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Traumatic brain injury is a significant public health issue and represents the main contributor to death and disability

globally among all trauma-related injuries. Martial arts practitioners, military veterans, athletes, victims of physical abuse,

and epileptic patients could be affected by the consequences of repetitive mild head injuries (RMHI) that do not resume

only to short-termed traumatic brain injuries (TBI) effects but also to more complex and time-extended outcomes, such as

post-concussive syndrome (PCS) and chronic traumatic encephalopathy (CTE). 
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1. Introduction

Traumatic brain injury (TBI) is a significant global public health issue and represents the main contributor to death and

disability among all trauma-related injuries . Sixty-nine million patients are estimated to suffer a traumatic brain injury

each year worldwide .

Non-recurring concussions and mild brain injuries due to TBI usually do not impose chronic consequences on the brain

tissues of the patients . The effects of such traumatism are usually short-termed, and the symptoms alleviate over some

weeks or months. In this way, the post-concussive syndrome (PCS) following a mild traumatic brain injury could exhibit

mild symptoms that last no more than four weeks . However, in some cases, persistent PCS symptomatology could

predict subsequent brain damage or risk for further comorbid conditions . Thus, repetitive brain injuries are linked to

increased risk of later-life cognitive impairment and neurodegenerative disorders, including Chronic Traumatic

Encephalopathy .

2. Clinical Diagnosis and Definition

2.1. Concussion, TBI, and RMHI

Traumatic brain injuries can cause loss of consciousness, post-traumatic amnesia, disorientation and confusion, and new-

onset neurological symptoms such as post-traumatic epilepsy, anosmia, or hemiparesis. These symptoms present

immediately after the occurrence of the TBI, or immediately after the recovery of consciousness and may persist past the

acute post-injury period . The clinical entity defined by the persistent neurological symptoms following a TBI is post-

concussion syndrome (PCS).

The pathophysiology of concussion is not clearly understood. It is believed that stretching and disruption of neuronal and

axonal cell membranes occur after a head injury, leading to neurometabolic cascade activation preceding neuronal and

axonal injury and death and potentially to neuroinflammation and microglia activation . Considering these aspects,

many classifications systems were proposed. However, only a few are still widely used, possibly due to the fact that most

of the classification and diagnostic criteria for concussion consequences and TBI are instead based on clinical

observations and symptomatology. Cantu et al. 2006 thoroughly described most of these classification systems and

provided evidence on their grounds and use direction .

There are different classification systems for TBIs, based on severity, pathoanatomic type, outcome, and prognosis .

Generally, TBIs were classified as mild, moderate, or severe by using the Glasgow Coma Scale (GCS). A TBI with a GCS

score of 13–15 is defined as mild TBI, between 9–12 as moderate and 3–8 as severe . An important parameter of the

severity of TBI is post- or peri-traumatic amnesia. Post-traumatic amnesia (PTA) of 1–24 h indicates a moderately severe

TBI; however, more recent classifications of moderate TBI require post-traumatic amnesia extending beyond 24 h .
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A widely acceptable TBI classification system is the Mayo System which divided TBIs as possible, probable-moderate,

and definite moderate-severe . A TBI is classified as probable mild if there is loss of consciousness below 30 min, post-

traumatic amnesia for less than 24 h, and there is a depressed, basilar, or linear skull fracture, but with intact dura matter.

A TBI is classified as possible if the patient develops blurred vision, confusion, headache, or nausea, and as definite

moderate-severe if there is loss of consciousness lasting 30 min or more, post-traumatic amnesia of 24 h or more, or

worst full Glasgow Coma Scale score below 13, or if there is death due to this TBI. The Mayo Classification System also

requires that all other causes of impaired consciousness should be excluded. If there is additional evidence of brain

hematoma, haemorrhage, contusions, or ruptured dura mater, the TBI is classified as moderate-severe .

Repetitive mild head injuries (RMHI) can be observed in athletes, military veterans, martial arts practitioners, victims of

physical abuse, and epileptic patients. The effects of traumatic brain injury (TBI) or RMHI in later life are not well

understood. However, recent studies suggested that even mild head injuries could increase the risk of later-life cognitive

impairment and neurodegenerative disease . Even less severe traumatic brain injuries have been linked with an

increased risk of dementia and reduced age of onset for Alzheimer’s disease (AD) . Furthermore, it was demonstrated

that repeated TBIs could increase the risk for neurodegenerative processes, such as the development of Chronic

Traumatic Encephalopathy (CTE) . In this way, it was shown that the neuropathological

hallmark of CTE is the deposition of p-tau immunoreactive pre-tangles and thread-like neurites at the depths of cerebral

sulci, and neurofibrillary tangles in the superficial layers I and II , which are also some of the most important features of

initial neurodegeneration processes . However, CTE could only be diagnosed post-mortem, and although different

diagnostic criteria can be used for clinical and research purposes, their specificity and sensitivity are unclear .

A possible link between TBI/RMHI and CTE or early dementia has widespread implications for predisposed individuals in

which TBI/RMHI are prone to occur more often or repeatedly. Neurodegeneration was not the only risk associated with the

RMHI occurrence, as some recent studies showed that depression, anxiety, post-traumatic stress disorder, sleep

disorders, as well as cardiovascular disorders, metabolic syndromes, chronic pain, musculoskeletal fragility, and other

heterotypic disorders were also associated with the subsequent long-term consequences of traumatic brain injuries 

.

2.2. Post-Concussion Syndrome

Post-concussion syndrome (PCS) is a sequela of minor brain injury. Although about 29–90% of patients may experience

PCS after a head injury , its etiology is unclear. Despite that no universally accepted definition of PCS

exists, it is generally accepted as the development of at least three of the following symptoms: headache, fatigue,

irritability, dizziness, and balance issues, affected sleep, poor memory and concentration, and increased sensitivity to light

and noise. The symptoms occur shortly after a head impact and could persist for weeks or months. When the symptoms

persist for more than six months or one year, the condition is defined as persistent PCS. PCS is usually characterized by

the absence of objective findings and inconsistencies in presentation .

The ICD-10 diagnostic criteria for PCS include a history of traumatic brain injury and the presence of three or more of the

following: headache, dizziness, fatigue, irritability, insomnia, concentration or memory disturbance, and intolerance to

stress, alcohol, and emotion .

2.3. Chronic Traumatic Encephalopathy

Chronic Traumatic Encephalopathy (CTE) was initially introduced as “punch drunk” or dementia pugilistica in the early

1900s. It was first described in boxing, where many retired boxers developed dementia at a higher incidence than the

general population .

The definition of CTE is mainly based on neuropathological changes, and the term traumatic encephalopathy syndrome

(TES) refers to the clinical syndrome associated with exposure to repetitive head impacts.

Traumatic encephalopathy syndrome and CTE do not include the acute or post-acute manifestations of a concussion or

post-concussion syndrome.

TES/CTE is classified into probable, possible, and improbable, based on clinical presentation and the pathologic changes

. Jordan et al. (2013) proposed that definite TES should include neurologic signs and symptoms in keeping with CTE,

including behavioural or cognitive disturbance and motor symptoms . Pathologic confirmation of tau deposition in brain

autopsy could also be considered definitory . Probable TES is described as two or more of the following: cognitive

and/or behavioural impairment, cerebellar dysfunction, pyramidal tract disease, or extrapyramidal disease. Thus, Jordan
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et al. (2013), as well as Reams et al. (2016), suggested that the diagnosis could be supported by abnormal neuroimaging

findings on positron emission tomography, single-emission tomography, structural magnetic resonance imaging, or

diffusion-tensor imaging .

There are multiple clinical diagnostic criteria for TES/CTE for clinically probable and possible TES . The former

requires a history of head trauma exposure, the persistence of symptoms for longer than two years, lack of another

diagnosis to otherwise explain the signs and symptoms, and the presence of at least two symptoms, such as speech,

mood, or behavioural disturbance, and three signs including ataxia, memory loss, and dysarthria .

Based on the clinical presentation, TES/CTE can be further classified into behavioural or mood variant, cognitive variant,

mixed variant, or dementia variant, and based on the progression, into progressive type, stable type, unknown or

inconsistent type .

3. Clinical Biomarkers

3.1. Neuroimaging

Severe traumatic brain injury can result in diffuse white matter injury, focal contusions, or hemorrhages that can be seen

on conventional MRI or CT. Several studies on the white matter integrity using diffusion tensor imaging (DTI) support the

assertion that repetitive asymptomatic head trauma concussion and mild traumatic brain injuries result in damage to

cortical and subcortical microstructures despite observable findings on conventional MRI being absent .

Herweh et al. (2016) performed a DTI study on 31 amateur boxers and 31 control individuals, and they reported

significantly reduced fractional anisotropy (FA) in the boxers group . The neurite orientation dispersion and density

imaging (NODDI) is a DTI technique that can show changes of axons and dendrites and can also provide information on

neurite density and orientation . Using NODDI in athletes following a sport-related concussion, Churchill et al., 2019

found that decreases in fractional anisotropy and increases in axial and radial diffusivity were associated with reduced

intraneuritic water volume . They also reported a positive correlation between the severity of symptoms and changes in

fractional diffusivity axial and radial diffusivity .

Abnormalities in functional MRI (fMRI) in patients with mild TBIs have been reported in multiple studies .

Repetitive head injury is related to acute and long-term changes, while irregularities in the default mode network and other

white matter changes have been described .

MRS measures human brain metabolism in vivo. Alosco et al. (2019) on an MRS study in 77 symptomatic retired NFL

players, reported a positive correlation between behavioural/mood symptoms and neurochemicals related to

neuroinflammation . They described a positive correlation between accumulative head impacts and lower parietal white

matter creatine levels.

SWI is sensitive to venous blood and can detect hemorrhage or microbleeds in traumatic brain injuries. Studies in patients

with a history of mild TBIs have shown a correlation between SWI findings and cognitive outcome .

FDG-PET. 2-deoxy-2-(18F) fluorodeoxyglucose can provide in vivo evidence of the severity and distribution of brain

changes presumably representing altered synaptic activity. Former boxers with a history of repetitive brain injury revealed

hypometabolism in multiple brain regions, including posterior cingulate, bilateral frontal lobes, parieto-occipital cortex, and

cerebellum. The findings were very inconsistent between studies .

Aβ-PET and Tau-PET. Although Aβ deposition is a common co-pathology in advanced CTE cases , it occurs at an

accelerated rate and predominantly affects the depths of cortical sulci . Many tracers, including FDDNP, flortaucipir, and

FTP, have been developed to detect tau deposition in CTE; however, the sensitivity and specificity of most of them remain

low; thus, their use is limited .

3.2. Fluid Biomarkers

Although the pathophysiology and the underlying mechanisms of PCS and the other discussed concussion, TBI, and

RMHI are not yet clearly understood. Neuroimaging could offer viable diagnostic solutions; fluid biomarkers could still be a

good alternative, considering that molecular biomarkers also have predictive value and could show many pathological

molecular features which occur before other visible/detectable symptoms. In this way, fluid biomarkers could be of crucial

interest in the context of predicting the neurodegeneration processes to which predisposing risk repetitive brain injuries

are contributed.
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Thus, recent studies on the relevant body fluids dynamics during and following head injuries showed that several

molecules occurring in blood, cerebrospinal fluid (CSF), saliva, and even urine recorded specific changes of suggestive

diagnostic value. In this way, altered plasma tau concentrations are reported to be related to the persistent post-

concussion syndrome in military personnel with a history of TBIs , there might be an association between tau or axonal

injury and PCS. Additional recent studies on professional athletes with PCS and matched controls showed increased NFL

concentration, astroglia activation, and Aβ peptide dysmetabolism in the brain , however further studies are

required. A recent meta-analysis showed significantly increased serum light neurofilament chain (NFL) levels in all

patients with a history of concussion compared to controls. That sports-related concussion was specifically associated

with higher levels of NFL, marking the potential of NfL levels as a biomarker in mild TBI and head impacts .
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