely mediated by a reduction of thromboxane A2 (TXA2).

Beyond platelet inhibition, aspirin also has a significant role in upregulation of EC NO synthesis . The beneficial

cardiovascular effects of aspirin are mediated through its inhibition of cyclooxygenase–1 (COX-1) activity. COX-1 is

expressed within ECs and is responsible for the production of prostaglandins and resultant production of

prostanoids such as TXA2. TXA2 stimulates platelet aggregation and the release of vasoactive pro-coagulant and

pro-inflammatory factors; thus, many of the favourable effects of aspirin are attributed to the inhibition of TXA2.

TXA2 has been shown to interfere with key endothelium-dependent pathways responsible for regulating blood flow

via modulation of calcium activated potassium channels and impairment of cell signalling between EC and SMC

layers, thereby impairing EC dependent vasodilation . Aspirin has also been shown to evoke activation of eNOS

and therefore increase NO synthesis. This occurs not only within ECs but within platelets themselves and appears

to be independent of both COX-1 inhibition and TXA2 production. Two randomised studies have shown a

significant increase in markers of NO formation (i.e., HO-1 and ADMA) in a non-dose-dependent fashion in patients

with cardiovascular disease, supporting the hypothesis that an aspirin-mediated benefit occurs through the

formation of NO, not just the commonly reported mechanism of platelet inhibition .

3.2. Statins

Statins are predominantly utilised for their lipid-lowering properties. However, when given perioperatively to

patients undergoing CABG, they have been shown to improve EC function, maintain NO levels and promote

antioxidant activity, as well as inhibiting vasoconstriction, thrombosis, and the inflammatory response. Yang et al.

 were able to demonstrate direct enhancement of saphenous vein EC expression of eNOS and subsequent

increased NO production from ECs in response to statin therapy. A reduction in low-density lipoprotein (LDL)

cholesterol has also been shown to result in reversal of EC impairment . The clinical associations have also

been proven—one of the first studies to randomise patients to statins after CABG was able to demonstrate that

aggressive statin treatment (40 mg/day) after CABG was associated with less angiographic evidence of vein graft

occlusion. Specifically, they identified an average of 10% increased vessel occlusion in patients undergoing

aggressive statin therapy versus 21% increased occlusion in patients undergoing moderate (2.5 mg/day) statin

therapy (p < 0.0001), as well as a reduced mean number of grafts exhibiting progression of atherosclerosis (25% in

the aggressive treated group versus 39% in the moderate treated group, p < 0.001) .

3.3. ACE Inhibitors/AngII Receptor Antagonists

Angiotensin-converting enzyme (ACE) is a key regulator of the renin angiotensin aldosterone system. Renin, which

is synthesised as an inactive pre-pro-hormone, undergoes a proteolytic cascade resulting in its release into the

system circulation as its active form. Within the circulation it acts upon angiotensinogen to generate angiotensin-I

(AngI). AngI is subsequently cleaved by ACE to produce AngII. AngII is the primary atherogenic effector of the renin

angiotensin aldosterone system, and activation of this system is associated with increased atherothrombotic events

.
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Many in vitro and in vivo animal studies have implicated AngII within pathways known to contribute to vein graft

disease. AngII has been found to promote IH   and both SMC hypertrophy   and proliferation , and is

evidenced to activate key inflammatory pathways which precipitate vein graft disease. Specifically, AngII has been

demonstrated to stimulate release of IL6 from SMCs and macrophages   and to activate nicotinamide

dinucleotide phosphatase oxidase with resultant production of ROS , thereby promoting oxidative stress

within the vascular microenvironment. Angiotensin-converting-enzyme inhibitor (ACEi), Ramipril, assists in the

preservation of EC function by inhibiting AngII production and attenuating the aforementioned pathways promoting

inflammation and oxidative stress . They also enhance NO production through prolongation of the half-life of

bradykinin and stabilisation of the bradykinin receptor linked to the formation of NO . Similarly, AngII type-1

receptor antagonists (ARBs) (i.e., losartan) exert similar benefit through competitive inhibition of AngII via its

receptor.

Several human studies have evidenced improved arterial EC function following the administration of ACEi and

ARBs in patients with diabetes   and hypercholesterolaemia . Several large randomised studies including

QUO VADIS   and IMAGINE   have looked at their clinical benefit after CABG but did not assess features of

EC damage or post-operative vein graft patency directly. A 2005 blinded, randomised trial by Trevelyan et al. 

demonstrated improvement in systemic endothelial function following pre-operative patient treatment with both

ACEi (enalapril) or ARB (losartan). EC function, quantified by endothelial dependent flow mediated dilatation (FMD)

of the brachial artery, increased from baseline in all groups (5.2% in surgery and enalapril group, p = 0.015 versus

5.0% in surgery and losartan group p = 0.0004 versus 3.0% in surgery alone group p = 0.05) at three months after

CABG and was sustained at five months post-operatively. Interestingly all patients, even those who did not receive

any pharma-modulation, demonstrated improved systemic endothelial function after CABG suggesting that

coronary revascularisation alone confers some improvement of endothelial function.

Furthermore, research into lectin-like oxidised-LDL receptor-1 (LOX-1) has been shown to increase in response to

ox-LDL and specifically in atherosclerotic plaques (such as those found in vein graft disease) . These

receptors have also been shown to upregulate in response to AngII through activation of AngII type-1 receptors,

and interestingly the use of the ARB losartan inhibits LOX-1 upregulation . Work by Ge et al.   utilising

rabbit models identified that losartan treatment attenuated lesions and improved plaque stability; however, no

reduction in intimal area was observed compared to the untreated group. LOX-1 expression was shown to increase

in both the endothelium and lesion area of control mice, which appeared to be attenuated upon losartan treatment,

suggesting that LOX-1 downregulation may confer benefits in the attenuation of vein graft disease.

4. Novel Approaches to Endothelial Preservation

Beyond the aforementioned approaches to endothelial preservation, several novel approaches are being

considered including, but not limited to, gene therapy and utilisation of endothelial progenitor/colony-forming cells

(EPCs/ECFCs).
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Many of the most recent advances in gene therapy relating to vein graft disease have been reviewed in detail by

Southerland et al. . In brief, vein graft disease presents as a strong candidate for this treatment approach,

predominantly due to the ability to administer the therapy ex vivo prior to reimplantation into the arterial circulation.

This approach has the effect of ensuring localised delivery of the therapeutic whilst mitigating the effects of off-

target or systemic effects.

There have been a significant number of pre-clinical studies undertaken to investigate the feasibility of gene

therapy, with the primary targets relating to endothelial and smooth muscle cell preservation, and mitigation of

thrombosis and inflammation. Approaches have included intraluminal or pressure-mediated transfection to induce

eNOS overexpression , COX-1 overexpression , thrombomodulin and tPA overexpression , MCP1

inhibition , NF-κB inhibition , and E2F inhibition  among others. Of note, the E2F inhibition approach

via oligodeoxynucleotide delivery had been expanded to human subjects (PREVENT trial) following success in pre-

clinical models; however, outcomes of phase 3 have not shown significant differences in graft stenosis or patency

by 12 months.

As an alternative approach, researchers are also investigating the potential of endothelial progenitor/colony-

forming cells as a means of facilitating re-re-endothelialisation of saphenous vein grafts following implantation, with

much of this branch of research having been concisely summarised by Paschalaki et al. . In brief, EPCs

categorise numerous populations of cells which express markers endothelial-specific markers which are known to

contribute to vascularisation. ECFCs, as a subset, have been identified as having characteristics specific to

endothelial origins, and these cells have been investigated in relation to a substantial number of vascular diseases,

and have been considered in clinical applications such as gene therapy, vessel/tissue bioengineering, endothelial

preservation, and repair.

With specific consideration of vein graft disease, circulating EPCs have been shown to regenerate graft

endothelium in mice models, with approximately one-third of regenerated ECs derived from this circulating, bone-

marrow derived population . Furthermore, phenotypic analysis of peripheral blood derived ECFCs, compared to

both human-derived arterial and venous ECs under high pulsatile flow conditions, depicted a highly proliferative,

adaptable cell population which conforms to hemodynamic conditions, adopting a phenotype resembling that of the

arterial ECs . Interestingly, a study conducted by Feng et al.   was able to identify a therapeutic approach to

increasing incorporation of ECFCs into vein graft endothelium through the topical treatment of high-density

lipoprotein to the vessel adventitia. This treatment approach in mice showed a significant reduction in neointimal

area (p  < 0.001), improved blood flow (p  < 0.0001), reduced inflammatory response (p  < 0.05) determined by

leukocyte adhesion, and enhanced endothelial regeneration (p  < 0.05). This regeneration was attributed to

improved ECFC migration and adhesion, which appear dependent on scavenger receptor class B type 1

expression, extracellular signal-regulated kinases and NO signalling.

Another study of note utilised human umbilical cord blood endothelial progenitor cells as a means of facilitating re-

endothelialisation of vein grafts . This group were able to identify that these cells exhibit superior adhesion

capacity to cultured SMCs under shear stress conditions (0.5 dyne/cm ) compared to arterial ECs and peripheral
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blood ECs, believed to be the result of increased expression of cell surface α β  integrin. The proliferative capacity

of these cells, to facilitate potential re-endothelialisation was also shown to be significantly faster under both shear

conditions (0–15 dynes/cm ) and compared to arterial and peripheral blood ECs. Finally, using an immunodeficient

vein graft mouse model, the group identified, with results indicating that these progenitor cells were capable of

accelerating graft re-endothelialisation and, consequently, mitigating graft thrombosis. Whilst these results are

promising, the haemodynamic conditions assessed here are significantly lower than those of the in situ arterial

environment, and the highly thrombotic mouse model likely overestimates the anti-thrombotic nature of these cells.

However, despite these drawbacks, EPCs present as a novel therapeutic approach to the preservation of

endothelial function.
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