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Peroxisome proliferator-activated receptors (PPARs) α, β, and γ are nuclear receptors that orchestrate the

transcriptional regulation of genes involved in a variety of biological responses, such as energy metabolism and

homeostasis, regulation of inflammation, cellular development, and differentiation. The many roles played by the

PPAR signaling pathways indicate that PPARs may be useful targets for various human diseases.
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1. Molecular Characteristics of PPARs

Peroxisomes, 0.5 μm diameter single-membrane cytoplasmic organelles, play essential roles in the oxidation of

various biomolecules . Peroxisome proliferators are multiple chemicals that increase the abundance of

peroxisomes in cells . These molecules also increase gene expression for β-oxidation of long-chain fatty acids

and cytochrome P450 (CYP450) . Given the gene transcriptional modulation of peroxisome proliferators,

PPARs have been identified as nuclear receptors . The PPAR subfamily consists of three

isoforms, PPARα, PPARβ/δ, and PPARγ . The three PPARs differ in tissue-specific expression patterns and

ligand-biding domains, each performing distinct functions. PPARA, encoding PPARα, is located in chromosome

22q13.31 in humans and is mainly expressed in the liver, intestine, kidney, heart, and muscle . PPARγ has

four alternative splicing forms from PPARG located in chromosome 3p25.2 and is highly expressed in adipose

tissue, the spleen, and intestine . PPARδ, encoded by PPARD, is located in chromosome 6q21.31 and

presents ubiquitously . Thus, it is essential in the study of PPARs to consider their tissue distribution and

functions.

PPAR is a nuclear receptor superfamily class II member that heterodimerizes with RXR . The PPAR structure

includes the A/B, C, D, and E domains from N-terminus to C-terminus . The N-terminal A/B domain (NTD) is a

ligand-independent transactivation domain containing the activator function (AF)-1 region. The NTD is targeted for

variable post-translational modifications, including SUMOylation, phosphorylation, acetylation, O-GlcNAcylation,

and ubiquitination, resulting in transcriptional regulatory activities . DNA-binding C domain (DBD) has two DNA-

binding zinc finger motifs containing cysteines, which dock to PPREs. PPARs reside upstream of RXR upon the

direct repeat (DR)-1 motifs, which are composed of two hexanucleotide consensus sequences with one spacing

nucleotide (AGGTCA N AGGTCA) . The hinge D region is a linker between the C and E domains, which

contains a nuclear localization signal, and is the site for post-translational modifications such as phosphorylation,

acetylation, and SUMOylation . The ligand-binding E domain (LBD) carries the hydrophobic ligand-binding
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pocket and the AF-2 region. The absence of agonists enables LBD to recruit co-repressors containing the CoRNR

motifs . Engaging agonists to LBD elicits conformational changes of AF-2 to facilitate interaction with LXXLL

motifs of many co-activators . Like other nuclear receptor superfamily class II members, such as thyroid

hormone receptor (TR), retinoic acid receptor (RAR), and vitamin D receptor (VDR), PPARs function as

heterodimers with RXR through LBD . LBD is also targeted for SUMOylation and ubiquitination .

Advancement of research on the PPAR structure helps thoroughly dissect the roles of PPARs. The roles of specific

PPAR subtypes will be discussed in the following subsections.

1.1. Roles of PPARα

PPARα is predominantly expressed in the liver but is also found in other tissues, including the heart, muscle, and

kidney . PPARα regulates the expression of genes involved in metabolism and inflammation. Activation of

PPARα leads to the upregulation of genes involved in fatty acid oxidation and the downregulation of genes involved

in fatty acid synthesis . PPARα also modulates other genes, including genes involved in the transport and

uptake of fatty acids and the synthesis and secretion of lipoproteins . In addition, activation of PPARα has

been shown to improve insulin sensitivity, reduce oxidative stress, and reduce inflammation in preclinical studies

. PPARα activation has been shown to modify the expression of immune response genes, including those

encoding cytokines and chemokines, which are signaling molecules that regulate the immune response .

PPARα activation has also been demonstrated to reduce the production of pro-inflammatory cytokines, such as

tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6 . PPARα has been shown to interfere with the DNA

binding of both AP-1 and NF-κB . Thus, the roles of PPARα in infectious diseases should be studied in

wide ranging aspects, including metabolism and inflammation.

In the context of infection, PPARα has been shown to play an essential role in the hepatic metabolic response to

infection. During an infectious challenge, the liver coordinates several metabolic changes to support the host

defense response, including the mobilization of energy stores, production of acute-phase proteins, and synthesis of

new metabolites. Activation of PPARα in the liver leads to the upregulation of genes involved in fatty acid oxidation

and ketogenesis with fibroblast growth factor 21 (FGF21) production . FGF21 is a hormone produced by the

liver that has been shown to promote ketogenesis and reduce glucose utilization . The ketogenesis regulation

of PPARα with FGF21 is essential for reacting to microbial or viral sepsis . In conclusion, the hepatic

PPARα metabolic response to infection is crucial to the host defense response.

1.2. Roles of PPARβ/δ

PPARβ is expressed in diverse tissues, including adipose tissue, muscle, and the liver , and is activated by

multiple ligands, such as fatty acids and their derivatives . PPARβ is involved in regulating lipid metabolism and

energy homeostasis, as well as controlling inflammation and immune function . PPARβ activation has been

demonstrated to have pro- and anti-inflammatory effects based on the situation . The role of PPARβ in

tumorigenesis is debatable. PPARβ activation has been found in some cases to have anti-tumorigenic effects, such

as causing apoptosis and inhibiting cell proliferation . In other cases, however, activation of PPARβ has been
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shown to promote tumorigenesis by enhancing cell survival, promoting angiogenesis, and reducing cellular

differentiation . Overall, the role of PPARβ activation in cancer is not entirely known and is complex.

Similarly, the function of PPARβ in infection is not well understood. Additional research is required to comprehend

the function of PPARβ in the context of immunology against cancers and infectious diseases.

1.3. Roles of PPARγ

PPARγ is expressed in a variety of tissues, including adipose tissue, muscle, and the liver , and is

activated by diverse ligands, including fatty acids and their derivatives, as well as synthetic chemicals known as

thiazolidinediones . PPARγ is responsible for regulating lipid metabolism, glucose homeostasis, and

inflammation . Numerous inflammatory mediators and cytokines are inhibited by PPARγ ligands in various

cell types, including monocytes/macrophages, epithelial cells, smooth muscle cells, endothelial cells, dendritic

cells, and lymphocytes. In addition, PPARγ diminishes the activities of transcription factors AP-1, STAT, NF-κB, and

NFAT to adversely regulate inflammatory gene expression . As a result, PPARγ has been demonstrated to

have a protective function against infections by modulating the immune response and lowering inflammation.

However, other researchers have hypothesized that PPARγ activation may impair the function of immune cells,

such as macrophages, and contribute to the development of infections. Therefore, the role of PPARγ in disease is

complex and context-dependent, and more research is needed to fully understand the molecular mechanisms by

which PPARγ regulates the host response to infection.

2. Regulatory Mechanisms of PPARs

The PPAR ligand-binding pocket is large and capable of engaging diverse ligands . Endogenous ligands vary

depending on the PPAR isoform, including n-3 polyunsaturated fatty acids such as docosahexaenoic acid and

eicosapentaenoic acid for all PPARs, leukotriene B4 for PPARα, carbaprostacyclin for PPARδ, and prostaglandin

J2 for PPARγ . Representative synthetic agonists include fibrates (PPARα agonists) and thiazolidinediones

(PPARγ agonists) . Fibrates, such as fenofibrate, clofibrate, and gemfibrozil, are widely used for treating

dyslipidemia. Thiazolidinediones, such as rosiglitazone, pioglitazone, and lobeglitazone, improve insulin resistance

. Most clinical studies on PPAR actions in infectious diseases have been conducted retrospectively, and no

clinical studies currently in progress are listed in ClinicalTrials.gov (https://clinicaltrials.gov/ (accessed on 13

February 2023)). Since widely used PPAR agonists exist, clinical research can be conducted through a deeper

understanding of PPAR roles in infectious diseases.

PPAR-RXR heterodimerization occurs ligand-independently . The heterodimer appears to exert transcriptional

regulation both ligand-dependently and -independently . Although LBD may interact with either co-repressor or

co-activator in the state of not binding with an agonist, binding to a ligand elicits stabilized co-activator-LBD

interaction, thus increasing transactivation . Further, recent studies have shown that PPARs inhibit other

transcription factors, such as NF-κB, activator protein-1 (AP-1), signal transducer and activator of transcription

(STAT), and nuclear factor of activated T cells (NFAT) . Recent studies revealed the possibility of

forming a protein chaperone complex with PPAR-associated proteins, such as heat shock proteins (HSPs). Similar
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to interactions between other type I intracellular receptors and heat shock proteins, HSP90 repressed PPARα and

PPARβ activities but not that of PPARγ . Instead, HSP90 was required for PPARγ signaling in the nonalcoholic

fatty liver disease mouse model . Thus, it is necessary to study the various modes of PPAR actions. The

intracellular regulatory mechanisms of PPARs are shown in Figure 1.

Figure 1. Roles of peroxisome proliferator-activated receptors (PPARs) and their regulatory mechanisms. PPAR

ligands bind to the PPAR ligand-binding domain and activate receptors. PPARs interact with heat shock protein

(HSP) in the cytosol. PPARs inhibit inflammation-related gene transcription by interfering with transcription factors

such as NF-κB, AP-1, STAT, and NFAT. PPARs form heterodimers with Retinoid X receptor (RXR), a receptor of 9-

cis-retinoic acid (9-cis-RA), and bind to direct repeat 1 (DR-1), a peroxisome-proliferator-responsive element. The

PPAR-RXR heterodimer complex and co-repressors represses target gene transcription. However, the complex

with co-activators promotes target gene transcription. Through these mechanisms, PPARs play significant roles in

energy metabolism, inflammatory modulation, and the cell cycle. AP-1, Activator protein 1; NF-κB, Nuclear factor

kappa-light-chain-enhancer of activated B cells; NFAT, Nuclear factor of activated T cells; STAT, Signal transducer

and activator of transcription.
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