

Monocyte and Neutrophil Function Immunomonitoring in Critically-III Patients

Subjects: **Critical Care Medicine**

Contributor: Maja Surbatovic

Immune cells and mediators play a crucial role in the critical care setting but are understudied. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient.

sepsis

trauma

COVID-19

monitoring

immunologic

biomarkers

immunosuppression

immunotherapy

therapy

critical illness

1. Introduction

Severe sepsis and/or trauma can lead to multiple organ dysfunction syndrome (MODS), which is a leading cause of death in intensive care units with mortality rates in excess of 50%. In addition to infection, the degree of immuno-inflammatory response also influences the outcome. While this response is essential for host defense against infection, left unchecked, it can lead to MODS. One way to view the immune response in this context is to envisage it as a negative feedback system with a detection and effector limb; in this regard, MODS can represent a perturbed negative feedback loop that results in uncontrolled and detrimental inflammation. Innate immune response is delivered through resident macrophages and polymorphonuclear cells (PMCs), via primary phagocytosis in addition to recruitment of granulocytes and monocytes. Monocytes, through rapid differentiation, are capable of expanding the macrophage population [1]; they can therefore be viewed as one of the detector and effector limbs. The immuno-inflammatory response to pathophysiological insult involves several other detections such as recognition of non-self as part of danger sensing mechanisms and effector functions, which include activation of the adaptive immune system [2]. Leukocytes, via pattern recognition receptors (PRRs), sense pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). The former of which include Gram-negative lipopolysaccharide (LPS), Gram-positive peptidoglycan, flagellin and RNA; the latter includes alarmins generated by tissue damage, heat shock proteins (HSPs) and high-mobility group box-1 (HMGB-1). These signals are transduced and amplified, resulting in the release of inflammatory mediators such as cytokines. It has been proposed that a persistent dysregulated state of inflammation, as seen in patients with prolonged ICU stays, should be viewed as a separate phenotype to traditional systemic inflammatory response syndrome (SIRS), as described above, which is followed by the compensatory anti-inflammatory response syndrome (CARS). This has been termed persistent inflammation, immunosuppression and catabolism syndrome (PICS) in order to encapsulate the trajectory of initial systemic inflammation followed by refractory immunosuppression and persistent inability to return to systemic rebalance [3].

Injury-induced immunosuppression encompasses trauma, ischemia–reperfusion injury and hemorrhage as an acute stress, during which cells die and intracellular molecules such as DAMPs are released into the extracellular microenvironment [4]. This can induce a strong immuno-inflammatory response without the presence of microorganisms. These molecules are not immunogenic per se, but upon release and transformation (oxidation, proteolysis), they acquire immunostimulatory properties and can induce deleterious inflammatory response. Depending on the microenvironment, DAMPs display different properties; adenosine triphosphate (ATP) is a pro-inflammatory DAMP, but if it undergoes hydrolysis, it produces adenosine, which is a potent inducer of immunosuppressive IL-10. DAMPs are also important in the process of tissue repair. Immunogenic cell death (ICD) is a process that involves changes to the composition of the cell surface and the release of the soluble mediator DAMPs that recruit and activate antigen-presenting cells, e.g., dendritic cells. This is a specific type of apoptosis in immunocompetent cells that elicits an immune response against dead cells [5].

To adequately assess the extent of an immuno-inflammatory response to pathophysiological insult, the use of conventional inflammation biomarkers can be seen as limited due to several reasons. First, the detection of peak levels of cytokines is difficult due to their short half-life and their role in a complex immuno-inflammatory cascade; this introduces a temporal issue. Studies of neutrophil and monocyte function in critically ill patients with sepsis and/or trauma may however act as a more accurate indicator.

As a sequela of sepsis, patients often suffer from chronic immunosuppression, which is attributed to an anti-inflammatory response that is triggered by low-grade inflammation. Long-term outcome studies have shown that sepsis survivors suffer from impaired immuno-inflammatory response to recurrent infections and increased mortality [6][7][8]. A macroscopic postmortem study of 235 surgical intensive care patients with sepsis found that 76.6% had an unresolved focus of infection [9].

As there is often no clinical sign of immunosuppression in critically ill patients, biomarkers of cell function determined by flow cytometry can identify patients who are, for the most part, deeply immunosuppressed and can benefit from immunostimulation [10][11]. There is an interest in novel therapeutic approaches to stimulate the immune function in patients with sepsis; these include interleukin-7 (IL-7), granulocyte–macrophage colony-stimulating factor (GM-CSF) as well as antibodies against programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1). Clinical trials for these therapeutic options should aim to evaluate immune status and to stratify patients through the use of immune function biomarkers in order to ascertain the degree and likelihood of benefits from therapy. In such cases, a biomarker with an appropriate half-life as well as a test that allows adequate sampling frequency is essential, as septic patients can be in a state of severe inflammation and/or immunosuppression at various different time points throughout illness.

While there is a significant genetic influence over the underlying cause, micro-organisms, and the eventual outcome of sepsis [12], there is evidence of a large non-heritable component that contributes to determining outcome. One study attempted to observe heritable versus non-heritable factors by performing a systematic analysis of 210 healthy twins from 8–82 years of age. The study measured more than 200 serological parameters that included cell population frequencies and cytokine responses. The study found that 77% of the parameters

were greatly influenced (at >50% of variance) and 58% were almost completely determined (at >80% of variance) by non-heritable influences. A number of these parameters displayed more variability with age, illustrating the temporal cumulative effects of environmental exposure over the course of a lifetime. A divergent response to influenza vaccination in twins was also observed in the study, thus alluding to the immune system in healthy individuals as being largely reactive and adaptive [13]. As the population of septic, critically ill patients are increasing in age and number of co-morbidities, it stands to reason that they will develop a unique inflammatory profile given the cumulative environmental exposure over time; as such, it would be sensible to consider their serological response on a case-by-case basis.

Additionally, sustained immunosuppression is not specific to sepsis, and may be induced every time the body develops a significant inflammatory response to an insult. Monneret and Venet proposed the use of the more generic term of injury-induced immunosuppression (IAI) [10]. In the clinical setting of sepsis, as in many others, it is clear that one size does not fit all and that immune phenotyping of patients may eventually allow the more personalized approach, namely “precision medicine” [14].

2. Elements of Immunopathogenesis and Molecular Signature of Sepsis- and Trauma-Induced Multiple Organ Dysfunction Syndrome—MODS

2.1. Sepsis-Induced Multiple Organ Dysfunction Syndrome

Sepsis is one of the first illnesses to be described. The term “sepsis” derives from the ancient Greek term “σῆψις, i.e., sipo” (“make rotten”). This term was used by Hippocrates around 400 BCE to describe the process through which infected wounds become purulent [15]. It took over two millennia to shift our focus onto the role of the host response, and not only on the pathogen itself, in understanding the pathogenesis of sepsis. It is estimated that there are 30 million cases of sepsis and six million sepsis-related deaths worldwide each year [16][17][18][19][20][21][22]; thus, it is an area of intense medical research.

The dichotomous role of neutrophils in inflammation and infection is well known. These cells play a crucial role in defense against infection; conversely, excessive activation of neutrophils can elicit tissue damage. This is one of the mechanisms that underlies sepsis-induced MODS [23]. Biomarkers of neutrophil activation may predict MODS in critically ill patients with sepsis [24]. Plasma concentrations of heparin-binding protein (HBP), myeloperoxidase (MPO), IL-6 and IL-8 appear to be correlated with emergence of the first sepsis-associated organ dysfunction. MPO and HBP become elevated at a median of 12 h before the first organ dysfunction and can remain elevated for up to 24 h, unlike two proinflammatory cytokines with rapid increase and decrease. Therefore, MPO and HBP, as markers of early prolonged neutrophil activation, are not as prone as IL-6 and IL-8 to the effect of sample timing and may be clinically more applicable. Circulating monocytes are also an important limb of innate immunity and are among the first cell-types to respond to pathogens. In a recent study of monocyte subsets in 42 critically ill patients with septic shock, [25] it was demonstrated that, in early deceased patients, the frequency of classical monocytes (within 12 h of admission) was significantly decreased, while frequency of intermediate monocytes was statistically

highly significantly increased, in comparison with patients who survived past the fifth day of ICU stay. Therefore, myeloid cells are a current focus in research and in the clinical setting. Within the framework of complex immune cell function regulation, polarization of macrophage function is an important element. Classically activated macrophages (M1), initially in inflammatory response, can undergo reprogramming to an alternatively activated (M2) phenotype. This contributes to secondary immunosuppression during sepsis. Mitochondria in immune cells are also crucial for immunity. Mitophagy refers to selective degradation of mitochondria by autophagy. Mitophagy in monocytes/macrophages of critically ill patients was investigated by Patoli et al. who demonstrated that, in this patient population, mitophagy was inhibited in blood monocytes of septic in comparison with non-septic patients. They concluded that the inhibition of mitophagy is a physiological process contributing to myeloid cell activation [26].

MODS is the clinical consequence of a dysregulated, disproportionate immuno-inflammatory response to various stimuli, with a self-perpetuating cycle of neutrophil and macrophage activation [27]. Regardless of the trigger (sepsis and/or trauma), changes are profound at the genetic, molecular, subcellular and mediator levels. Transcriptome studies have revealed 363 differentially expressed genes during the acute inflammatory response in 36 major trauma patients who did develop MODS and those who did not. The number of differentially expressed genes decreased to 33 by the 24 h timepoint [28]. The role of T cells in the immune response during MODS development is shown in critically ill patients with sepsis [29] where Th17 (T helper cell) /Treg (Regulatory T cell) imbalance is related to MODS. Molecular signatures of MODS in critically ill patients reflect cellular dysfunction, hallmark by mitochondrial dysfunction and endoplasmic reticulum stress [30]. In defense against microorganisms multiple, complex, and redundant processes are involved. For example, pyroptosis, which promotes release of cytokines [31]. Leukocytes release inflammatory mediators when activated via PAMPs and DAMPs; in response, there is overproduction of reactive nitrogen species (RNS) and nitric oxide. This is detrimental to electron transfer chain (ETC) function because this crucial pathway becomes irreversibly inhibited, leading to oxidative stress which is compounded mitochondrial DNA damage [32]. As a result, the energy metabolism of immune cells become defective; and various processes, including oxidative phosphorylation, are inhibited. This cascade of events manifests as immunosuppression [33]. In sepsis, unfolded or misfolded proteins accumulate in the endoplasmic reticulum (ER), this leads to oxidative and calcium dysregulation, resulting in ER stress [34].

The SEPSIS 3 definition for sepsis emphasizes the dysregulated host response to infection that leads to life-threatening organ dysfunction. The presence, severity and course of MODS determine the severity of clinical illness in the septic patients [35]. Cytokine imbalance is not only part of immunopathogenesis of sepsis and septic shock; it can also guide elements of therapy. A recent exploratory analysis of data from the Corticosteroid Therapy of Septic Shock (CORTICUS) trial showed that a low serum interferon-gamma (IFNy)/IL-10 ratio was associated with increased survival in individuals treated with hydrocortisone whereas a high ratio was associated with better survival in the placebo group [36]. They concluded that IFNy/IL-10 may become a suitable molecular marker to help inform the decision to use hydrocortisone in septic shock patients.

Another key component of immuno-inflammatory dissonance in critical care setting is activation of endothelial cells which may lead to endothelial dysfunction and glycocalyx destruction. This represents an incremental assault on virtually all organ systems. When this occurs, microvascular and tissue perfusion dysfunction, arteriovenous blood

shunting, loss of vascular tone and procoagulant state are, nearly always inevitable [37]. Vasodilatation is the multifactorial consequence of acidosis on vascular smooth muscle, which leads to induction of nitric oxide production (NO). Loss of systemic vascular resistance may lead to complete vasoplegia; this might be initially compensated for some time by increased cardiac output but will be exacerbated by myocardial depression [38]. Fluid leak and tissue edema are ubiquitous: in the lungs, gas exchange is impaired, leading to acute respiratory distress syndrome (ARDS). Apart from microvascular derangements and tissue hypoperfusion, acute kidney injury may occur because of direct cytokine effects. Hepatic injury also occurs and this can contribute to coagulopathy. Specific forms of DAMPs, for example, bacterial and mitochondrial N-formyl peptides (NFPs) activate the innate immune system via formyl peptide receptors (FPR) which are present on immune and non-immune cells such as vascular endothelial cells [39]. The subsequent inflammatory response leads to endothelium barrier breakdown and the consequences described above. Novel approaches to try to protect the host from deleterious effects of imbalance between pro- and anti-inflammatory mediators include blood-filtering devices such as antibody-modified conduits (AMCs) that can remove specific cytokines *in vitro*. AMCs that use antibodies against human vascular endothelial growth factor A (VEGF-A) or TNF- α are able to remove specific cytokines from the blood *in vitro* [40].

The macrocirculation and microcirculation must be coherent to allow effective systemic hemodynamic-driven resuscitation that corrects organ perfusion and oxygenation. To further complicate matters, hemodynamic coherence is often lost during inflammation and infection [41]. Therefore, physiologic approaches are needed that allow the monitoring of the hemodynamic parameters and allow optimal oxygen delivery in shock resuscitation [42]. The importance of this principle is illustrated in the use of fluid challenge in critically ill patients [43]. Where there can be limited correlation between absolute changes in cardiac macrocirculation and small diameter vessels (microcirculation) in response to administration of a fluid challenge.

Host-pathogen interaction is complex, starting with recognition of pathogens by the host with consequent induction of inflammatory response via various Pattern Recognition Receptors (PRR) such as Toll-like receptors (TLR) [44][45]. Bacteria and cytokines have a multifaceted and intertwined relationship. One of the most interesting aspects of this relationship has been investigated by Meduri et al. for over two decades [46][47][48]. They demonstrated that IL-1 β , TNF- α and IL-6 enhance bacterial growth in patients with sepsis-associated ARDS. They also found that at the onset of ARDS and over time, the level of these cytokine, both in plasma and bronchoalveolar lavage fluid—BAL, were significantly higher in nonsurvivors. They investigated extracellular and intracellular growth of *Staphylococcus aureus*, *Pseudomonas aeruginosa* and *Acinetobacter* species obtained from patients with ARDS, in response to graded concentrations of IL-1 β , TNF- α and IL-6 *in vitro*. When the various bacteria were exposed to low concentrations of each proinflammatory cytokine (10–250 pg values equivalent to those in ARDS survivors), bacterial growth was not promoted, and monocytes were efficient in killing ingested bacteria. Conversely, when the bacteria were exposed to higher concentrations of cytokines (values equivalent to those in ARDS nonsurvivors), bacterial growth showed a dose-dependent enhancement. It was then demonstrated that impaired intracellular bacterial killing in activated monocytes was associated with increased expression of cytokines, and enhanced monocyte killing function on exposure to methylprednisolone was associated with decreased IL-1 β , TNF- α and IL-6 expression [49]. The downregulation of dysregulated systemic inflammation is important in accelerating disease resolution and in decreasing the risk of nosocomial infections [50]. A similar study investigated the association of IL-

6 and IL-10 levels with mortality in patients with sepsis and septic shock [51]. They found that IL-6 and IL-10 levels were both independently associated with mortality, but that the balance of these inflammatory mediators (IL-6/IL-10 interaction) does not seem to impact either early, intermediate or late mortality in ICU patients with sepsis. However, the balance of proinflammatory and anti-inflammatory mediator response may not be reflected by analyzing two pleiotropic cytokines [52], as IL-6 can be both proinflammatory and anti-inflammatory, depending on the context.

MODS can be considered a heterogeneous syndrome. Another important player in both organ and immune dysfunction is activated complement protein C5a, which exerts deleterious effects on organ systems as well as suppressing antimicrobial functions of key immune cells [53]. In polymicrobial sepsis, plasma products of complement activation in plasma including C5a anaphylatoxin and its receptors C5aR1 and C5aR2, are closely followed by extracellular histones that carries strong proinflammatory and prothrombotic activity [54]. In animal model of sepsis, both complement activation products and extracellular histones cause cell injury and multiple organ dysfunction. Neutralization of C5a through antibody or knockout prevents extracellular histones and the subsequent organ failure in septic mice.

An intricate network of immune cells is activated by PAMPs and DAMPs. Impaired macrophage function is considered to be one of the most important causes of immune paralysis and can contribute to organ dysfunction and lethal outcome in sepsis. One *in vitro* study demonstrated that endogenous purine ATP facilitates the killing of bacteria that cause sepsis by macrophages via P2X4 receptors (P2X4Rs) [55]. Given that extracellular levels of ATP are increased in sepsis, P2X4Rs might be promising therapeutic targets.

B cell responses are altered and are oriented toward an exhausted-like/immunoregulatory profile during sepsis-induced immunosuppression [56]. Natural killer (NK) cells are large granular lymphocytes, acting as coordinators of early responses to bacteria through production of interferon (IFN)- γ which amplify the antimicrobial functions of myeloid cells. Conversely, if excessive NK cell activation occurs, production of IFN- γ will increase and this can result in organ injury and dysfunction [57]. Extracellular vesicles (EVs) which are 30 nm to several μm in size, are released from immune cells on activation and apoptosis. EVs express membrane epitopes that are specific to their parental cells. There is speculation that EVs act as mediators in sepsis, both as friends and foes. Their role in systemic inflammation mostly depends on origin and the cargo they carry, which makes them potential candidates for drug delivery [58].

Inflammasomes are large, intracellular multiprotein complexes and may play a role in sepsis. They detect and respond to a number of PAMPs, including bacterial flagellin, and DAMPs, such as uric acid crystals. Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) is a key component of the inflammasome. When inflammasomes are activated and assembled, ASC moves from its diffuse distribution in the cytoplasm into a single speck that serves as a supramolecular signaling platform. These interesting structures promote the maturation of the pro-inflammatory cytokines IL-1 β and IL-18. When evaluating ASC–speck formation in monocytes during the first week of sepsis in patients, the highest number of ASC–speck $^{+}$ monocytes can be

detected on day 6–7. Survival analysis shows that patients with lower numbers of ASC–speck⁺ monocytes (<1650 cells/mL) on day 6 has greater risk of mortality [59].

One of the mediators of chronic immunosuppression in sepsis is vagal activation [60]. Enhanced vagus nerve tonic activity results in an immunosuppressed phenotype in patients who survive sepsis. Since cholinergic tone can be pharmacologically modulated, targeting this process may be a novel therapeutic approach to prevent latter infections in these immunocompromised patients.

Long-term sequelae of sepsis immunology are becoming the focus of attention. In a study by Rodriguez-Rosales et al., long-term immune effects of human experimental endotoxemia were investigated when healthy subjects were challenged with endotoxin (1 ng/kg) [61]. Twenty days post-endotoxin, flow cytometry revealed, among other things, increase in absolute numbers of intermediate monocytes with lower human leukocyte antigen–DR isotype—HLA-DR expression. Long-term host immune response trajectories (up to 12 months) were investigated in a cohort of 483 hospitalized sepsis survivors [62]. Approximately 25% of these individuals had elevated C-reactive protein (CRP) at 12 months and about 50% of them had elevated soluble PD-L1 (a marker of immunosuppression). This suggest that persistent elevation of inflammation and immunosuppression markers is common up in sepsis survivors and may be associated with poor long-term outcomes. A recent review discussed syndrome of chronic critical illness (CCI) which encapsulate sepsis patients who survive the early “cytokine or genomic storm”, but then fail to recover fully, and progress to a persistent manageable organ dysfunction state that requires prolonged intensive care [63]. It is suspected that as many as one third of sepsis survivors develop CCI which is in part due to a maladaptive host response to processes mediated by PRRs. CCI is characterized by exhaustion and atrophy of T cells, expansion of suppressor cell function as well as chronic inflammation and dysregulated myelopoiesis. Authors proposed that PICS in survivors of critical illness represent a unique immune endotype, with persistent release of DAMPs and PAMPs from secondary infections.

Aging of the population predisposes to the development of both CCI and PICS. The elderly patients are more susceptible to sepsis and are at greater risk of mortality. This is, in part, result of immunosenescence and a marked decline in cell-mediated and humoral immunity that is seen with increasing age [64][65].

For the past two decades, attention to sepsis has been intensified because of growing recognition that it is one of the most common and lethal conditions we face (approximately 50 million people worldwide annually), whether as a patient, provider, hospital or public health agency [66]. Therefore, early prediction of sepsis is of utmost importance in order to provide optimal care at an early stage. Recent implementation of soft-computing and machine learning techniques can illustrate how complex and difficult this task is [67]. Both researchers and clinicians are acutely aware of the complexity and heterogeneity of sepsis which is a significant impediment to adequate treatment. Thus, quite an effort has been undertaken to identify subgroups of sepsis patients who represent distinct functional endotypes based on measurable genetic and biologic differences [68]. Endotyping may also identify individuals unlikely to benefit, or more likely to be harmed, by specific therapies. Sepsis is heterogeneous syndrome, characterized by a vast set of clinical and biological features [69], combinations of these features may represent previously unrecognized groups, or sepsis subclasses with different risks of outcome and

response to a given treatment. The authors of one study established a machine learning model to classify sepsis into different immune endotypes based on transcriptomics data [70]. They identified two immune subphenotypes associated with sepsis and termed them immunoparalysis and immunocompetent endotypes. They also found that percentages of M0 macrophages, M2 macrophages, naïve B cells and naïve CD4 T cells were associated with cumulative mortality at 28 days. More than a decade ago, we investigated polymorphisms of genes encoding tumor necrosis factor-alpha, interleukin-10, cluster of differentiation-14 (CD14) and interleukin-1ra in critically ill patients [12]. Some of the polymorphisms were significantly associated with outcome, for instance. Epigenome-wide methylation analysis of whole blood DNA samples from a cohort of 66 septic and 68 non-septic critically ill patients on day 1 of ICU admission [71] and weighted gene co-expression network analysis was performed. It showed DNA co-methylation modules associated with severity of illness, need for vasopressors, and length of stay.

Understanding of the heterogeneity in the individual host response to infection is necessary for effective targeted sepsis therapy. Other studies investigated this heterogeneity by defining the variation between individuals in the transcriptome of patients with sepsis [72]. Transcriptomic analysis of peripheral blood leukocytes suggests the presence of two distinct sepsis response signatures (SRS1 and SRS2). SRS1 (detected in 41% patients) identifies individuals with an immunosuppressed phenotype that include features of impaired antigen processing ability and endotoxin tolerance, T cell exhaustion, as well as downregulation of human leucocyte antigen (HLA) class II. SRS1 was associated with significantly higher mortality in comparison with SRS2.

NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein complex with a number of functions including control of DNA transcription, production of cytokines and cell survival [73]. This mediator was initially discovered in 1968 by Sen and Baltimore who identified its role in the transcription of immunoglobulin κ-light chains in B lymphocytes. One study demonstrated that sepsis patients display a reduced ability to activate NF-κB in multiple cell types [74]. Intensive care unit (ICU)-acquired infections (IAI) result in a longer hospital and ICU stay, as well as increased costs and mortality. To identify patients at risk of IAI, authors of one study evaluated the association of the systemic mRNA expression of two biomarkers of host response, CD74 (cell surface receptor for the cytokine macrophage migration inhibitory factor—MIF) and IL-10, with IAI in a large number of ICU patients [75]. They found that immune monitoring using these two immune biomarkers could be appropriate for the identification of IAI risk in ICU patients. This suggested that immune profiling of critically ill patients can be integrated through a multimodal real-time diagnostic work-up of IAI [76]. Investigating features of the immune response in sepsis, as potential biomarkers, is challenging because of the temporal effects: over time there are differences between patients (interindividual) as well as within the same patient (intraindividual) [77]. Functional immunity changes cannot be adequately assessed by routine non-specific inflammatory biomarkers (CRP, procalcitonin). Thus, sepsis biomarkers are still much in focus of numerous investigations [78][79][80][81][82][83][84].

2.2. Trauma-Induced Multiple Organ Dysfunction Syndrome

Trauma is the third leading cause of mortality worldwide as well as the first cause of fatality and disability in those younger than 45 years of age [85]. Later deaths are result of development of MODS and infections in trauma patients who are profoundly immunosuppressed; that occurs in 45% of severe trauma patients. Trauma-induced

MODS and immunosuppression are, for the most part, result of innate immunity activation. DAMPs, normally hidden from the immune system, are abundantly released after severe musculoskeletal injury; through binding to cell surface and intracellular neutrophil receptors (PRRs for instance), they generate systemic inflammation. Mitochondria, organelles of bacterial origin, are important regulators of inflammatory response and are a platform for PRR signal transduction [86]. Spatial proximity of mitochondria and inflammasomes in perinuclear regions enables modulation of inflammasome by these organelles. Mitochondria share some molecular traits with bacteria; normally these components are not ligands for PRRs, but during cellular damage they are released and do act as DAMPs. These include mitochondrial DNA, large quantities of extracellular ATP, cardiolipin (normally found only in the inner mitochondrial membrane) and formyl-peptides. When innate immunity is unsuccessful in clearing DAMPs and/or PAMPs, adaptive immunity is activated. Mitochondrial metabolic states within synapse between dendritic cells and lymphocytes are able to polarize adaptive immunity: glycolytic metabolism is associated with proinflammatory, whereas oxidative metabolism is associated with anti-inflammatory response. The role of mitochondrial metabolism in dendritic cells therefore induces either pro- or anti-inflammatory differentiation of T helper cells. Given the fact that underlying mechanisms of trauma-induced MODS are not yet fully elucidated. Aswani et al., investigated whether mitochondrial (mt) DNA, released after various degrees of tissue damage and hemorrhagic shock, is sufficient to induce MODS in a rodent model [87]. mtDNA, similar to bacterial DNA, has large quantity of highly stimulatory unmethylated CpG DNA motifs, which are ligands for TLR-9 and will trigger inflammation. The authors demonstrated that release of mtDNA is sufficient for MODS development and they showed that neutralizing this mediator, as well as nuclear DNA, with the nucleic acid scavenging polymer, hexadimethrine bromide (HDMBr) is able to rescue from MODS. They concluded that it could have utility in treatment of human trauma-induced MODS.

Alarms, which are DAMPs released after trauma include all nucleic acids, HMGB1, HSPs and S100 proteins. These mediators activate multiple receptors and signaling systems such as PRRs, Receptor for Advanced Glycation Endproducts (RAGE) and Triggering Receptor Expressed on Myeloid cells-1 (TREM-1). DAMPs activate neutrophils and dendritic cells; thus, both the innate and adaptive immunity are set in motion. Posttraumatic immunosuppression renders trauma patients susceptible to secondary infection. The role of DAMPs in that process have been investigated in adult trauma patients. A study reported an inverse relationship between levels of HSP70 and nuclear DNA on one hand and HLA-DR expression conversely. DAMPs also induce long-term endotoxin tolerance. Via TLRs, DAMPs may also induce epigenetic alterations [88]. These gene-specific chromatin modifications are associated with transient silencing of various classes of genes, including pro-inflammatory mediators [89]. HMGB1-RAGE signaling results in functional exhaustion of mature monocytes and lymphopenia; this is the hallmark of immune suppression following extensive brain ischemic injury [90]. DAMPs can induce immunosuppression without a preceding inappropriate inflammatory response. The endogenous purine nucleotides are major regulators of the inflammatory response [91]. Adenosine is a catabolite of ATP, and during inflammation it signals by binding and activating purinergic receptor. High amount of adenosine released after trauma may directly induce Th2 response [92].

Patients suffering from multiple traumas often require massive blood transfusion; thus, it is important to bear in mind that red blood cells contain DAMPs and promotes the formation of the inflammasome [91]. Potent DAMPs that

may be released by red blood cell lysis include haem, HSPs, such as Hsp70, IL-33 and Adenosine 5' triphosphate. Hemolysis represents a major inflammatory trigger [93]. IL-33 is expressed in the nucleus of epithelial cells and is released into the extracellular space following tissue damage. It has been shown to initiate the Th2-polarizing function of dendritic cells and stimulates the secretion of anti-inflammatory cytokines [94]. After tissue injury, massive DAMPs release leads to overwhelming systemic inflammation and early MODS; in addition, these mediators may lead to immunosuppression; thus, the severely injured are prone to secondary infection and late MODS. Plasma mtDNA is associated with the evolution of systemic inflammation, MODS, and increased mortality in severely injured patients [95]. HMGB-1 can activate alveolar macrophages to produce proinflammatory cytokines and induce acute lung injury (ALI) through TLR-4. Alteration in tight junction and increased permeability leads to interstitial lung edema [96]. DAMPs and EVs can activate innate immune receptors and coagulation cascades, and this leads to an inflammatory response and blood coagulation. Several immunothrombotic agents play a role in promoting inflammation and activation of coagulation, these include extracellular DNA, HMGB1, the S100 family of intracellular low-molecular-weight calcium-binding proteins and histones [97]. Histones are cationic nuclear proteins that packages DNA into nucleosome. Extracellular, circulating histones, released as DAMPs after trauma, express direct cytotoxicity to both epithelial and endothelial cells by altering membrane permeability and causes calcium influx. This is associated with post-traumatic ALI [98]. Another DAMP, N-formyl peptide is released from the from mitochondrial matrix and is a well-known leukocyte chemoattractant which promotes chemotaxis of neutrophils to regions of sterile inflammation. EVs contain cellular cargo-like proteins, DNA and RNA and play an important role in intercellular communication. However, these interesting structures also carry various immunothrombotic mediators such as mtDNA, HMGB1 or HSP, depending on their origin. Exosomes are smaller than 0.1 μ m in size and originate from multivesicular bodies (MVBs) [99]. EVs can transfer their cargo by endocytosis, phagocytosis, and micropinocytosis as well as membrane fusion [100]. Microparticles, released from endothelial and circulating cells following sepsis-induced microvascular injury, can contribute to endothelial dysfunction, immunosuppression and MODS [101]. Polytrauma or invasive surgery will produce DAMPs and EVs that cause microinjury and de novo release of immunothrombotic DAMPs and EVs in distant organs, thereby promoting post-traumatic MODS [97].

Trauma-induced DAMPs, as well as PAMPs, may trigger assembly of inflammasomes that are intracellular multiprotein complexes. These were initially described in 2002 as caspase-1 activating multiprotein complexes [102]. Initial tissue damage, blood loss and subsequent secondary injuries will lead to local and systemic release of DAMPs. Recognition of these mediators by the innate immunity triggers both excessive inflammation (which propagate remote, secondary tissue damage) and immunosuppression (which may contribute to secondary post-traumatic infection and sepsis); contributing to MODS and increased mortality. In trauma, mechanical tissue injury and blood loss are associated with secondary ischemia/reperfusion (I/R), hypothermia, hypoxia, coagulopathy and neuroendocrine disorders. The consequences of these range from cell stress to cell death [103][104]. Inflammasomes are named after their intracellular receptor, including nucleotide-binding oligomerization domain-like receptors, or NOD-like receptors (NLR), Absent in melanoma 2 (AIM2)-like receptors—ALR, retinoic acid-inducible gene-I-like receptors (RLR) or pyrin [105]. Specific roles of inflammasomes, for example as an intra-cytosolic sensor detecting mostly intracellular stimuli, provide another means of activation, through recognition of specific ligands to the sensing of intracellular disturbances. Regardless of the stimulus, activated inflammasome allows the caspase-1

dependent cleavage of pro-IL-1 β and pro-IL-18 [106]. DAMPs are crucial part of the pathogenesis of trauma-induced MODS and support a vicious cycle of injury [107]. Both inflammasome-mediated pro-inflammatory release and pyroptotic cell death promote the initiation, enhancement and propagation of trauma-induced inflammation [108]. Pyroptosis features include cytoplasm swelling and cell membrane destruction as well as release of intracellular contents into extracellular space, thus contributing to sterile inflammation [109]. Diffuse activation of endothelium in an organ-specific manner is set in motion after systemic release of DAMPs [102]. Investigation of in vivo mouse model of hemorrhagic shock demonstrated NLRP3 activation in lung vascular endothelial cells, enhancing the proinflammatory response via pyroptosis and IL-1 β release [110]. Although anucleate, platelets have functional translational material associated with mRNA transcripts, including IL-1 β ; thus, these cells can assemble functional NLRP3 [102]. Platelets express various immune receptors, cell surface adhesion molecules and many immunomodulatory mediators contained in preformed granules. these cells adhere to endothelial cells and leukocytes to form aggregates when activated by circulating DAMPs [102][111]. In the setting of tissue damage, platelets facilitate leukocyte activation and adhesion to post-ischemic microvessels. They also modulate degranulation and phagocytosis of neutrophils [102]. Ischemia-reperfusion will compound tissue injury; at cellular level, reperfusion triggers enormous production of ROS, calcium overload and mitochondrial dysfunction. This chain of events can end in cell death. During I/R, the NLRP3 inflammasome–IL-1 β –IL-18 axis is crucial in organ-specific tissue injury, such as myocardial injury and renal necroinflammation, for example [112]. The NLRP3 and AIM2 inflammasomes are also important in hepatic I/R injury. Locally released DAMPs such as ROS, ATP or extracellular histones will activate inflammasomes in Kupffer cells [113]. Traumatic brain injury (TBI) will immediately damage tissue, while the pro-inflammatory innate immune response to neuro-injury, termed neuroinflammation, will additionally extend lesions via secondary cellular damage [114]. The NLRP1 inflammasome is assembled before neuron and other CNS cells stimulation; thus, it is of special interest in TBI as a crucial factor of induction and propagation of neuroinflammation [115]. TBI impacts peripheral cellular immune response via the hypothalamic–pituitary–adrenal axis, thus contributing to secondary damage to distant organs and susceptibility to infection [116]. The lungs are particularly susceptible to trauma-related ALI, being exposed to central venous blood conveying systemic DAMPs from injured tissues through pulmonary vasculature. ALI and/or ARDS leads to systemic and local activation of NLRP3 inflammasome [117]. Critically ill trauma patients often need mechanical ventilation (MV) and massive blood transfusion. MV-induced inflammatory lung injury may be consequence of cyclic alveolar stretch-induced activation of NLRP3 inflammasome; mechanism involves DAMPs: mitochondrial ROS generation and uric acid release [102]. The priming step of transfusion-related ALI—TRALI may be associated with NLRP3 inflammasome expression in various types of lung immune and endothelial cells, which constitute what is known as the “first hit”, while DAMPs from stored blood units with some degree of hemolysis, leading to the presence of heme or extracellular ATP may induce inflammasome activation and subsequent inflammation, resulting in a “second hit” [93]. Finally, dysfunctional inflammasomes in immune cells may be involved in post-trauma immunosuppression [118]. Authors of one study reported that NLRP1 gene expression following LPS stimulation is reduced in trauma patient monocytes. The decrease in mRNA levels of NLRP1 persisted over 10 days from admission to the emergency department [119]. In monocytes isolated from non-trauma patients, who had undergone cardiopulmonary resuscitation, levels of AIM2 gene expression as well as ability to release IL-1 β were downregulated [120].

Trauma accounts for 10% of deaths and 16% of disabilities worldwide [121]. After major trauma, massive release of neutrophils occurs. Circulating neutrophils are dormant until activated by PAMPs and/or DAMPs., and when activated they carry out various functions including phagocytosis, degranulation, release of neutrophil extracellular traps (NETs), ROS and cytokines. These cells have altered functions and phenotypic markers because banded and even immature cells, such as metamyelocytes, enter circulation from bone marrow [122]. Authors of one study reported that major trauma is associated with subsequent delay of neutrophil apoptosis for at least 10 days, whether trauma victims developed sepsis or not [123]. Accumulation of activated neutrophils will lead to NETs formation in response to injury [124]. Surgery, as a form of controlled trauma, can, by itself, induce formation of NETs (elective total hip replacement for example). In these patients, it is a part of sterile inflammatory response mounted by innate immunity [125]. Trauma modulates neutrophil phenotypes and can lead to increased cell size and membrane plasticity, as well as modified shape (elongation). Neutrophil cell size can be significantly different between trauma survivors and nonsurvivors [126]. Distinct neutrophil subsets have been suggested to exist in trauma patients and in a human acute inflammation model, in which the hypersegmented CD62L^{DIM}/CD16^{POS} subset can be separated from mature segmented neutrophils by multiplex proteomics comparison and immunosuppressive capacity [127][128]. Subset of neutrophils, predominantly CD11b⁽⁺⁾/Gr-1⁽⁺⁾/CXCR4^(hi) neutrophils recruited by vascular endothelial growth factor A-VEGF-A might be beneficial to repair the initial trauma impact. This subset of neutrophils delivers large amounts of the effector protein matrix metalloproteinase-9 (MMP-9), required for revascularization and functional reintegration [129]. Trauma has an impact on neutrophil migration; high levels of the neutrophil chemotactic factor IL-8 have been found in trauma patients [130]. Increased oxidative burst in neutrophils correlates with more extensive brain tissue injury by ROS [131]. Neutrophils are major producers of ROS which have been recognized as a component of NLRP3 activator in hepatic I/R injury [132]. NLRP3 is essential for acute sterile inflammation [133]. Newly formed ROS in injured tissue results in the migration and activation of more neutrophils [121], thus creating a vicious circle.

In the early phase after major trauma, surgical procedures should be carefully planned. Surgical procedures can be viewed as additional trauma load and constitutes a “second hit”. Authors of a recent pilot study investigated the immune status of trauma patients [134]. They used highly standardized systems to draw peripheral whole blood from seven polytraumatized patients with high injury severity score (ISS \geq 32) and challenged it with bacterial LPS. In comparison with samples from healthy volunteers there was a significant decrease in the release of monocyte-derived mediators and surprisingly stable, unaltered or even increased concentrations of cytokines related to T cell maturation and function (IFN- γ , IL-2, IL-4 and IL-9). Levels of pro-inflammatory cytokines were reduced in response to LPS early after severe trauma. However, 24 h after injury, TNF response was not profoundly impaired. This led the authors to conclude that functional immune monitoring may be used to optimize the timing of necessary surgical interventions in severely injured patients. Another recent study focused on trauma-induced long-term alterations of immune response six months after major trauma event in 12 survivors [135]. CD4, CD8, CD14, PD-1, B and T lymphocyte attenuator (BTLA) cytotoxic T-lymphocyte-associated protein 4, TLR-2, -4, and -5, Dectin-1, PD-1L and HLA-DR expression were determined by flow cytometry. Cytokine release (IL-2, -4, -6, -10, and 17A, TNF- α , IFN- γ) was determined after stimulation of whole blood with LPS-, α -CD3/28, or zymosan. At the time-point of six months post-trauma, the overall immune responses were toward immunosuppression. They reported

monocyte TLR-2 and TLR-4 suppression, for the first time six months after trauma which can also be observed during severe trauma [136]. It was also found that 6 months after trauma, there was no longer HLA-DR suppression, which is a feature characteristic of the early response to polytrauma. This may be explained by the short life span of classical and non-classical monocytes [137]. Following hospital discharge following traumatic injury, hospital-acquired infections remain a cause for post-discharge mortality [138][139]. An immunosuppressive phenotype, observed in neutrophils and monocytes, with impaired cytokine production after LPS challenge, is a common mechanism for trauma-induced MODS [140]. Therefore, it is important to explore ways of predicting the development of trauma-induced MODS, to allow detection as early as possible. Authors of one study measured a variety of inflammatory mediators from blunt trauma victims almost immediately after the event (within 24 h) to derive patient-specific “inflammation barcodes”. These barcodes can be used to predict development of MODS much more reliably than individual inflammatory mediators [141]. Trauma causes an abrupt transition from health to systemic physiological crisis. A recent study applied single-cell RNA sequencing to mononuclear cells from the peripheral blood and bone marrow in injured mice and trauma patients [142]. Transcriptomic analysis of leukocytes from severe trauma patients revealed a “genomic storm” with more than 80% of the leukocyte transcriptome altered during the first 28 days after major trauma. The greatest changes in gene expression in mice was seen in monocytes. After systemic injury, the monocytes gene expression pattern deviated from a steady state with similar changes in critical transcription factors. The changes in human CD14+ monocytes can be generalized into six signatures (SGs) with two trauma patient subtypes (SG1 vs. SG2) in the whole-blood leukocyte transcriptome in the first 12 h following injury. SG1 patients showed a longer recovery, more severe dysfunction in organs, and a higher number of complications compared with SG2. The two subtypes were also repeated for burn and sepsis patients suggesting a common immune response pathway.

Most clinicians consider medical and surgical patients to represent two varied groups, and that infection greatly affects the mortality in surgical patients [143]. Tissue damage and blood loss during surgical procedures will induce systemic inflammation. Contribution of anesthesia to immune modulation must also be considered. Opioids, such as the widely used remifentanil, are immunosuppressants and act via opioid receptors on leukocytes. One review [143] concluded that surgical infections are different from medical infections for a variety of reasons specific to surgical patients for example, due to a primed systemic inflammatory response caused by surgical insult, immediate postoperative immune suppression, anesthesia-induced immunomodulation, blood transfusion, I/R injury, etc. Thus, the course of surgical infections is more complex than medical ones. Authors of one study investigated immune response in a specific surgical setting, cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). They found that increased plasma levels of DAMPs (HSP70, HMGB1, S100A8/S100A9, S100A12, nuclear DNA, lactate dehydrogenase—LDH, which is a nonspecific marker of unscheduled cell death), were associated with immune suppression and postoperative infections [144]. CRS-HIPEC procedure caused excessive DAMP release. An increase in plasma HMGB1 levels was found to be associated with the decrease in HLA-DR expression in the aforementioned study. This is consistent with the findings of another study which included blunt chest trauma patients, where HMGB1 concentrations were associated with a higher risk for sepsis [145]. The amount of cell-free DNA, another important DAMP, is a prognostic tool for mortality as well as trauma severity and post-traumatic complications [146]. Burn victims are especially susceptible to infection.

Neutrophil phagocytosis, oxidative burst capacity NET generation (NETosis), immature granulocyte (IG) count, plasma cell-free DNA (cfDNA) and plasma citrullinated histone H3 (Cit H3—a specific marker of NETosis) levels were measured up to one year following burn injury in 63 patients with burns to $\geq 15\%$ total body surface area in an interesting study [147]. In addition, were measured. Neutrophil dysfunction, elevated IG counts as well as elevated plasma cfDNA and Cit-H3 levels were reported during septic episodes. All of the aforementioned measurements demonstrated potential as biomarker(s) of sepsis following burn injury. Neutrophil dysfunction may also actively contribute to the development of sepsis. Another interesting, recent study focused on surgical patients. Fresh blood samples revealed leukocytes with reduced viability in critically ill surgical patients. The authors investigated decreased leukocyte viability, the implications for leukocyte functioning and its clinical implications [148]. Non-viable neutrophils in vitro are referred to as fragile neutrophils in vivo. Overall neutrophil function was found not to be impaired in patients with fragile neutrophils, but these cells were associated with critical illness. Of the 11,871 patients, 75 (0.63%) had fragile neutrophils during hospitalization, and 75.7% of these developed an infection, 70.3% required ICU admission and 31.3% died in hospital. Therefore, fragile neutrophils were mostly detected in surgical patients with recurrent or serious infections. Conversely, these cells were also observed in the absence of infection in patients who sustained high energy trauma and in patients with multiple or major surgeries (second hit). An advantage of this study is the usage of standardized, routine hematology analyzer [149], because manual work-up of blood samples leads to high number of apoptotic and necrotic neutrophils (up to 99%) due to in vitro manipulation which can easily affect results.

3. Programmed Cell Death 1 (PD-1)/Programmed Cell Death Ligand 1 (PD-L1) Expression on Monocytes

Circulating monocytes can be divided into three subsets according to the CD14 and CD16 antigen surface expression: CD14⁺⁺ CD16⁻ (classical subset, constitute about 90% of the entire monocyte pool), CD14⁺⁺CD16⁺ (intermediate subset) and CD14⁺CD16⁺⁺ (non-classical subset). The last two subsets account for about 10% of circulating monocytes in healthy individuals [150].

PD-1 (CD279), first described by Ishida et al. in 1992, is a type I membrane protein of 268 amino acids. This cell surface receptor is a member of the extended CD28 family and is expressed, among other immune competent cells, on circulating monocytes (mPD-1). Its structure consists of an extracellular immunoglobulin superfamily IgV (Variable—V type) domain, a transmembrane region and an intracellular tail. The intracellular region of PD-1 receptor is made up of immuno-receptor tyrosine-based inhibitory motif (ITIM) and immuno-receptor tyrosine-based switch motif (ITSM). PD-1 protein is encoded by the *Pdcd1* gene that is located on chromosome 1 in mice and chromosome 2 in humans. Human and murine PD-1 proteins share almost 60% amino acid identity [151]. First identified in 1999, the activated PD-1 receptor generates a strong anti-inflammatory signal. Programmed death-ligand 1 (PD-L1) is a 40 kDa type 1 transmembrane protein also known as cluster of differentiation 274 (CD274) or B7 homolog 1 (B7-H1), and it has powerful immunosuppressive properties. PD-1/PD-L1, forms a co-inhibitory system and is considered an immune checkpoint molecule. This pathway appears to be especially important in sepsis-induced immunosuppression, as part of a negative feedback mechanism. PD-1 is expressed on activated T

cells, natural killer (NK) cells and B cells. Its ligand, PD-L1, is expressed on both hematopoietic, nonhematopoietic cells and even tumor cells. It can also be found in parenchymal cells of organs including the heart, placenta, lung, liver, pancreas and kidney. PD-L1 has been implicated in organ injury during sepsis, especially intestinal and liver injury. PD-L1 plays a major role in the PD-1/PD-L1 pathway with inhibitory effects, while PD-1 is an auxiliary part of that process. The inhibitory immune checkpoint interaction often leads to T cell exhaustion. The ability of PD-1 to suppress T cell activation depends on the phosphorylation of the immunoreceptor tyrosine-based switch motif [11].

In septic patients, a pattern of increased PD-L1 expression on monocyte has been confirmed in several studies [152][153][154], this is usually accompanied with decreased HLA-DR expression [152]. In a recent study, the relationship between PD-L1 expression on CD14⁺ monocyte (mPD-L1) and infectious complications in acute pancreatitis was evaluated. Sixty-three ICU patients with acute pancreatitis (AP) and 32 sex and age-matched healthy controls were enrolled in a prospective study. On days 1 and 3 following the onset of AP, PD-1 expression on peripheral CD4⁺ T cells, as well as PD-L1 and human leukocyte antigen-DR (HLA-DR) expression on CD14⁺ monocytes were measured. IL-10 levels were also determined. Percentages of PD-1 expressing CD4⁺ lymphocytes and PD-1L expressing CD14⁺ monocytes were found to be raised in patients with AP compared with healthy controls. Increased PD-1/PD-L1 expression was associated with a greater risk for infectious complications and increased plasma IL-10 levels. It was shown that an element of monocyte function, in particular the percentage of HLA-DR and PDL1 expression on CD14⁺ monocyte on day 1 was found to be an independent predictor of complication. The group concluded that PD-1/PD-L1 system plays an essential role in early immunosuppression, and that PD-L1 expression on monocytes may be a useful biomarker as indicated by the receiver operating characteristic curve (ROC) whereby PD-L1 demonstrated a greater Area Under Curve (AUC) of 0.708 vs. HLA-DR AUC of 0.652, thus suggesting a commensurate and moderately superior diagnostic ability [155].

The association of monocyte PD-L1 expression after 3–4 days of sepsis with risk stratification and mortality was examined in another prospective cohort study [156] with 29 healthy controls, 59 patients with sepsis and 76 patients with septic shock. Blood samples were obtained 3–4 days following systemic inflammatory response syndrome (SIRS). PD-1 expression was measured on circulating CD4⁺ T cells and CD8⁺ T cells while PD-L1 was measured on monocytes by flow cytometry. The study showed that only monocyte PD-L1 expression correlated to disease severity and consequently mortality. In particular, monocyte PD-L1 expression was an independent predictor of 28-day mortality in patients with septic shock. PD-L1 was the optimal marker for predicting mortality; a ROC curve analysis showed that patients with over 44.2% of monocytes expressing PD-L1 had a higher probability of death.

As part of the negative feedback system, immune checkpoint molecules act as negative regulators that modulate T cell responses. Co-ligation of T cell receptors (TCR) and PD-1 molecules induces an inhibitory signal in T cells that was characterized by cell cycle arrest, inability to proliferate and reduced cytokine synthesis, this effect is termed T cell exhaustion [157]. T cell exhaustion is mediated, in part, by PD-1/PD-L1 axis effects, this can be demonstrated in animal models by administration of antibodies targeting PD1 and PD-L1 which acts to prevent lymphocyte depletion, and consequently this significantly improved survival rates in septic mice.

The possibility of restoring immune response by using biologics to target this interaction has also been examined in septic patients [158]. The study evaluated the potential efficacy of blocking PD-1 and PD-L1 inhibitory pathways in sepsis, after extensive phenotypic and functional analysis of both innate and acquired immunity in critically ill septic and non-septic patients as well as healthy controls. Neutrophil and monocyte function were progressively diminished as sepsis persisted and this deterioration correlated with increased PD-L1 expression and with PD-1 expression on CD8⁺ T cells and NK cells. Importantly, blocking the checkpoint inhibitors PD-1/PD-L1 with antibodies restored function in neutrophil, monocyte, T cells, and NK cells, suggesting that this checkpoint could be acting as a key regulator of immune function under this particular setting in humans.

In patients who survive sepsis, there is speculation that there is some element of long- term immune impairment. This has been postulated to be the underlying reason for delayed death in patients who survive sepsis. The role that PD-1 plays in this phenomenon has been explored. One study observed that in the CD4⁺ T cells of eight sepsis survivors, PD-1 receptor density was found to be downregulated as compared with healthy controls. Conversely, B and T lymphocyte attenuator (BTLA) receptor expression trended toward upregulation. This suggests that in addition to PD-1, an alternate negative feedback pathway via BTLA could be responsible for immune dysfunction when considering sepsis survivors. The study found that long-term sepsis survivors had an increased number of clinically evident infections and low-grade inflammation based on standard inflammatory markers, additionally, cytokine production in response to stimulation appeared to be diminished in sepsis survivors. The sepsis survivors also demonstrated alterations in monocyte surface expression in pattern recognition receptors (PRR), most pronouncedly observed in decreased Toll-like receptor-5 (TLR-5). Investigation of PD-1L and HLA-DR expression on monocyte showed no significant differences between two groups in survivors of sepsis which is contrary to the case observed septic patients [159].

Recent studies have aimed to explore the variation in serum concentrations of soluble PD-1 and PD-1L in critically ill patients with sepsis and/or septic shock. One study assessed the kinetics of sPD-1 and sPD-1L in 30 septic ICU patients and 30 non-septic ICU [160]. sPD-1 and sPD-1L were found to be significantly higher in the septic group compared with the non-septic ICU group (17.7 vs. 4.5 pg/mL, $p = 0.002$; and 29.9 vs. 11.3 pg/mL, $p = 0.02$; respectively). Higher sPD-1L on day 3 following diagnosis of sepsis was associated with increased mortality. (16.7 vs. 3.0 pg/mL, $p = 0.054$) This was also observed in the total ICU cohort (14.9 vs. 2.7 pg/mL, $p = 0.026$). The correlation between the two immune checkpoint molecules was also significant at both days 1 and 3, suggesting that they can serve as a predictor early on. ($p < 0.001$, $p < 0.001$ and $p = 0.004$, respectively). Contrary to this, another study established that there were no differences in levels of sPD-1 or sPD-L1 between patients with sepsis when compared with healthy controls. No correlation was found between serum sPD-1 and sPD-L1 concentrations in patients with sepsis and lymphocyte surface expression [161]. In another prospective, single-center observational study undertaken in a surgical ICU, 86 consecutive patients admitted for septic shock of abdominal origin were observed. Fifteen plasma biomarkers (including sPD-1) were measured at ICU admission (86 patients), at ICU discharge (55 patients) and at one year after ICU discharge (46 patients). At ICU admission, concentrations of sPD-1 were found to be identical in controls and septic shock patients (0.05 ng/mL and 0.04 ng/mL respectively), 0% of patients had values measured outside the normal range. At the time of discharge from ICU, 95% of patients had abnormal sPD-1 values and one year later, 80 % of patients still had values ($p < 0.0001$) outside the normal

range. However, there was no clear correlation between sPD-1 levels and ICU outcome. This study allowed the observation that increased immunosuppression at ICU discharge persisted for one year; while the level of sPD-1 was marginally lower, it remained abnormally elevated [162].

Another study found that sepsis survivors with hospital acquired infections who go on to develop chronic critical illness and persistent inflammation, immunosuppression and catabolism syndrome (PICS) are found to have greater levels of immunosuppressive proteins such as sPD-L1 [163]. The same group also sought to determine whether the incidence of secondary infections and immunosuppressive biomarker profiles of septic patients with chronic critical illness (CCI) differ from those with rapid recovery (RAP) after sepsis. The authors concluded that septic patients demonstrate clinical and biological features to suggest immunosuppression at the time of sepsis diagnosis. Those who developed CCI have a higher number of secondary infections and persistently deranged immune markers although measurements at the time of sepsis onset did not demonstrate a significant difference between subjects with RAP and CCI [164].

Soluble PD-L1 levels have also been investigated in the context of acute pancreatitis (AP), Chen et al. obtained blood samples from 56 patients with acute pancreatitis and compared this to a group of 21 healthy controls. Serum sPD-L1 levels as well as mHLA-DR were measured within 48 h following onset of acute pancreatitis. Authors demonstrated that sPD-L1 was significantly upregulated in patients with early AP, especially those with infectious complications, compared to healthy controls. Significant negative correlations were observed among mHLA-DR expression, lymphocyte count and sPD-L1 levels in AP. Multivariate regression analysis showed that sPD-L1 was an independent early predictor of infectious complications in AP [165]. PD-L1 expression appears to have some relationship with certain physical parameters, the influence of hypoxemia on immune response was investigated by Avendano-Ortiz and coworkers. They concluded that SaO_2 levels on admission might serve as a potential marker for immune status, including PD-L1 expression [166].

Given the fact that immunosuppression has been a primary focus of sepsis research in recent years, it is obvious that negative costimulatory molecules such as PD-1 and PD-L1 are key elements of its pathophysiological mechanism [167]. The general immunosuppressive attributes of PD-1/PD-L1 axis implicate these immune-inhibitory check point molecules in various conditions, such as inflammatory diseases of blood vessels [168]. Other immune checkpoint ligands in sepsis have been investigated. For example, sialic acid-binding immunoglobulin-type lectins (SIGLECs) may play an important role in modulating the immune response in sepsis and serve as survival marker [169]. More research is needed to elucidate multifaceted immune dysfunction in sepsis [32].

4. Programmed Cell Death 1 (PD-1)/Programmed Cell Death Ligand 1 (PD-L1) Expression on Neutrophils

Although it has been shown that neutrophils, by expressing PD-L1, may inhibit proliferation of lymphocytes, to our knowledge, there is limited literature that explores this in the context of sepsis. In the literature available to us, we identified only three studies; one animal study, one that included both human and animal subjects, and one that included only human, all with low numbers of patients. One showed, in an animal inflammation model, that

neutrophils in draining lymph nodes upregulate PD-L1 expression and can suppress T cell proliferation. The study emphasized the critical role of neutrophils in adaptive immunity homeostasis via a PD-L1 dependent mechanism [170]. One study was performed to determine the level of PD-L1 expression on neutrophils in 41 patients with severe sepsis as well as in six septic mice. They found that PD-L1 was significantly upregulated on neutrophils from both septic patients and mice. in addition, neutrophil PD-L1 was good predictor of outcome in patients with severe sepsis with AUC of 0.74 [171]. This is contrary to our results (unpublished data) from our investigation of 86 critically ill patients with secondary sepsis. We studied a broad panel of immune biomarkers on neutrophils and monocytes, among them was PD-L1 on neutrophils. There were no statistically significant differences in neutrophil PD-L1 expression in either of chosen time intervals (first and fifth day) between survivors and nonsurvivors. Yet, we found higher expression of this immune marker on the fifth day compared to day 1; this was statistically significant only in nonsurvivors. Finally, the third and most recent study demonstrated two new subsets of immature and dysfunctional neutrophils, distinguished by CD123 and PD-L1 expression, which defined as an early human blood signature of sepsis [172]. The authors enrolled 17 ICU septic patients, 12 non-infected post-cardiothoracic surgery patients, 11 healthy donors and five orthopedic surgery patients with bone marrow biopsies. The results indicated a statistically highly significant difference in neutrophil PD-L1 expression between the sepsis group and the other groups. In ICU patients with sepsis, PD-L1⁺ neutrophils were significantly more abundant. It is therefore obvious that further research in this area is warranted.

5. Human Leukocyte Antigen D-Related—HLA-DR Expression on Monocytes

Major histocompatibility complex (MHC) is a set of cell surface proteins crucial for recognition of foreign molecules by adaptive immune system. Human leukocyte antigen D-related (HLA-DR) is the MHC class II molecule expressed on most types of immune cells such as monocytes/macrophages, dendritic and B cells. HLA-DR expression correlates with immune cell activation and antigen presentation, a step that initiates the adaptive immune response. Conversely, a low level of HLA-DR expression is associated with an anti-inflammatory phenotype. In 1990, Hershman et al. first reported a decreased frequency in HLA-DR⁺ monocyte soon following trauma in healthy individuals. There is a plethora of influences that preside over the control of HLA-DR expression on immune cells. Their expression is up- and downregulated by pro-inflammatory cytokines such as interferon-gamma (IFNy) and anti-inflammatory cytokines such as IL-10, respectively. Medication such as corticosteroids and catecholamines are also able to reduce HLA-DR expression. Monocytic HLA-DR (mHLA-DR) expression is a pivotal link between innate and adaptive immunity; thus, the key interplay of monocytes with T cells is often colloquially referred to as “immunological synapsis” [173]. The persistence and magnitude of mHLA-DR expression has been used as a global marker of immune function in critically ill patients since it was first proposed whereby, a low mHLA-DR serves as an indicator of monocyte anergy and is associated with lower tumor necrosis factor (TNF)-alpha and IL-1 production in response to bacterial insult [174].

Monneret et al. conducted one of the landmark studies which attempted to describe mHLA-DR expression as a predictor of mortality in septic shock patients [175]. The group explored whether a low mHLA-DR expression, as a

biomarker of immunosuppression, is an independent predictor of mortality in 93 septic shock patients who survived the initial 48 h of septic shock. While mHLA-DR expression levels were not significantly different between survivors and nonsurvivors within the first 1–2 days, significant differences were observed at days 3–4 with increased percentage of HLA-DR positive monocyte in survivors (43%) as compared with nonsurvivors (18%). Multivariate logistic regression analysis showed that low mHLA-DR (<30%) at days 3–4 is an independent predictor of mortality in septic shock patients. The ROC curve demonstrated that 30% HLA-DR positive monocytes at days 3–4 is the best cut-off value for mortality prediction with an AUC of 0.76. Therefore, dynamic changes in mHLA-DR expression over time in the setting of sepsis are important in view of potential inter-individual variations.

Following that, the same group aimed to address whether low mHLA-DR expression was associated with an increased number of nosocomial infection (NI) after septic shock in 209 septic shock patients. mHLA-DR was measured at days 3–4 and 6–9 after the onset of shock, and patients were screened daily for the development of NI [176]. mHLA-DR at days 3–4 was found to be diminished in nonsurvivors (20%) versus in survivors (43%), a similar result to previous studies. In line with these findings, the mHLA-DR value expressed as Means of Fluorescence Intensities (MFI) was 33 in nonsurvivors versus 67 in survivors. At days 3–4, patients who went on to develop NI had lower MFI values (39 versus 65 in those without NI). ROC curve analysis revealed that an MFI value of 54 was the best cut-off value to predict NI development with a sensitivity of 68% and specificity of 62%. At days 6–9, best cut-off MFI value was 57 with AUC of 0.64 (sensitivity 66%, specificity 60%). The study demonstrated that mHLA-DR \leq 54 at days 3–4, and \leq 57 at days 6–9 remained independently associated with NI occurrence after adjustment for clinical confounders. The study concluded that persistent low mHLA-DR expression was an independent predictor of secondary NI development in septic shock patients.

There is an emerging body of evidence that immune biomarkers are essential to guiding immunotherapy and risk stratification on an individual basis. Functional assessment of the immune system using mHLA-DR expression may reflect the net sum of pro- and anti-inflammatory factors and, therefore, the actual inflammatory phenotype and the phase of sepsis as such, this can be a better choice than using single pleiotropic and redundant inflammatory mediators [177].

It has been suggested that utilization of a combination of several immune cell function markers provide benefit over interpretation of individual biomarkers alone in predicting risk for NI and outcome in critically ill patients. Conway Morris et al. demonstrated that a combination of three measures of immune cell function namely: neutrophil CD88, mHLA-DR expression and percentage of regulatory T cells were significantly predictive of susceptibility to developing NI [178]. In their previous study they showed that critically ill patients have significant dysfunction of neutrophils from peripheral blood, mediated predominantly by activated complement (C5a) [179]. A recent follow up study (INFECT study) has been completed by the same group, aimed at validating their results in a cohort of critically ill patients; in the setting of trauma, sepsis and post-surgical complications which all bear similarities in the innate and adaptive immune responses [180]. This included a cohort of 138 patients. Reduced neutrophil CD88, reduced monocyte HLA-DR and elevated proportions of Tregs were all found to be associated with subsequent infection. The presence of immune dysfunction was linked to a commensurate increase in risk of infection, from

14% for patients with no dysfunction to 59% for patients with dysfunction of all three markers [181]. This study demonstrated the feasibility of standardized flow cytometry from multiple sites [182].

Sepsis-induced immunosuppression is global process, this can be seen both in the systemic circulation and in specific organs such as the spleen and lung. In a study investigating the immune status at the time of death, rapid post-mortem spleen and lung tissue harvest was performed at the bedside of 40 patients who died of severe sepsis this was compared with control spleen and lung tissue. To identify potential mechanisms of immune dysfunction, cytokine secretion assays and immunophenotyping of cell surface receptor-ligand expression profiles were performed. Cytokine secretion in sepsis patients was found to be less than 10% of that in controls, independent of age, duration of sepsis, corticosteroid use and nutritional status. Immunohistological staining revealed extensive depletion of splenic CD4, CD8 and HLA-DR cells in sepsis patients as compared with controls. The study concluded that patients who die in ICU following sepsis have biochemical, flow cytometric and immunohistochemical findings consistent with immunosuppression as compared with patients who die of non-septic causes [183].

In critically ill patients, it has been suggested that IAI is best assessed with multiple measurements of mHLA-DR expression over a duration of time rather than at a single time point. It has been shown previously that a persistent value of <8000 mHLA-DR molecules/cell for over two days is associated with increased risk for NI and mortality. Determination of the appropriate threshold levels of mHLA-DR is challenging given that there are several methods for measuring mHLA-DR expression. HLA-DR positive monocyte with a cut-off at 30% for detection of IAI is a non-standardized method. In a recent comparison of the conventional method with a standardized quantitative assay for mHLA-DR using measurement of bound HLA-DR antibodies per cell (mAb/cell) as a method of standardization, it was determined that the previously established cut-off value of 30% mHLA-DR corresponds to approximately 5000 mAb/cell, and 45% mHLA-DR to approximately 8000 mAb/cell [173][184], with the range between 30% and 45% mHLA-DR termed “borderline immunosuppression”. A cut-off value of 8000 mAb/cell has been used by authors in interventional clinical trials [185].

In terms of outcome prediction, the prognostic value of utilizing mHLA-DR to predict mortality in 79 adult patients with severe sepsis has been investigated in a prospective observational study [186]. mHLA-DR levels were measured on days 0, 3 and 7 following admission to the ICU. $\Delta m\text{HLA-DR}_3$ and $\Delta m\text{HLA-DR}_7$ (defined as the changes in mHLA-DR value on day 3 and day 7 respectively) was compared to the value of mHLA-DR obtained on day 0 of admission. The data for 28-day survivors and nonsurvivors were compared. The 28-day mortality in patients grouped by mHLA-DR expression with 30% as a cut-off value on days 0, 3 and 7 showed no significant difference between the groups suggesting that single measurements at these specific time points had little predictive value unless interpreted as part of a temporal trend. Additionally, it was shown that mHLA-DR levels return to normal in less than 7 days in injured patients who have an uneventful recovery, conversely it remains persistently decreased in patients who died or developed secondary infections. A dynamic view of mHLA-DR expression in critically ill septic patients shows that survivors tend to progressively normalize their levels of mHLA-DR [187].

One study aimed to assess the persistence of sepsis-induced immunosuppression by measuring several markers, among them was mHLA-DR, at ICU discharge and 6 months after ICU discharge in patients admitted to the ICU for septic shock [188]. The authors concluded that while immune alterations persist at the time of ICU discharge, there are no ongoing immune alterations in septic shock survivors 6 months later.

The value of temporal changes in mHLA-DR levels in the prediction of mortality has been further demonstrated in studying patients with severe acute pancreatitis (SAP). One group assessed the change in mHLA-DR on survival in SAP patients [189]. Survivors were found to have upregulated mHLA-DR expression whereas in the late mortality group it was persistently downregulated. mHLA-DR expression on day 10 (HLA-DR10) gave the only statistically significant correlation with late mortality. ROC curve analysis confirmed that HLA-DR10 was a reliable predictor for late mortality with AUC of 0.944; The optimal cutoff value was 52.3% with a sensitivity of 94.4% and specificity of 85.7%. In another study of 64 patients with SAP, mHLA-DR expression was measured at admission and 7 and 14 days following the onset of SAP [190]. The study demonstrated that patients with persistently low percentages of mHLA-DR throughout the observation period was more likely to develop sepsis in the clinical course subsequently. It was concluded that this was a reliable predictor of the development of sepsis in SAP patients.

Therefore, introduction of mHLA-DR measurement as a point-of-care test at the bedside in ICU may be beneficial for critically ill patients. An automated tabletop cytometer may be a suitable tool for ICU patients as well as for clinical trials as there is no need for sample preparation nor specific skills in flow cytometry and the results are obtained in less than 30 min [191].

In addition to mHLA-DR expression, an alternative method of assessing immune status that has been extensively investigated involves detection of ex vivo lipopolysaccharide (LPS)-induced TNF-alpha production. This is a functional test of monocytic immune capacity. Recently, a comparison of mHLA-DR expression and ex vivo LPS-induced TNF-alpha production and their effect on 28-day outcome and development of secondary infections predictors in severe sepsis was performed in a prospective observational study of 83 adult septic patients [192]. Blood samples were collected at three time points: days 1–2, 3–4 and 6–8 after the diagnosis of sepsis. The study showed that mHLA-DR expression was significantly reduced in nonsurvivors on days 3–4 and 6–8. Furthermore, median mHLA-DR expression decreased from days 1–2 to days 3–4 in patients who developed secondary infections while it was found to be increased in those who did not. This again suggested that changes in mHLA-DR expression over time rather than values at individual time points would be more useful for prediction of outcome. The study postulated that mHLA-DR expression may not be predictive at an early phase of sepsis because circulating monocytes are likely to be recruited out of the bloodstream to sites of active infection, thus resulting in an underestimation of the magnitude. Ex vivo LPS-induced TNF-alpha production did not differ between survivors and nonsurvivors nor between patients who developed secondary infection and those who did not. There was a statistically significant correlation between LPS induced TNF-alpha production and mHLA-DR expression. The group also noted that studies of LPS-induced TNF-alpha production to date primarily utilized pediatric populations; in light of the increasing recognition of the impact of immunosenescence to blunt host response to infection, it was suggested that the increased age and high incidence of co-morbidities may contribute to a labored TNF-alpha response. The study found mHLA-DR to be a more accurate predictor of mortality and secondary infections. In this

particular study, the effect of diabetes mellitus, as a co-morbidity, on immune response in sepsis was not taken into account, it would be interesting to address this in future studies [193].

There may be a link between immunosenescence and the consequent state of immune system that increases risk for a dysregulated inflammatory picture. Elderly patients are known to display enhanced apoptotic pathways that may contribute to the incidence of mortality due to sepsis [194]. Evidence supporting this can be seen in a study of 73 critically ill patients in whom ex vivo LPS-induced TNF-alpha production was measured and found to be similar patients who did and those who did not develop an ICU-acquired infection [195]. A study carried out a decade ago found differing results. The study recruited 19 septic trauma patients [196]. On the day after the clinical diagnosis of sepsis, ex vivo LPS-induced TNF-alpha secretion was found to be significantly lower in nonsurvivors as compared with survivors of sepsis. The study concluded that ex vivo LPS-induced TNF-alpha production may be superior as an early predictor of clinical outcome in multiple trauma patients with sepsis when compared to mHLA-DR expression.

Another consideration to employing mHLA-DR measurements in an intensive care setting is the relative ease of running such a test [197][198]. Future interventional studies aimed at the immune response during sepsis might be able to combine a functional test with a phenotypic immunological biomarker for the purpose of target group selection based on biological plausibility and potential intervention effectiveness.

The validity of monocyte HLA-DR expression as a predictor of early mortality was explored in a recent study of 52 septic patients. Monocyte HLA-DR expression was found to be significantly lower in nonsurvivors at time of diagnosis as compared with survivors and served as an independent predictor of 28-day mortality following sepsis [199].

Another recent study performed by Duggal et al. showed that CD14^{+ve} HLA-DR^{dim/low} monocytes were found to be diminished in patients with poorer outcomes in ICU [200].

In bacterial sepsis, there has been evidence to suggest that there are different mechanisms of the clinical manifestations of Gram-positive and Gram-negative sepsis. Some microbial challenges may determine levels of mediators that damage the infecting microorganism and the host. For example, Lipoteichoic acid (LTA) of Gram-positive bacteria as well as lipopolysaccharide (LPS) of Gram-negative bacteria has been shown to elicit different response from the host [201][202][203][204][205].

In the setting of trauma, the predictive potential of mHLA-DR in 80 trauma patients was explored in one prospective study [206]. Daily measurements of mHLA-DR were performed during the first 4 days following trauma. The lowest expression of mHLA-DR was found to be on day 2. Patients who restored mHLA-DR expression at day 3 appeared to be protected from infections, and those who displayed persistently reduced expression of mHLA-DR appeared to be at greater risk of infection. The ratio of mHLA-DR expression between day 3 and day 2, at a value of below 1.2, was found to be independently associated with the development of sepsis. Early mHLA-DR monitoring may therefore provide information preceding infection, thus allowing targeted prophylaxis with antibiotic treatment.

Another interesting study of trauma patients aimed to investigate the release of DAMPs in the early, prehospital, phase and its relationship with immunosuppression and NI [88]. Blood was obtained from 166 adult trauma patients at the trauma scene, emergency room (ER) and serially afterward. Circulating levels of nuclear and mitochondrial DNA, and HSP70 were determined. Immunosuppression was assessed by qPCR analysis of HLA-DRA gene expression and ex vivo LPS-induced cytokine production. The study found that HLA-DRA expression was attenuated directly after trauma and did not recover during the follow-up period, whereas ex vivo cytokine production revealed an anti-inflammatory phenotype as early as at the point of the trauma scene, it was also shown to persist in the days following that. By the time of arrival at ER there was significantly reduced HLA-DR mRNA associated with increased levels of anti-inflammatory IL-10. This is in contrast with the prevailing theory that immune dysfunction follows trauma. The importance of immunosuppression after trauma was alluded to in the observation that an HLA-DR mRNA ratio between day 3 samples and samples obtained in the ER of <1 was associated with an increased rate of NI. Higher concentrations of nuclear DNA were also associated with infections. The study concluded that plasma levels of DAMPs are associated with immunosuppression that is apparent within minutes/hours of trauma, and this profound immunosuppression is associated with increased susceptibility to NI following trauma.

Another study sought to clarify the complex interplay of the immune response to severe trauma. Ten trauma patients with injury severity scores greater than 20 at days 1, 3 and 5 after injury were evaluated [207]. The study found that circulating monocytes percentage significantly increased after injury, possibly due to enhanced cell proliferation. Ex vivo stimulated TNF-alpha production and percentage of circulating HLA-DR positive monocytes were significantly decreased in trauma patients compared with age- and gender-matched controls at all time points. These findings suggested that monocyte behavior was significantly influenced by trauma and may display suppressed antimicrobial function. Surprisingly, monocyte phagocytosis was found to be at baseline function and the oxidative burst was augmented suggesting preservation of their innate antimicrobial functions. The study used single-cell mass cytometry to characterize the phenotype and function of major innate and adaptive immune responses in trauma patients. This was another significant study that can potentially pave the way to individualized risk stratification based on deep immune profiling of critically ill patients [208].

Major surgery can also lead to reduced mHLA-DR expression resulting in adverse outcome. In addition to surgical trauma, other causes of post-surgical immunosuppression may include intraoperative hypotension, increased perioperative release of corticosteroids or catecholamines, as well as the application of anesthetic drugs such as fentanyl. One retrospective randomized controlled trial analysis of 10 post-operatively immunosuppressed patients following esophageal or pancreatic resection demonstrated that innate immunity recovered earlier than acquired immunity during severe postoperative immunosuppression. Among other immune markers, mHLA-DR expression was measured pre-operatively up to day 5 after surgery, it was shown that mean mHLA-DR recovery time was on day 5 post-operation [209].

Another study aimed to describe the immediate immune response to major gastro-intestinal surgery in patients over 45 years old with planned post-operative ICU stay. It was concluded that monocyte dysfunction and features of immune suppression occur frequently following major surgery, contributing to post-operative infection [210].

Almansa et al. evaluated the use of procalcitonin (PCT) with gene expression levels of HLA-DRA to detect sepsis in 154 surgical patients. Multivariate and AUC/ROC analysis showed that the PCT/HLA-DRA ratio was superior to PCT for the purpose of detection of sepsis with AUC of 0.85. It was consequently concluded that combination of PCT with HLA-DRA holds promise as a mode for improving sepsis detection in surgical patients [211].

From this discussion, it can be seen that monocytes play a critical role in the innate and adaptive immune systems, performing phagocytosis and orchestrating antigen presentation as well as cytokine production. Recent research has also shown that the MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines as such, there is much to be explored yet [212]. Going forward, it can be envisaged that HLA-DR could form a significant part of any immune dysfunction score in the assessment of sepsis, trauma and other forms of critical illness [213].

Recently, two important studies explored the feasibility of circulating and cell-surface immune biomarkers as predictors of infection in critically ill patients (CAPTAIN and ExPRESS study) drawing contrasting outcomes. The CAPTAIN study was conducted to assess the accuracy of circulating biomarkers to discriminate between sepsis and non-septic SIRS. A difference was shown in MFI HLA-DR on both CD14^{High} and CD14^{Low} monocytes between sepsis and non-septic SIRS patients (0.9 vs. 1.5, $p = 0.05$; and 2.9 vs. 4.2, $p = 0.05$ respectively). Additionally, there was statistically significant difference in CD64-Neutrophil-MFI between the two groups (2.6 vs. 1.2, $p = 0.01$ respectively). It was shown that eight biomarkers had an area under the receiver operating curve (ROC-AUC) of over 0.6 with a 95% confidence interval over 0.5. LASSO regression analysis identified C-reactive protein (CRP) and HLA-DRA mRNA as being repeatedly associated with sepsis, and no model was found to perform better than CRP alone in this setting (ROC-AUC 0.76 (0.68–0.84)). It was therefore concluded that circulating biomarkers may not be useful in the detection infection at the early phase of sepsis in ICU patients [214].

The ExPRESS-sepsis cohort study recruited patients presenting to emergency departments (EDs) with suspected acute infection and aimed to evaluate the reliability of leukocyte biomarkers as predictors of sepsis (Sequential Organ Failure Assessment score ≥ 2 at 24 h and/or 72 h following ED presentation). In this multicenter cohort study in four EDs and ICUs, flow cytometry was utilized and patients with suspected acute infection (Group 1) with two comparator cohorts: ICU patients with established sepsis (Group 2), and ED patients without infection or systemic inflammation but requiring hospitalization (Group 3) were compared, and 272, 59 and 75 patients were recruited to cohorts 1, 2 and 3, respectively. Of the 47 leukocyte biomarkers examined, 14 were found to be unreliable, and 17 failed to discriminate between the three cohorts. In group 1, eight neutrophil CD antigens, along with seven monocyte and a T cell lymphocyte antigen were analyzed for their ability to predict consequent sepsis in patients who were suspected of sepsis. Individually, only raised neutrophil PD-1 (OR 1.78 (95% CI 1.23–2.57); $p = 0.002$), raised monocyte PD-1 (1.32 (1.03–1.70); $p = 0.03$) or reduced monocyte HLA-DR (0.73 (0.55–0.97); $p = 0.03$) expression were associated with subsequent sepsis. From a large panel of leukocyte biomarkers, markers of early immune suppression (neutrophil and monocyte PD-1 and PD-L1; monocyte HLA-DR) had the strongest association with clinical outcomes. Increased neutrophil PD-1 and reduced monocyte HLA-DR expression were associated with deterioration to sepsis, suggesting that immune suppression may be an early event, prior to development of sepsis [215].

Myeloid cell responses in sepsis are intertwined and complex. One example relates to the plasticity of these cells, which allows immature neutrophils to undergo differentiation to become monocytic cells [216]. Following sepsis, decreased major histocompatibility complex (MHC) mRNA expressions of class II-related genes have been reported; in one study, mRNA expression of five MHC class II-related genes (CD74, HLA-DRA, HLA-DMB, HLA-DMA, CIITA) were measured by quantitative reverse transcription (qRT)-PCR and monocyte human leukocyte antigen-DR (mHLA-DR) by flow cytometry in septic shock patients [217]. The authors reported that the best prognostic value regarding lethal outcome was obtained for CD74 (HLA-DR antigen-associated invariant chain). They concluded that decreased CD74 mRNA expression significantly predicted 28-day mortality following septic shock. Expression of the MHC class II-related genes HLA-DRA and CD74 was investigated in patients with complicated and uncomplicated *Staphylococcus aureus* bacteremia (SAB) [218]. The complicated SAB group included patients with hematogenous seeding or extension of infection beyond the primary focus, etc. It was reported that patients with complicated SAB show weaker HLA-DRA expression than those with uncomplicated SAB during the first week of bacteremia.

In a different study, HLA-DR expression on monocyte subsets was investigated in critically ill children [219]. This population was compared with healthy children, and it was found that HLA-DR expression significantly decreased within all monocyte subsets, being most manifest on classical monocytes and in patients with sepsis. They concluded that low HLA-DR expression on classical monocytes was associated with NI and lethal outcome. Immune responses were investigated in another specific group of non-neutropenic patients with abdominal sepsis, with a focus on prospective invasive candidiasis (IC) risk prediction based on immune markers, including HLA-DR [220]. The authors found that HLA-DR expression, over the first five days, showed no relevant difference between three groups of patients: with no colonization or IC, with subsequent colonization and with subsequent IC.

Various aspects of monocyte signaling can be assessed as potential sepsis immune markers. A monocyte distribution width value greater than 20.0 U is effective for sepsis detection in the emergency department [221]. Authors of a recent study focused on a novel type of RNA class that is naturally resistant to degradation by exonucleases, termed circular (circ)RNA [222]. They explored patterns of circRNA expression in peripheral monocytes of critically ill patients with sepsis secondary to community-acquired pneumonia relative to healthy donors. The authors concluded that circRNAs were more abundant in immune cells of sepsis patients.

Immune response in context of different causative pathogens and sites of infection is seldomly researched. Our group has investigated various aspects of the immune response to different bacteria, origin of secondary sepsis and outcome [12][202][203][223] for over a decade.

References

1. Surbatovic, M.; Veljovic, M.; Jevdjic, J.; Popovic, N.; Djordjevic, D.; Radakovic, S. Immunoinflammatory response in critically ill patients: Severe sepsis and/or trauma. *Mediat. Inflamm.* 2013, 2013, 362793.

2. Conway-Morris, A.; Wilson, J.; Shankar-Hari, M. Immune Activation in Sepsis. *Crit. Care Clin.* 2018, 34, 29–42.
3. Gentile, L.F.; Cuenca, A.G.; Efron, P.A.; Ang, D.; Bihorac, A.; McKinley, B.A.; Moldawer, L.L.; Moore, F.A. Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. *J. Trauma Acute Care Surg.* 2012, 72, 1491–1501.
4. Asehnoune, K.; Hotchkiss, R.S.; Monneret, G. Understanding why clinicians should care about danger-associated molecular patterns. *Intensive Care Med.* 2016, 42, 611–614.
5. Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. *Annu. Rev. Immunol.* 2013, 31, 51–72.
6. Drewry, A.M.; Samra, N.; Skrupky, L.P.; Fuller, B.M.; Compton, S.M.; Hotchkiss, R.S. Persistent lymphopenia after diagnosis of sepsis predicts mortality. *Shock* 2014, 42, 383–391.
7. Linder, A.; Guh, D.; Boyd, J.H.; Walley, K.R.; Anis, A.H.; Russell, J.A. Long-term (10-year) mortality of younger previously healthy patients with severe sepsis/septic shock is worse than that of patients with non-septic critical illness and of the general population. *Crit. Care Med.* 2014, 42, 2211–2218.
8. Wang, H.E.; Szychowski, J.M.; Griffin, R.; Safford, M.M.; Shapiro, N.I.; Howard, G. Long-term mortality after community-acquired sepsis: A longitudinal population-based cohort study. *BMJ Open* 2014, 4, e004283.
9. Torgersen, C.; Moser, P.; Luckner, G.; Mayr, V.; Jochberger, S.; Hasibeder, W.R.; Dünser, M.W. Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis. *Anesth. Analg.* 2009, 108, 1841–1847.
10. Monneret, G.; Venet, F. Sepsis-induced immune alterations monitoring by flow cytometry as a promising tool for individualized therapy. *Cytom. B Clin. Cytom.* 2016, 90, 376–386.
11. Venet, F.; Monneret, G. Advances in the understanding and treatment of sepsis-induced immunosuppression. *Nat. Rev. Nephrol.* 2018, 14, 121–137.
12. Surbatovic, M.; Grujic, K.; Cikota, B.; Jevtic, M.; Filipovic, N.; Romic, P.; Strelic, N.; Magic, Z. Polymorphisms of genes encoding tumor necrosis factor-alpha, interleukin-10, cluster of differentiation-14 and interleukin-1ra in critically ill patients. *J. Crit. Care* 2010, 25, 542.e1–542.e8.
13. Brodin, P.; Jojic, V.; Gao, T.; Bhattacharya, S.; Angel, C.J.; Furman, D.; Shen-Orr, S.; Dekker, C.L.; Swan, G.E.; Butte, A.J.; et al. Variation in the human immune system is largely driven by non-heritable influences. *Cell* 2015, 160, 37–47.
14. Pickkers, P.; Kox, M. Towards precision medicine for sepsis patients. *Crit. Care* 2017, 21, 11.
15. Berg, D.; Gerlach, H. Recent advances in understanding and managing sepsis. *F1000Res.* 2018, 7, 1570.

16. Møller, M.H.; Alhazzani, W.; Shankar-Hari, M. Focus on sepsis. *Intensive Care Med.* 2019, **45**, 1459–1461.
17. Levy, M.M.; Evans, L.E.; Rhodes, A. The Surviving Sepsis Campaign Bundle: 2018 update. *Intensive Care Med.* 2018, **44**, 925–928.
18. Coopersmith, C.M.; De Backer, D.; Deutschman, C.S.; Ferrer, R.; Lat, I.; Machado, F.R.; Martin, G.S.; Martin-Loeches, I.; Nunnally, M.E.; Antonelli, M.; et al. Surviving sepsis campaign: Research priorities for sepsis and septic shock. *Intensive Care Med.* 2018, **44**, 1400–1426.
19. Fleischmann-Struzek, C.; Mikolajetz, A.; Schwarzkopf, D.; Cohen, J.; Hartog, C.S.; Pletz, M.; Gastmeier, P.; Reinhart, K. Challenges in assessing the burden of sepsis and understanding the inequalities of sepsis outcomes between National Health Systems: Secular trends in sepsis and infection incidence and mortality in Germany. *Intensive Care Med.* 2018, **44**, 1826–1835.
20. Vincent, J.L.; Lefrant, J.Y.; Kotfis, K.; Nanchal, R.; Martin-Loeches, I.; Wittebole, X.; Sakka, S.G.; Pickkers, P.; Moreno, R.; Sakr, Y.; et al. Comparison of European ICU patients in 2012 (ICON) versus 2002 (SOAP). *Intensive Care Med.* 2018, **44**, 337–344.
21. Weng, L.; Zeng, X.Y.; Yin, P.; Wang, L.J.; Wang, C.Y.; Jiang, W.; Zhou, M.G.; Du, B.; China Critical Care Clinical Trials Group (CCCCTG). Sepsis-related mortality in China: A descriptive analysis. *Intensive Care Med.* 2018, **44**, 1071–1080.
22. Kerrigan, S.W.; Martin-Loeches, I. Public awareness of sepsis is still poor: We need to do more. *Intensive Care Med.* 2018, **44**, 1771–1773.
23. Brown, K.A.; Brain, S.D.; Pearson, J.D.; Edgeworth, J.D.; Lewis, S.M.; Treacher, D.F. Neutrophils in development of multiple organ failure in sepsis. *Lancet* 2006, **368**, 157–169.
24. Törnblom, S.; Nisula, S.; Vaara, S.T.; Poukkanen, M.; Andersson, S.; Pettilä, V.; Pesonen, E. Early prolonged neutrophil activation in critically ill patients with sepsis. *Innate Immun.* 2021, **27**, 192–200.
25. Hortová-Kohoutková, M.; Lázničková, P.; Bendíčková, K.; De Zuani, M.; Andrejčinová, I.; Tomášková, V.; Suk, P.; Šrámek, V.; Helán, M.; Frič, J. Differences in monocyte subsets are associated with short-term survival in patients with septic shock. *J. Cell. Mol. Med.* 2020, **24**, 12504–12512.
26. Patoli, D.; Mignotte, F.; Deckert, V.; Dusuel, A.; Dumont, A.; Rieu, A.; Jalil, A.; Van Dongen, K.; Bourgeois, T.; Gautier, T.; et al. Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis. *J. Clin. Investig.* 2020, **130**, 5858–5874.
27. Gourd, N.M.; Nikitas, N. Multiple Organ Dysfunction Syndrome. *J. Intensive Care Med.* 2020, **35**, 1564–1575.

28. Cabrera, C.P.; Manson, J.; Shepherd, J.M.; Torrance, H.D.; Watson, D.; Longhi, M.P.; Hoti, M.; Patel, M.B.; O'Dwyer, M.; Nourshargh, S.; et al. Signatures of inflammation and impending multiple organ dysfunction in the hyperacute phase of trauma: A prospective cohort study. *PLoS Med.* 2017, **14**, e1002352.

29. Guo, J.; Tao, W.; Tang, D.; Zhang, J. Th17/regulatory T cell imbalance in sepsis patients with multiple organ dysfunction syndrome: Attenuated by high-volume hemofiltration. *Int. J. Artif. Organs* 2017, **40**, 607–614.

30. Thiessen, S.E.; Van den Berghe, G.; Vanhorebeek, I. Mitochondrial and endoplasmic reticulum dysfunction and related defense mechanisms in critical illness-induced multiple organ failure. *Biochim. Biophys. Acta Mol. Basis Dis.* 2017, **1863**, 2534–2545.

31. Robinson, N.; Ganesan, R.; Hegedűs, C.; Kovács, K.; Kufer, T.A.; Virág, L. Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. *Redox Biol.* 2019, **26**, 101239.

32. Huang, M.; Cai, S.; Su, J. The Pathogenesis of Sepsis and Potential Therapeutic Targets. *Int. J. Mol. Sci.* 2019, **20**, 5376.

33. Cheng, S.C.; Scicluna, B.P.; Arts, R.J.; Gresnigt, M.S.; Lachmandas, E.; Giamarellos-Bourboulis, E.J.; Kox, M.; Manjeri, G.R.; Wagenaars, J.A.; Cremer, O.L.; et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. *Nat. Immunol.* 2016, **17**, 406–413.

34. Khan, M.M.; Yang, W.L.; Wang, P. Endoplasmic Reticulum Stress in Sepsis. *Shock* 2015, **44**, 294–304.

35. Mehta, S.; Gill, S.E. Improving clinical outcomes in sepsis and multiple organ dysfunction through precision medicine. *J. Thorac. Dis.* 2019, **11**, 21–28.

36. König, R.; Kolte, A.; Ahlers, O.; Oswald, M.; Krauss, V.; Roell, D.; Sommerfeld, O.; Dimopoulos, G.; Tsangaris, I.; Antoniadou, E.; et al. Use of IFNy/IL10 Ratio for Stratification of Hydrocortisone Therapy in Patients with Septic Shock. *Front. Immunol.* 2021, **12**, 607217.

37. Spapen, H.D.; Jacobs, R.; Honoré, P.M. Sepsis-induced multi-organ dysfunction syndrome—A mechanistic approach. *J. Emerg. Crit. Care Med.* 2017, **1**, 27.

38. Lonsdale, D.O.; Shah, R.V.; Lipman, J. Infection, Sepsis and the Inflammatory Response: Mechanisms and Therapy. *Front. Med.* 2020, **7**, 588863.

39. Martinez-Quinones, P.; Komic, A.; McCarthy, C.G.; Webb, R.C.; Wenceslau, C.F. Targeting Endothelial Barrier Dysfunction Caused by Circulating Bacterial and Mitochondrial N-Formyl Peptides with Deformylase. *Front. Immunol.* 2019, **10**, 1270.

40. McAlvin, J.B.; Wylie, R.G.; Ramchander, K.; Nguyen, M.T.; Lok, C.K.; Moroi, M.; Shomorony, A.; Vasilyev, N.V.; Armstrong, P.; Yang, J.; et al. Antibody-modified conduits for highly selective

cytokine elimination from blood. *JCI Insight* 2018, 3, e121133.

41. Ince, C. Hemodynamic coherence and the rationale for monitoring the microcirculation. *Crit. Care* 2015, 19 (Suppl. S8), 1–13.

42. Russell, A.; Rivers, E.P.; Giri, P.C.; Jaehne, A.K.; Nguyen, H.B. A Physiologic Approach to Hemodynamic Monitoring and Optimizing Oxygen Delivery in Shock Resuscitation. *J. Clin. Med.* 2020, 9, 2052.

43. De Santis, P.; De Fazio, C.; Franchi, F.; Bond, O.; Vincent, J.L.; Creteur, J.; Taccone, F.S.; Scolletta, S. Incoherence between Systemic Hemodynamic and Microcirculatory Response to Fluid Challenge in Critically III Patients. *J. Clin. Med.* 2021, 10, 507.

44. Asehnoune, K.; Villadangos, J.; Hotchkiss, R.S. Understanding host-pathogen interaction. *Intensive Care Med.* 2016, 42, 2084–2086.

45. Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. *Cell. Mol. Life Sci.* 2021, 78, 1233–1261.

46. Meduri, G.U. Clinical review: A paradigm shift: The bidirectional effect of inflammation on bacterial growth. Clinical implications for patients with acute respiratory distress syndrome. *Crit. Care* 2002, 6, 24–29.

47. Meduri, G.U.; Kanangat, S.; Stefan, J.; Tolley, E.; Schaberg, D. Cytokines IL-1beta, IL-6, and TNF-alpha enhance in vitro growth of bacteria. *Am. J. Respir. Crit. Care Med.* 1999, 160, 961–967.

48. Kanangat, S.; Meduri, G.U.; Tolley, E.A.; Patterson, D.R.; Meduri, C.U.; Pak, C.; Griffin, J.P.; Bronze, M.S.; Schaberg, D.R. Effects of cytokines and endotoxin on the intracellular growth of bacteria. *Infect. Immun.* 1999, 67, 2834–2840.

49. Meduri, G.U.; Kanangat, S.; Bronze, M.; Patterson, D.R.; Meduri, C.U.; Pak, C.; Tolley, E.A.; Schaberg, D.R. Effects of methylprednisolone on intracellular bacterial growth. *Clin. Diagn. Lab. Immunol.* 2001, 8, 1156–1163.

50. Meduri, G.U.; Umberger, R. Dysregulated Systemic Inflammation Favors Bacterial Growth and Development of Nosocomial Infections. *Am. J. Respir. Crit. Care Med.* 2018, 197, 1092.

51. Frencken, J.F.; van Vught, L.A.; Peelen, L.M.; Ong, D.S.Y.; Klein Klouwenberg, P.M.C.; Horn, J.; Bonten, M.J.M.; van der Poll, T.; Cremer, O.L.; MARS Consortium. An Unbalanced Inflammatory Cytokine Response Is Not Associated with Mortality Following Sepsis: A Prospective Cohort Study. *Crit. Care Med.* 2017, 45, e493–e499.

52. Pfortmueller, C.A.; Meisel, C.; Schefold, J.C. Interpreting Immune Mediator Dysbalance in Sepsis. *Crit. Care Med.* 2017, 45, e1094–e1095.

53. Wood, A.J.T.; Vassallo, A.; Summers, C.; Chilvers, E.R.; Conway-Morris, A. C5a anaphylatoxin and its role in critical illness-induced organ dysfunction. *Eur. J. Clin. Investig.* 2018, 48, e13028.

54. Zetoune, F.S.; Ward, P.A. Role of Complement and Histones in Sepsis. *Front. Med.* 2020, 7, 616957.

55. Csóka, B.; Németh, Z.H.; Szabó, I.; Davies, D.L.; Varga, Z.V.; Pálóczi, J.; Falzoni, S.; Di Virgilio, F.; Muramatsu, R.; Yamashita, T.; et al. Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. *JCI Insight* 2018, 3, e99431.

56. Gustave, C.A.; Gossez, M.; Demaret, J.; Rimmelé, T.; Lepape, A.; Malcus, C.; Poitevin-Later, F.; Jallades, L.; Textoris, J.; Monneret, G.; et al. Septic Shock Shapes B Cell Response toward an Exhausted-like/Immunoregulatory Profile in Patients. *J. Immunol.* 2018, 200, 2418–2425.

57. Guo, Y.; Patil, N.K.; Luan, L.; Bohannon, J.K.; Sherwood, E.R. The biology of natural killer cells during sepsis. *Immunology* 2018, 153, 190–202.

58. Raeven, P.; Zipperle, J.; Drechsler, S. Extracellular Vesicles as Markers and Mediators in Sepsis. *Theranostics* 2018, 8, 3348–3365.

59. Cui, J.; Oehrl, S.; Ahmad, F.; Brenner, T.; Uhle, F.; Nusshag, C.; Rupp, C.; Funck, F.; Meisel, S.; Weigand, M.A.; et al. Detection of In Vivo Inflammasome Activation for Predicting Sepsis Mortality. *Front. Immunol.* 2021, 11, 613745.

60. Rana, M.; Fei-Bloom, Y.; Son, M.; La Bella, A.; Ochani, M.; Levine, Y.A.; Chiu, P.Y.; Wang, P.; Chavan, S.S.; Volpe, B.T.; et al. Constitutive Vagus Nerve Activation Modulates Immune Suppression in Sepsis Survivors. *Front. Immunol.* 2018, 9, 2032.

61. Rodriguez-Rosales, Y.A.; Kox, M.; van Rijssen, E.; van Cranenbroek, B.; van Welie, M.; Pickkers, P.; Joosten, I.; Koenen, H.J.P.M. Long-Term Effects of Experimental Human Endotoxemia on Immune Cell Function: Similarities and Differences with Sepsis. *Shock* 2019, 51, 678–689.

62. Yende, S.; Kellum, J.A.; Talisa, V.B.; Peck Palmer, O.M.; Chang, C.H.; Filbin, M.R.; Shapiro, N.I.; Hou, P.C.; Venkat, A.; LoVecchio, F.; et al. Long-term Host Immune Response Trajectories Among Hospitalized Patients with Sepsis. *JAMA Netw. Open* 2019, 2, e198686.

63. Fenner, B.P.; Darden, D.B.; Kelly, L.S.; Rincon, J.; Brakenridge, S.C.; Larson, S.D.; Moore, F.A.; Efron, P.A.; Moldawer, L.L. Immunological Endotyping of Chronic Critical Illness After Severe Sepsis. *Front. Med.* 2021, 7, 616694.

64. Burkett, E.; Macdonald, S.P.; Carpenter, C.R.; Arendts, G.; Hullick, C.; Nagaraj, G.; Osborn, T.M. Sepsis in the older person: The ravages of time and bacteria. *Emerg. Med. Australas.* 2018, 30, 249–258.

65. He, W.; Xiao, K.; Fang, M.; Xie, L. Immune Cell Number, Phenotype, and Function in the Elderly with Sepsis. *Aging Dis.* 2021, 12, 277–296.

66. Kempker, J.A.; Martin, G.S. A global accounting of sepsis. *Lancet* 2020, 395, 168–170.

67. Nesaragi, N.; Patidar, S. Early Prediction of Sepsis from Clinical Data Using Ratio and Power-Based Features. *Crit. Care Med.* 2020, 48, e1343–e1349.

68. Ding, R.; Meng, Y.; Ma, X. The Central Role of the Inflammatory Response in Understanding the Heterogeneity of Sepsis-3. *Biomed Res. Int.* 2018, 2018, 5086516.

69. DeMerle, K.M.; Angus, D.C.; Baillie, J.K.; Brant, E.; Calfee, C.S.; Carcillo, J.; Chang, C.H.; Dickson, R.; Evans, I.; Gordon, A.C.; et al. Sepsis Subclasses: A Framework for Development and Interpretation. *Crit. Care Med.* 2021, 49, 748–759.

70. Zhang, S.; Wu, Z.; Chang, W.; Liu, F.; Xie, J.; Yang, Y.; Qiu, H. Classification of Patients with Sepsis According to Immune Cell Characteristics: A Bioinformatic Analysis of Two Cohort Studies. *Front. Med.* 2020, 7, 598652.

71. Binnie, A.; Walsh, C.J.; Hu, P.; Dwivedi, D.J.; Fox-Robichaud, A.; Liaw, P.C.; Tsang, J.L.Y.; Batt, J.; Carrasqueiro, G.; Gupta, S.; et al. Epigenetic Profiling in Severe Sepsis: A Pilot Study of DNA Methylation Profiles in Critical Illness. *Crit. Care Med.* 2020, 48, 142–150.

72. Davenport, E.E.; Burnham, K.L.; Radhakrishnan, J.; Humburg, P.; Hutton, P.; Mills, T.C.; Rautanen, A.; Gordon, A.C.; Garrard, C.; Hill, A.V.; et al. Genomic landscape of the individual host response and outcomes in sepsis: A prospective cohort study. *Lancet Respir. Med.* 2016, 4, 259–271.

73. Deutschman, C.S. “Defining” Sepsis: Moving Toward Measuring the “Dysregulated Host Response”. *Crit. Care Med.* 2017, 45, 927–930.

74. Hoogendijk, A.J.; Garcia-Laorden, M.I.; van Vugt, L.A.; Wiewel, M.A.; Belkasim-Bohoudi, H.; Duitman, J.; Horn, J.; Schultz, M.J.; Scicluna, B.P.; Veer, C.V.; et al. Sepsis Patients Display a Reduced Capacity to Activate Nuclear Factor- κ B in Multiple Cell Types. *Crit. Care Med.* 2017, 45, e524–e531.

75. Peronnet, E.; Venet, F.; Maucort-Boulch, D.; Friggeri, A.; Cour, M.; Argaud, L.; Allaouchiche, B.; Floccard, B.; Aubrun, F.; Rimmelé, T.; et al. Association between mRNA expression of CD74 and IL10 and risk of ICU-acquired infections: A multicenter cohort study. *Intensive Care Med.* 2017, 43, 1013–1020.

76. Pène, F.; Vincent, J.L.; Martin-Löches, I. On the verge of using an immune toolbox in the intensive care unit? *Intensive Care Med.* 2017, 43, 1154–1156.

77. Shankar-Hari, M. How could we enhance translation of sepsis immunology to inform immunomodulation trials in sepsis? *Crit. Care* 2017, 21, 125.

78. Larsen, F.F.; Petersen, J.A. Novel biomarkers for sepsis: A narrative review. *Eur. J. Intern. Med.* 2017, 45, 46–50.

79. Grondman, I.; Pirvu, A.; Riza, A.; Ioana, M.; Netea, M.G. Biomarkers of inflammation and the etiology of sepsis. *Biochem. Soc. Trans.* 2020, 48, 1–14.

80. Kim, M.H.; Choi, J.H. An Update on Sepsis Biomarkers. *Infect. Chemother.* 2020, 52, 1–18.

81. Teggert, A.; Datta, H.; Ali, Z. Biomarkers for Point-of-Care Diagnosis of Sepsis. *Micromachines* 2020, 11, 286.

82. Pierrick, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.L. Biomarkers of sepsis: Time for a reappraisal. *Crit. Care* 2020, 24, 287.

83. Goswami, D.G.; Garcia, L.F.; Dodoo, C.; Dwivedi, A.K.; Zhou, Y.; Pappas, D.; Walker, W.E. Evaluating the Timeliness and Specificity of CD69, CD64, and CD25 as Biomarkers of Sepsis in Mice. *Shock* 2021, 55, 507–518.

84. Kyriazopoulou, E.; Poulakou, G.; Giamparellos-Bourboulis, E.J. Biomarkers in sepsis: Can they help improve patient outcome? *Curr. Opin. Infect. Dis.* 2021, 34, 126–134.

85. Pottecher, J.; Meyer, A.; Wenceslau, C.F.; Timmermans, K.; Hauser, C.J.; Land, W.G. Editorial: Trauma-Induced, DAMP-Mediated Remote Organ Injury, and Immunosuppression in the Acutely III Patient. *Front. Immunol.* 2019, 10, 1971.

86. Meyer, A.; Laverny, G.; Bernardi, L.; Charles, A.L.; Alsaleh, G.; Pottecher, J.; Sibilia, J.; Geny, B. Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation. *Front. Immunol.* 2018, 9, 536.

87. Aswani, A.; Manson, J.; Itagaki, K.; Chiazza, F.; Collino, M.; Wupeng, W.L.; Chan, T.K.; Wong, W.S.F.; Hauser, C.J.; Thiemermann, C.; et al. Scavenging Circulating Mitochondrial DNA as a Potential Therapeutic Option for Multiple Organ Dysfunction in Trauma Hemorrhage. *Front. Immunol.* 2018, 9, 891.

88. Timmermans, K.; Kox, M.; Vaneker, M.; van den Berg, M.; John, A.; van Laarhoven, A.; van der Hoeven, H.; Scheffer, G.J.; Pickkers, P. Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients. *Intensive Care Med.* 2016, 42, 551–561.

89. Foster, S.L.; Hargreaves, D.C.; Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. *Nature* 2007, 447, 972–978.

90. Liesz, A.; Dalpke, A.; Mracsko, E.; Antoine, D.J.; Roth, S.; Zhou, W.; Yang, H.; Na, S.Y.; Akhisaroglu, M.; Fleming, T.; et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. *J. Neurosci.* 2015, 35, 583–598.

91. Vourc'h, M.; Roquilly, A.; Asehnoune, K. Trauma-Induced Damage-Associated Molecular Patterns-Mediated Remote Organ Injury and Immunosuppression in the Acutely III Patient. *Front. Immunol.* 2018, 9, 1330.

92. Patel, N.; Wu, W.; Mishra, P.K.; Chen, F.; Millman, A.; Csóka, B.; Koscsó, B.; Eltzschig, H.K.; Haskó, G.; Gause, W.C. A2B adenosine receptor induces protective antihelminth type 2 immune responses. *Cell Host Microbe* 2014, 15, 339–350.

93. Mendonça, R.; Silveira, A.A.; Conran, N. Red cell DAMPs and inflammation. *Inflamm. Res.* 2016, 65, 665–678.

94. Lott, J.M.; Sumpter, T.L.; Turnquist, H.R. New dog and new tricks: Evolving roles for IL-33 in type 2 immunity. *J. Leukoc. Biol.* 2015, 97, 1037–1048.

95. Simmons, J.D.; Lee, Y.L.; Mulekar, S.; Kuck, J.L.; Brevard, S.B.; Gonzalez, R.P.; Gillespie, M.N.; Richards, W.O. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. *Ann. Surg.* 2013, 258, 591–596, discussion 596–598.

96. Deng, Y.; Yang, Z.; Gao, Y.; Xu, H.; Zheng, B.; Jiang, M.; Xu, J.; He, Z.; Wang, X. Toll-like receptor 4 mediates acute lung injury induced by high mobility group box-1. *PLoS ONE* 2013, 8, e64375.

97. Eppensteiner, J.; Davis, R.P.; Barbas, A.S.; Kwun, J.; Lee, J. Immunothrombotic Activity of Damage-Associated Molecular Patterns and Extracellular Vesicles in Secondary Organ Failure Induced by Trauma and Sterile Insults. *Front. Immunol.* 2018, 9, 190.

98. Abrams, S.T.; Zhang, N.; Manson, J.; Liu, T.; Dart, C.; Baluwa, F.; Wang, S.S.; Brohi, K.; Kipar, A.; Yu, W.; et al. Circulating histones are mediators of trauma-associated lung injury. *Am. J. Respir. Crit. Care Med.* 2013, 187, 160–169.

99. Li, P.; Kaslan, M.; Lee, S.H.; Yao, J.; Gao, Z. Progress in Exosome Isolation Techniques. *Theranostics* 2017, 7, 789–804.

100. Mulcahy, L.A.; Pink, R.C.; Carter, D.R. Routes and mechanisms of extracellular vesicle uptake. *J. Extracell. Vesicles*. 2014, 3, 24641.

101. Souza, A.C.; Yuen, P.S.; Star, R.A. Microparticles: Markers and mediators of sepsis-induced microvascular dysfunction, immunosuppression, and AKI. *Kidney Int.* 2015, 87, 1100–1108.

102. Bortolotti, P.; Faure, E.; Kipnis, E. Inflammasomes in Tissue Damages and Immune Disorders After Trauma. *Front. Immunol.* 2018, 9, 1900.

103. Huber-Lang, M.; Lambris, J.D.; Ward, P.A. Innate immune responses to trauma. *Nat. Immunol.* 2018, 19, 327–341.

104. Sauaia, A.; Moore, F.A.; Moore, E.E. Postinjury Inflammation and Organ Dysfunction. *Crit. Care Clin.* 2017, 33, 167–191.

105. Broz, P.; Dixit, V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. *Nat. Rev. Immunol.* 2016, 16, 407–420.

106. Guo, H.; Callaway, J.B.; Ting, J.P. Inflammasomes: Mechanism of action, role in disease, and therapeutics. *Nat. Med.* 2015, 21, 677–687.

107. Ma, K.C.; Schenck, E.J.; Pabon, M.A.; Choi, A.M.K. The Role of Danger Signals in the Pathogenesis and Perpetuation of Critical Illness. *Am. J. Respir. Crit. Care Med.* 2018, 197, 300–309.

108. Sharma, D.; Kanneganti, T.D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. *J. Cell Biol.* 2016, 213, 617–629.

109. Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. *Trends Biochem. Sci.* 2017, 42, 245–254.

110. Yang, J.; Zhao, Y.; Zhang, P.; Li, Y.; Yang, Y.; Yang, Y.; Zhu, J.; Song, X.; Jiang, G.; Fan, J. Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: Role in pulmonary inflammation following LPS. *Cell Death Dis.* 2016, 7, e2363.

111. Chatterjee, M.; Geisler, T. Inflammatory Contribution of Platelets Revisited: New Players in the Arena of Inflammation. *Semin. Thromb. Hemost.* 2016, 42, 205–214.

112. Minutoli, L.; Puzzolo, D.; Rinaldi, M.; Irrera, N.; Marini, H.; Arcoraci, V.; Bitto, A.; Crea, G.; Pisani, A.; Squadrito, F.; et al. ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury. *Oxidative Med. Cell. Longev.* 2016, 2016, 2183026.

113. Sadatomo, A.; Inoue, Y.; Ito, H.; Karasawa, T.; Kimura, H.; Watanabe, S.; Mizushina, Y.; Nakamura, J.; Kamata, R.; Kasahara, T.; et al. Interaction of Neutrophils with Macrophages Promotes IL-1 β Maturation and Contributes to Hepatic Ischemia-Reperfusion Injury. *J. Immunol.* 2017, 199, 3306–3315.

114. Simon, D.W.; McGeachy, M.J.; Bayır, H.; Clark, R.S.B.; Loane, D.J.; Kochanek, P.M. The far-reaching scope of neuroinflammation after traumatic brain injury. *Nat. Rev. Neurol.* 2017, 13, 572.

115. McKee, C.A.; Lukens, J.R. Emerging Roles for the Immune System in Traumatic Brain Injury. *Front. Immunol.* 2016, 7, 556.

116. Hazeldine, J.; Lord, J.M.; Belli, A. Traumatic Brain Injury and Peripheral Immune Suppression: Primer and Prospectus. *Front. Neurol.* 2015, 6, 235.

117. Han, S.; Mallampalli, R.K. The acute respiratory distress syndrome: From mechanism to translation. *J. Immunol.* 2015, 194, 855–860.

118. Islam, M.N.; Bradley, B.A.; Ceredig, R. Sterile post-traumatic immunosuppression. *Clin. Transl. Immunol.* 2016, 5, e77.

119. Relja, B.; Horstmann, J.P.; Kontradowitz, K.; Jurida, K.; Schaible, A.; Neunaber, C.; Oppermann, E.; Marzi, I. Nlrp1 inflammasome is downregulated in trauma patients. *J. Mol. Med.* 2015, 93, 1391–1400.

120. Asmussen, A.; Fink, K.; Busch, H.J.; Helbing, T.; Bourgeois, N.; Bode, C.; Grundmann, S. Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation. *Crit. Care* 2016, 20, 170.

121. Mortaz, E.; Zadian, S.S.; Shahir, M.; Folkerts, G.; Garssen, J.; Mumby, S.; Adcock, I.M. Does Neutrophil Phenotype Predict the Survival of Trauma Patients? *Front. Immunol.* 2019, 10, 2122.

122. Groeneveld, K.M.; Koenderman, L.; Warren, B.L.; Jol, S.; Leenen, L.P.H.; Hietbrink, F. Early decreased neutrophil responsiveness is related to late onset sepsis in multitrauma patients: An international cohort study. *PLoS ONE* 2017, 12, e0180145.

123. Paunel-Görgülü, A.; Flohé, S.; Scholz, M.; Windolf, J.; Lögters, T. Increased serum soluble Fas after major trauma is associated with delayed neutrophil apoptosis and development of sepsis. *Crit. Care* 2011, 15, R20.

124. Liu, F.C.; Chuang, Y.H.; Tsai, Y.F.; Yu, H.P. Role of neutrophil extracellular traps following injury. *Shock* 2014, 41, 491–498.

125. McIlroy, D.J.; Jarnicki, A.G.; Au, G.G.; Lott, N.; Smith, D.W.; Hansbro, P.M.; Balogh, Z.J. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. *J. Crit. Care* 2014, 29, 1133.e1–1133.e5.

126. Lam, S.W.; Leenen, L.P.; van Solinge, W.W.; Hietbrink, F.; Huisman, A. Comparison between the prognostic value of the white blood cell differential count and morphological parameters of neutrophils and lymphocytes in severely injured patients for 7-day in-hospital mortality. *Biomarkers* 2012, 17, 642–647.

127. Scapini, P.; Marini, O.; Tecchio, C.; Cassatella, M.A. Human neutrophils in the saga of cellular heterogeneity: Insights and open questions. *Immunol. Rev.* 2016, 273, 48–60.

128. Aarts, C.E.M.; Kuijpers, T.W. Neutrophils as myeloid-derived suppressor cells. *Eur. J. Clin. Investig.* 2018, 48 (Suppl. 2), e12989.

129. Christoffersson, G.; Vågesjö, E.; Vandooren, J.; Lidén, M.; Massena, S.; Reinert, R.B.; Brissova, M.; Powers, A.C.; Opdenakker, G.; Phillipson, M. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. *Blood* 2012, 120, 4653–4662.

130. Mimasaka, S.; Funayama, M.; Hashiyada, M.; Nata, M.; Tsunenari, S. Significance of levels of IL-6 and IL-8 after trauma: A study of 11 cytokines post-mortem using multiplex immunoassay. *Injury* 2007, 38, 1047–1051.

131. Cummins, P.M. Shear-dependent attenuation of cellular ROS levels can suppress proinflammatory cytokine injury to human brain microvascular endothelial barrier properties. *J. Cereb. Blood Flow Metab.* 2015, 35, 1648–1656.

132. Kim, H.Y.; Kim, S.J.; Lee, S.M. Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion. *FEBS J.* 2015, 282, 259–270.

133. Han, S.; Cai, W.; Yang, X.; Jia, Y.; Zheng, Z.; Wang, H.; Li, J.; Li, Y.; Gao, J.; Fan, L.; et al. ROS-Mediated NLRP3 Inflammasome Activity Is Essential for Burn-Induced Acute Lung Injury. *Mediat. Inflamm.* 2015, 2015, 720457.

134. Halbgebauer, R.; Kellermann, S.; Schäfer, F.; Weckbach, S.; Weiss, M.; Barth, E.; Bracht, H.; Kalbitz, M.; Gebhard, F.; Huber-Lang, M.S.; et al. Functional immune monitoring in severely injured patients-A pilot study. *Scand. J. Immunol.* 2020, 91, e12837.

135. Ruhrmann, S.; Schneck, E.; Markmann, M.; Zink, J.; Zajonz, T.S.; Arens, C.; Uhle, F.; Sander, M.; Koch, C. Trauma-Induced Long-Term Alterations of Human T Cells and Monocytes-Results of an Explorative, Cross-Sectional Study. *Shock* 2020, 53, 35–42.

136. Heftrig, D.; Sturm, R.; Oppermann, E.; Kontradowitz, K.; Jurida, K.; Schimunek, L.; Woschek, M.; Marzi, I.; Relja, B. Impaired Surface Expression of HLA-DR, TLR2, TLR4, and TLR9 in Ex Vivo-In Vitro Stimulated Monocytes from Severely Injured Trauma Patients. *Mediat. Inflamm.* 2017, 2017, 2608349.

137. Patel, A.A.; Zhang, Y.; Fullerton, J.N.; Boelen, L.; Rongvaux, A.; Maini, A.A.; Bigley, V.; Flavell, R.A.; Gilroy, D.W.; Asquith, B.; et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. *J. Exp. Med.* 2017, 214, 1913–1923.

138. Mira, J.C.; Cuschieri, J.; Ozrazgat-Baslanti, T.; Wang, Z.; Ghita, G.L.; Loftus, T.J.; Stortz, J.A.; Raymond, S.L.; Lanz, J.D.; Hennessy, L.V.; et al. The Epidemiology of Chronic Critical Illness After Severe Traumatic Injury at Two Level-One Trauma Centers. *Crit. Care Med.* 2017, 45, 1989–1996.

139. Dhiman, N.; Rimal, R.C.; Hamill, M.; Love, K.M.; Lollar, D.; Collier, B. Survival from Traumatic Injury Does Not End at Hospital Discharge: Hospital-Acquired Infections Increase Post-Discharge Mortality. *Surg. Infect.* 2017, 18, 550–557.

140. Hazeldine, J.; Naumann, D.N.; Toman, E.; Davies, D.; Bishop, J.R.B.; Su, Z.; Hampson, P.; Dinsdale, R.J.; Crombie, N.; Duggal, N.A.; et al. Prehospital immune responses and development of multiple organ dysfunction syndrome following traumatic injury: A prospective cohort study. *PLoS Med.* 2017, 14, e1002338.

141. Namas, R.A.; Almahmoud, K.; Mi, Q.; Ghuma, A.; Namas, R.; Zaaqoq, A.; Zhu, X.; Abdul-Malak, O.; Sperry, J.; Zamora, R.; et al. Individual-specific principal component analysis of circulating inflammatory mediators predicts early organ dysfunction in trauma patients. *J. Crit. Care* 2016, 36, 146–153.

142. Chen, T.; Delano, M.J.; Chen, K.; Sperry, J.L.; Namas, R.A.; Lamparello, A.J.; Deng, M.; Conroy, J.; Moldawer, L.L.; Efron, P.A.; et al. A road map from single-cell transcriptome to patient

classification for the immune response to trauma. *JCI Insight* 2021, **6**, e145108.

143. Cui, P.; Fang, X. Pathogenesis of infection in surgical patients. *Curr. Opin. Crit. Care* 2015, **21**, 343–350.

144. Leijte, G.P.; Custers, H.; Gerretsen, J.; Heijne, A.; Roth, J.; Vogl, T.; Scheffer, G.J.; Pickkers, P.; Kox, M. Increased Plasma Levels of Danger-Associated Molecular Patterns Are Associated with Immune Suppression and Postoperative Infections in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. *Front. Immunol.* 2018, **9**, 663.

145. Wang, X.W.; Karki, A.; Zhao, X.J.; Xiang, X.Y.; Lu, Z.Q. High plasma levels of high mobility group box 1 is associated with the risk of sepsis in severe blunt chest trauma patients: A prospective cohort study. *J. Cardiothorac. Surg.* 2014, **9**, 133.

146. Gögenur, M.; Burcharth, J.; Gögenur, I. The role of total cell-free DNA in predicting outcomes among trauma patients in the intensive care unit: A systematic review. *Crit. Care* 2017, **21**, 14.

147. Hampson, P.; Dinsdale, R.J.; Wearn, C.M.; Bamford, A.L.; Bishop, J.R.B.; Hazeldine, J.; Moiemen, N.S.; Harrison, P.; Lord, J.M. Neutrophil Dysfunction, Immature Granulocytes, and Cell-free DNA are Early Biomarkers of Sepsis in Burn-injured Patients: A Prospective Observational Cohort Study. *Ann. Surg.* 2017, **265**, 1241–1249.

148. Hesselink, L.; Spijkerman, R.; Hellebrekers, P.; van Bourgondiën, R.J.; Blasse, E.; Haitjema, S.; Huisman, A.; van Solinge, W.W.; Van Wessem, K.J.P.; Koenderman, L.; et al. Fragile neutrophils in surgical patients: A phenomenon associated with critical illness. *PLoS ONE* 2020, **15**, e0236596.

149. Petriz, J.; Bradford, J.A.; Ward, M.D. No lyse no wash flow cytometry for maximizing minimal sample preparation. *Methods* 2018, **134–135**, 149–163.

150. Zasada, M.; Lenart, M.; Rutkowska-Zapała, M.; Stec, M.; Durlak, W.; Grudzień, A.; Krzeczkowska, A.; Mól, N.; Pilch, M.; Siedlar, M.; et al. Analysis of PD-1 expression in the monocyte subsets from non-septic and septic preterm neonates. *PLoS ONE* 2017, **12**, e0186819.

151. Patil, N.K.; Guo, Y.; Luan, L.; Sherwood, E.R. Targeting Immune Cell Checkpoints during Sepsis. *Int. J. Mol. Sci.* 2017, **18**, 2413.

152. Chang, K.; Svabek, C.; Vazquez-Guillamet, C.; Sato, B.; Rasche, D.; Wilson, S.; Robbins, P.; Ulbrandt, N.; Suzich, J.; Green, J.; et al. Targeting the programmed cell death 1: Programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. *Crit. Care* 2014, **18**, R3.

153. Guignant, C.; Lepape, A.; Huang, X.; Kherouf, H.; Denis, L.; Poitevin, F.; Malcus, C.; Chéron, A.; Allaouchiche, B.; Gueyffier, F.; et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. *Crit. Care* 2011, **15**, R99.

154. Zhang, Y.; Li, J.; Lou, J.; Zhou, Y.; Bo, L.; Zhu, J.; Zhu, K.; Wan, X.; Cai, Z.; Deng, X. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. *Crit. Care* 2011, 15, R70.

155. Pan, T.; Zhou, T.; Li, L.; Liu, Z.; Chen, Y.; Mao, E.; Li, M.; Qu, H.; Liu, J. Monocyte programmed death ligand-1 expression is an early marker for predicting infectious complications in acute pancreatitis. *Crit. Care* 2017, 21, 186.

156. Shao, R.; Fang, Y.; Yu, H.; Zhao, L.; Jiang, Z.; Li, C.S. Monocyte programmed death ligand-1 expression after 3-4 days of sepsis is associated with risk stratification and mortality in septic patients: A prospective cohort study. *Crit. Care* 2016, 20, 124.

157. Monneret, G.; Gossez, M.; Venet, F. Sepsis in PD-1 light. *Crit. Care* 2016, 20, 186.

158. Patera, A.C.; Drewry, A.M.; Chang, K.; Beiter, E.R.; Osborne, D.; Hotchkiss, R.S. Frontline Science: Defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1. *J. Leukoc. Biol.* 2016, 100, 1239–1254.

159. Arens, C.; Bajwa, S.A.; Koch, C.; Siegler, B.H.; Schneck, E.; Hecker, A.; Weiterer, S.; Lichtenstern, C.; Weigand, M.A.; Uhle, F. Sepsis-induced long-term immune paralysis--results of a descriptive, explorative study. *Crit. Care* 2016, 20, 93.

160. Banerjee, D.; Monaghan, S.; Zhao, R.; Walsh, T.; Palmisciano, A.; Phillips, G.S.; Opal, S.; Levy, M.M. Soluble programmed cell death protein-1 and programmed cell death ligand-1 in sepsis. *Crit. Care* 2018, 22, 146.

161. Wilson, J.K.; Zhao, Y.; Singer, M.; Spencer, J.; Shankar-Hari, M. Lymphocyte subset expression and serum concentrations of PD-1/PD-L1 in sepsis-pilot study. *Crit. Care* 2018, 22, 95.

162. Riché, F.; Chousterman, B.G.; Valleur, P.; Mebazaa, A.; Launay, J.M.; Gayat, E. Protracted immune disorders at one year after ICU discharge in patients with septic shock. *Crit. Care* 2018, 22, 42.

163. Hawkins, R.B.; Raymond, S.L.; Stortz, J.A.; Horiguchi, H.; Brakenridge, S.C.; Gardner, A.; Efron, P.A.; Bihorac, A.; Segal, M.; Moore, F.A.; et al. Chronic Critical Illness and the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. *Front. Immunol.* 2018, 9, 1511.

164. Stortz, J.A.; Murphy, T.J.; Raymond, S.L.; Mira, J.C.; Ungaro, R.; Dirain, M.L.; Nacionales, D.C.; Loftus, T.J.; Wang, Z.; Ozrazgat-Baslanti, T.; et al. Evidence for Persistent Immune Suppression in Patients Who Develop Chronic Critical Illness After Sepsis. *Shock* 2018, 49, 249–258.

165. Chen, Y.; Li, M.; Liu, J.; Pan, T.; Zhou, T.; Liu, Z.; Tan, R.; Wang, X.; Tian, L.; Chen, E.; et al. sPD-L1 Expression is Associated with Immunosuppression and Infectious Complications in Patients with Acute Pancreatitis. *Scand. J. Immunol.* 2017, 86, 100–106.

166. Avendaño-Ortiz, J.; Maroun-Eid, C.; Martín-Quirós, A.; Lozano-Rodríguez, R.; Llanos-González, E.; Toledano, V.; Gómez-Campelo, P.; Montalbán-Hernández, K.; Carballo-Cardona, C.; Aguirre, L.A.; et al. Oxygen Saturation on Admission Is a Predictive Biomarker for PD-L1 Expression on Circulating Monocytes and Impaired Immune Response in Patients with Sepsis. *Front. Immunol.* 2018, 9, 2008.

167. Liu, Q.; Li, C.S. Programmed Cell Death-1/Programmed Death-ligand 1 Pathway: A New Target for Sepsis. *Chin. Med. J.* 2017, 130, 986–992.

168. Veluswamy, P.; Wacker, M.; Scherner, M.; Wippermann, J. Delicate Role of PD-L1/PD-1 Axis in Blood Vessel Inflammatory Diseases: Current Insight and Future Significance. *Int. J. Mol. Sci.* 2020, 21, 8159.

169. Lozano-Rodríguez, R.; Avendaño-Ortíz, J.; Montalbán-Hernández, K.; Ruiz-Rodríguez, J.C.; Ferrer, R.; Martín-Quirós, A.; Maroun-Eid, C.; González-López, J.J.; Fàbrega, A.; Terrón, V.; et al. SIGLEC5: An immune checkpoint ligand in sepsis. *medRxiv* 2020.

170. Castell, S.D.; Harman, M.F.; Morón, G.; Maletto, B.A.; Pistoresi-Palencia, M.C. Neutrophils Which Migrate to Lymph Nodes Modulate CD4+ T Cell Response by a PD-L1 Dependent Mechanism. *Front. Immunol.* 2019, 10, 105.

171. Wang, J.F.; Li, J.B.; Zhao, Y.J.; Yi, W.J.; Bian, J.J.; Wan, X.J.; Zhu, K.M.; Deng, X.M. Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression: An animal study and a prospective case-control study. *Anesthesiology* 2015, 122, 852–863.

172. Meghraoui-Kheddar, A.; Chousterman, B.G.; Guillou, N.; Barone, S.M.; Granjeaud, S.; Vallet, H.; Corneau, A.; Guessous, K.; Boissonnas, A.; Irish, J.M.; et al. Two new immature and dysfunctional neutrophil cell subsets define a predictive signature of sepsis useable in clinical practice. *BioRxiv* 2020.

173. Pfortmueller, C.A.; Meisel, C.; Fux, M.; Schefold, J.C. Assessment of immune organ dysfunction in critical illness: Utility of innate immune response markers. *Intensive Care Med. Exp.* 2017, 5, 49.

174. Haveman, J.W.; Muller Kobold, A.C.; Tervaert, J.W.; van den Berg, A.P.; Tulleken, J.E.; Kallenberg, C.G.; The, T.H. The central role of monocytes in the pathogenesis of sepsis: Consequences for immunomonitoring and treatment. *Neth. J. Med.* 1999, 55, 132–141.

175. Monneret, G.; Lepape, A.; Voirin, N.; Bohé, J.; Venet, F.; Debard, A.L.; Thizy, H.; Bienvenu, J.; Gueyffier, F.; Vanhems, P. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. *Intensive Care Med.* 2006, 32, 1175–1183.

176. Landelle, C.; Lepape, A.; Voirin, N.; Tognet, E.; Venet, F.; Bohé, J.; Vanhems, P.; Monneret, G. Low monocyte human leukocyte antigen-DR is independently associated with nosocomial

infections after septic shock. *Intensive Care Med.* 2010, **36**, 1859–1866.

177. Schefold, J.C. Measurement of monocytic HLA-DR (mHLA-DR) expression in patients with severe sepsis and septic shock: Assessment of immune organ failure. *Intensive Care Med.* 2010, **36**, 1810–1812.

178. Conway Morris, A.; Anderson, N.; Brittan, M.; Wilkinson, T.S.; McAuley, D.F.; Antonelli, J.; McCulloch, C.; Barr, L.C.; Dhaliwal, K.; Jones, R.O.; et al. Combined dysfunctions of immune cells predict nosocomial infection in critically ill patients. *Br. J. Anaesth.* 2013, **111**, 778–787.

179. Conway Morris, A.; Kefala, K.; Wilkinson, T.S.; Dhaliwal, K.; Farrell, L.; Walsh, T.; Mackenzie, S.J.; Reid, H.; Davidson, D.J.; Haslett, C.; et al. C5a mediates peripheral blood neutrophil dysfunction in critically ill patients. *Am. J. Respir. Crit. Care Med.* 2009, **180**, 19–28.

180. Conway Morris, A.; Datta, D.; Shankar-Hari, M.; Weir, C.J.; Rennie, J.; Antonelli, J.; Rossi, A.G.; Warner, N.; Keenan, J.; Wang, A.; et al. Predictive value of cell-surface markers in infections in critically ill patients: Protocol for an observational study (Immune Failure in Critical Therapy (INFECT) Study). *BMJ Open* 2016, **6**, e011326.

181. Conway Morris, A.; Datta, D.; Shankar-Hari, M.; Stephen, J.; Weir, C.J.; Rennie, J.; Antonelli, J.; Bateman, A.; Warner, N.; Judge, K.; et al. Cell-surface signatures of immune dysfunction risk-stratify critically ill patients: INFECT study. *Intensive Care Med.* 2018, **44**, 627–635.

182. Textoris, J.; Gordon, A.C. Sepsis: Who will shoot first? Pharma or diagnostics? *Intensive Care Med.* 2018, **44**, 1331–1333.

183. Boomer, J.S.; To, K.; Chang, K.C.; Takasu, O.; Osborne, D.F.; Walton, A.H.; Bricker, T.L.; Jarman, S.D., 2nd; Kreisel, D.; Krupnick, A.S.; et al. Immunosuppression in patients who die of sepsis and multiple organ failure. *JAMA* 2011, **306**, 2594–2605.

184. Döcke, W.D.; Höflich, C.; Davis, K.A.; Röttgers, K.; Meisel, C.; Kiefer, P.; Weber, S.U.; Hedwig-Geissling, M.; Kreuzfelder, E.; Tschentscher, P.; et al. Monitoring temporary immunodepression by flow cytometric measurement of monocytic HLA-DR expression: A multicenter standardized study. *Clin. Chem.* 2005, **51**, 2341–2347.

185. Meisel, C.; Schefold, J.C.; Pschowski, R.; Baumann, T.; Hetzger, K.; Gregor, J.; Weber-Carstens, S.; Hasper, D.; Keh, D.; Zuckermann, H.; et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: A double-blind, randomized, placebo-controlled multicenter trial. *Am. J. Respir. Crit. Care Med.* 2009, **180**, 640–648.

186. Wu, J.F.; Ma, J.; Chen, J.; Ou-Yang, B.; Chen, M.Y.; Li, L.F.; Liu, Y.J.; Lin, A.H.; Guan, X.D. Changes of monocyte human leukocyte antigen-DR expression as a reliable predictor of mortality in severe sepsis. *Crit. Care* 2011, **15**, R220.

187. Monneret, G.; Lepape, A.; Venet, F. A dynamic view of mHLA-DR expression in management of severe septic patients. *Crit. Care* 2011, **15**, 198.

188. Zorio, V.; Venet, F.; Delwarde, B.; Floccard, B.; Marcotte, G.; Textoris, J.; Monneret, G.; Rimmelé, T. Assessment of sepsis-induced immunosuppression at ICU discharge and 6 months after ICU discharge. *Ann. Intensive Care* 2017, 7, 80.

189. Ho, Y.P.; Sheen, I.S.; Chiu, C.T.; Wu, C.S.; Lin, C.Y. A strong association between down-regulation of HLA-DR expression and the late mortality in patients with severe acute pancreatitis. *Am. J. Gastroenterol.* 2006, 101, 1117–1124.

190. Satoh, A.; Miura, T.; Satoh, K.; Masamune, A.; Yamagiwa, T.; Sakai, Y.; Shibuya, K.; Takeda, K.; Kaku, M.; Shimosegawa, T. Human leukocyte antigen-DR expression on peripheral monocytes as a predictive marker of sepsis during acute pancreatitis. *Pancreas* 2002, 25, 245–250.

191. Zouiouich, M.; Gossez, M.; Venet, F.; Rimmelé, T.; Monneret, G. Automated bedside flow cytometer for mHLA-DR expression measurement: A comparison study with reference protocol. *Intensive Care Med. Exp.* 2017, 5, 39.

192. Drewry, A.M.; Ablordeppey, E.A.; Murray, E.T.; Beiter, E.R.; Walton, A.H.; Hall, M.W.; Hotchkiss, R.S. Comparison of monocyte human leukocyte antigen-DR expression and stimulated tumor necrosis factor alpha production as outcome predictors in severe sepsis: A prospective observational study. *Crit. Care* 2016, 20, 334.

193. Li, J.; Zhou, X.; Ye, Y.; Guanghua, G. Human leukocyte antigen-DR expression might predict outcomes in severe sepsis, but diabetes mellitus cannot be ignored. *Crit. Care* 2017, 21, 149.

194. De Gaudio, A.R.; Rinaldi, S.; Chelazzi, C.; Borracci, T. Pathophysiology of sepsis in the elderly: Clinical impact and therapeutic considerations. *Curr. Drug Targets* 2009, 10, 60–70.

195. Van Vugt, L.A.; Wiewel, M.A.; Hoogendoijk, A.J.; Scicluna, B.P.; Belkasim-Bohoudi, H.; Horn, J.; Schultz, M.J.; van der Poll, T. Reduced Responsiveness of Blood Leukocytes to Lipopolysaccharide Does not Predict Nosocomial Infections in Critically Ill Patients. *Shock* 2015, 44, 110–114.

196. Ploder, M.; Pelinka, L.; Schmuckenschlager, C.; Wessner, B.; Ankersmit, H.J.; Fuerst, W.; Redl, H.; Roth, E.; Spittler, A. Lipopolysaccharide-induced tumor necrosis factor alpha production and not monocyte human leukocyte antigen-DR expression is correlated with survival in septic trauma patients. *Shock* 2006, 25, 129–134.

197. Cajander, S.; Tina, E.; Bäckman, A.; Magnusson, A.; Strålin, K.; Söderquist, B.; Källman, J. Quantitative Real-Time Polymerase Chain Reaction Measurement of HLA-DRA Gene Expression in Whole Blood Is Highly Reproducible and Shows Changes That Reflect Dynamic Shifts in Monocyte Surface HLA-DR Expression during the Course of Sepsis. *PLoS ONE* 2016, 11, e0154690.

198. Winkler, M.S.; Rissiek, A.; Priefler, M.; Schwedhelm, E.; Robbe, L.; Bauer, A.; Zahrte, C.; Zoellner, C.; Kluge, S.; Nierhaus, A. Human leucocyte antigen (HLA-DR) gene expression is reduced in

sepsis and correlates with impaired TNF α response: A diagnostic tool for immunosuppression? *PLoS ONE* 2017, 12, e0182427.

199. Jiang, W.; Zhong, W.; Deng, Y.; Chen, C.; Wang, Q.; Zhou, M.; Li, X.; Sun, C.; Zeng, H. Evaluation of a combination “lymphocyte apoptosis model” to predict survival of sepsis patients in an intensive care unit. *BMC Anesthesiol.* 2018, 18, 89.

200. Duggal, N.A.; Snelson, C.; Shaheen, U.; Pearce, V.; Lord, J.M. Innate and adaptive immune dysregulation in critically ill ICU patients. *Sci. Rep.* 2018, 8, 10186.

201. Surbatovic, M.; Popovic, N.; Vojvodic, D.; Milosevic, I.; Acimovic, G.; Stojicic, M.; Veljovic, M.; Jevdjic, J.; Djordjevic, D.; Radakovic, S. Cytokine profile in severe Gram-positive and Gram-negative abdominal sepsis. *Sci. Rep.* 2015, 5, 11355.

202. Djordjevic, D.; Rondovic, G.; Surbatovic, M.; Stanojevic, I.; Udovicic, I.; Andjelic, T.; Zeba, S.; Milosavljevic, S.; Stankovic, N.; Abazovic, D.; et al. Neutrophil-to-Lymphocyte Ratio, Monocyte-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Mean Platelet Volume-to-Platelet Count Ratio as Biomarkers in Critically Ill and Injured Patients: Which Ratio to Choose to Predict Outcome and Nature of Bacteremia? *Mediat. Inflamm.* 2018, 2018, 3758068.

203. Udovicic, I.; Surbatovic, M.; Rondovic, G.; Stanojevic, I.; Zeba, S.; Djordjevic, D.; Peric, A.; Milosavljevic, S.; Stankovic, N.; Abazovic, D.; et al. Do nature of bacteremia and origin of secondary sepsis in critically ill patients determine subset of myeloid-derived suppressor cells expansion? *Vojn. Pregl.* 2020, 77, 923–933.

204. Cajander, S.; Rasmussen, G.; Tina, E.; Magnusson, A.; Söderquist, B.; Källman, J.; Strålin, K. Dynamics of monocytic HLA-DR expression differs between bacterial etiologies during the course of bloodstream infection. *PLoS ONE* 2018, 13, e0192883.

205. Leijte, G.P.; Rimmelé, T.; Kox, M.; Bruse, N.; Monard, C.; Gossez, M.; Monneret, G.; Pickkers, P.; Venet, F. Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. *Crit. Care* 2020, 24, 110.

206. Gouel-Chéron, A.; Allaouchiche, B.; Floccard, B.; Rimmelé, T.; Monneret, G. Early daily mHLA-DR monitoring predicts forthcoming sepsis in severe trauma patients. *Intensive Care Med.* 2015, 41, 2229–2230.

207. Seshadri, A.; Brat, G.A.; Yorkgitis, B.K.; Keegan, J.; Dolan, J.; Salim, A.; Askari, R.; Lederer, J.A. Phenotyping the Immune Response to Trauma: A Multiparametric Systems Immunology Approach. *Crit. Care Med.* 2017, 45, 1523–1530.

208. Gaudilliere, B.; Angst, M.S.; Hotchkiss, R.S. Deep Immune Profiling in Trauma and Sepsis: Flow Is the Way to Go! *Crit. Care Med.* 2017, 45, 1577–1578.

209. Lachmann, G.; von Haefen, C.; Kurth, J.; Yuerek, F.; Spies, C. Innate immunity recovers earlier than acquired immunity during severe postoperative immunosuppression. *Int. J. Med. Sci.* 2018,

15, 1–9.

210. Torrance, H.D.T.; Longbottom, E.R.; Vivian, M.E.; Lalabekyan, B.; Abbott, T.E.F.; Ackland, G.L.; Hinds, C.J.; Pearse, R.M.; O'Dwyer, M.J. Post-operative immune suppression is mediated via reversible, Interleukin-10 dependent pathways in circulating monocytes following major abdominal surgery. *PLoS ONE* 2018, 13, e0203795.

211. Almansa, R.; Martín, S.; Martín-Fernandez, M.; Heredia-Rodríguez, M.; Gómez-Sánchez, E.; Aragón, M.; Andrés, C.; Calvo, D.; Rico-Feijoo, J.; Esteban-Velasco, M.C.; et al. Combined quantification of procalcitonin and HLA-DR improves sepsis detection in surgical patients. *Sci. Rep.* 2018, 8, 11999.

212. Lee, J.; Tam, H.; Adler, L.; Ilstad-Minnihan, A.; Macaubas, C.; Mellins, E.D. The MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines. *PLoS ONE* 2017, 12, e0183594.

213. Fang, W.F.; Douglas, I.S.; Chen, Y.M.; Lin, C.Y.; Kao, H.C.; Fang, Y.T.; Huang, C.H.; Chang, Y.T.; Huang, K.T.; Wang, Y.H.; et al. Development and validation of immune dysfunction score to predict 28-day mortality of sepsis patients. *PLoS ONE* 2017, 12, e0187088.

214. Parlato, M.; Philippart, F.; Rouquette, A.; Moucadel, V.; Puchois, V.; Blein, S.; Bedos, J.P.; Diehl, J.L.; Hamzaoui, O.; Annane, D.; et al. Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: The CAPTAIN prospective multicenter cohort study. *Intensive Care Med.* 2018, 44, 1061–1070.

215. Shankar-Hari, M.; Datta, D.; Wilson, J.; Assi, V.; Stephen, J.; Weir, C.J.; Rennie, J.; Antonelli, J.; Bateman, A.; Felton, J.M.; et al. Early PREdiction of sepsis using leukocyte surface biomarkers: The EXPRES-sepsis cohort study. *Intensive Care Med.* 2018, 44, 1836–1848.

216. Köffel, R.; Meshcheryakova, A.; Warszawska, J.; Hennig, A.; Wagner, K.; Jörgl, A.; Gubi, D.; Moser, D.; Hladik, A.; Hoffmann, U.; et al. Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation. *Blood* 2014, 124, 2713–2724.

217. Cazalis, M.A.; Friggeri, A.; Cavé, L.; Demaret, J.; Barbalat, V.; Cerrato, E.; Lepape, A.; Pachot, A.; Monneret, G.; Venet, F. Decreased HLA-DR antigen-associated invariant chain (CD74) mRNA expression predicts mortality after septic shock. *Crit. Care* 2013, 17, R287.

218. Rasmussen, G.; Cajander, S.; Bäckman, A.; Källman, J.; Söderquist, B.; Strålin, K. Expression of HLA-DRA and CD74 mRNA in whole blood during the course of complicated and uncomplicated *Staphylococcus aureus* bacteremia. *Microbiol. Immunol.* 2017, 61, 442–451.

219. Boeddha, N.P.; Kerklaan, D.; Dunbar, A.; van Puffelen, E.; Nagtzaam, N.M.A.; Vanhorebeek, I.; Van den Berghe, G.; Hazelzet, J.A.; Joosten, K.F.; Verbruggen, S.C.; et al. HLA-DR Expression on Monocyte Subsets in Critically III Children. *Pediatr. Infect. Dis. J.* 2018, 37, 1034–1040.

220. Arens, C.; Kramm, T.; Decker, S.; Spannenberger, J.; Brenner, T.; Richter, D.C.; Weigand, M.A.; Uhle, F.; Lichtenstern, C. Association of Immune Cell Subtypes and Phenotype with Subsequent Invasive Candidiasis in Patients with Abdominal Sepsis. *Shock* 2019, 52, 191–197.

221. Crouser, E.D.; Parrillo, J.E.; Seymour, C.W.; Angus, D.C.; Bicking, K.; Esguerra, V.G.; Peck-Palmer, O.M.; Magari, R.T.; Julian, M.W.; Kleven, J.M.; et al. Monocyte Distribution Width: A Novel Indicator of Sepsis-2 and Sepsis-3 in High-Risk Emergency Department Patients. *Crit. Care Med.* 2019, 47, 1018–1025.

222. Khan, H.N.; Brands, X.; Aufiero, S.; Hoogendijk, A.J.; Klarenbeek, A.M.; van Engelen, T.S.R.; Haak, B.W.; van Vught, L.A.; Horn, J.; Schultz, M.J.; et al. The circular RNA landscape in specific peripheral blood mononuclear cells of critically ill patients with sepsis. *Crit. Care* 2020, 24, 423.

223. Djordjevic, D.; Pejovic, J.; Surbatovic, M.; Jevdjic, J.; Radakovic, S.; Veljovic, M.; Peric, A.; Andjelic, T.; Popovic, N. Prognostic Value and Daily Trend of Interleukin-6, Neutrophil CD64 Expression, C-Reactive Protein and Lipopolysaccharide-Binding Protein in Critically Ill Patients: Reliable Predictors of Outcome or Not? *J. Med. Biochem.* 2015, 34, 431–439.

Retrieved from <https://www.encyclopedia.pub/entry/history/show/41134>