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The ubiquitin proteasome system (UPS) governs the non-lysosomal degradation of oxidized, damaged, or
misfolded proteins in eukaryotic cells. This process is tightly regulated through the activation and transfer of
polyubiquitin chains to target proteins which are then recognized and degraded by the 26S proteasome complex.
The role of UPS is crucial in regulating protein levels through degradation to maintain fundamental cellular
processes such as growth, division, signal transduction, and stress response. Dysregulation of the UPS, resulting
in loss of ability to maintain protein quality through proteolysis, is closely related to the development of various

malignancies and tumorigenesis.

ubiquitin proteasome system dysregulation chemoresistance cancer therapy

inhibitors

| 1. The Ubiquitin Proteasome System

The ubiquitin proteasome system (UPS) is essential for the regulation of protein homeostasis and control of
eukaryotic cellular processes including cell cycle progression, stress response, signal transduction, and
transcriptional activation 12, UPS controls the degradation of approximately 80% of intracellular proteins which
are oxidized, damaged, or misfolded in eukaryotic cells Bl. Though the UPS and autophagy are both important
systems of degradation of proteins, the sizes of substrates critically influence the choice of degradation pathway ..
The UPS typically degrades single unfolded polypeptides, whereas autophagy deals with larger cytosolic

complexes, cellular aggregates, and organelles.

Degradation of targeted proteins involves a tightly coordinated process where ubiquitin is covalently attached to the
substrate protein through the sequential action of three enzymes. Ubiquitin is a small protein comprising 76 amino
acids found in all eukaryotic cells . The energy derived from ATP hydrolysis initiates the activation of ubiquitin
activating enzyme (E1) allowing the formation of thioester bond between E1 and ubiquitin. This is followed by
transfer of ubiquitin from E1 to ubiquitin-conjugating enzyme (E2), forming a thioester bond similar to that of E1.
The third final step involves the covalent attachment of ubiquitin to lysine residues of target protein, catalyzed by
ubiquitin ligase (E3) . The 26S proteasome complex comprises a core 20S proteasome and one or two units of
the regulatory 19S proteasome (Figure 1). Once a target protein has been modified with a polyubiquitin chain, it is
recognized by the 19S proteosome which removes the polyubiquitin chain and the protein is then unfolded and
translocated into the 20S proteasome where it is degraded into short peptides 2. While polyubiquitination has been

associated with protein clearance through proteasomal degradation, mono-ubiquitination, which involves the
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addition of a single ubiquitin moiety to the substrate protein, is shown to affect a range of cellular processes

including kinase activity, epigenetic regulation, protein translocation, and DNA damage signaling /2!,
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Figure 1. Overview of the ubiquitin proteasome system (UPS). The UPS cascade. Substrate protein is
ubiquitinated through the sequential action of three enzymes. E1 binds to activated ubiquitin and is transferred to
the ubiquitin-conjugating enzyme (E2). The E2 carries the activated ubiquitin to ubiquitin ligase (E3), which then
facilitates the transfer of ubiquitin from E2 to a lysine residue in the target protein. Proteins can be modified with a
single mono-ubiquitin molecule, or with ubiquitin chains of different lengths and linkage types. Substrate proteins
modified with specific chains are recognized and subsequently degraded by the 26S proteasome. Deubiquitinating
enzymes (DUBs) remove ubiquitin from substrate proteins by removing mono-ubiquitination or by trimming or
removing the ubiquitin chain. Typically, poly-ubiquitination has been associated with protein clearance through
proteasomal degradation while mono-ubiquitination which involves the addition of a single ubiquitin moiety to the

substrate protein affects cellular processes.

Ubiquitin contains seven important lysine residues which can be ubiquitinated (K6, K11, K27, K33, K48, and K63)
and can form polyubiquitin chains. The two best characterized ubiquitin linkages are K48 and K63 where K48
polyubiquitination targets proteins for degradation by the 26S proteasome complex 22 and K63 participates in DNA
damage signaling and recruits DNA repair proteins to damage sites (1. Protein ubiquitination can be reversed

through the removal of ubiquitin from target proteins by deubiquitinating enzymes (DUBSs), and this rescues protein
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destined for degradation. DUBs have also been implicated in the maturation, recycling, and editing of ubiquitin 2
(131141 Fyrther, chain configuration and linkage can endow ubiquitin with additional roles through the formation of
more complex topologies with unknown activities 21, Dysregulation or abnormal UPS function is frequently seen in
various human malignancies and this identifies the aberrant components of the UPS as potential drug targets 18
(171, This review endeavors to present recent literature on the functional roles of UPS in human cancers. We cover
how the dysregulation of UPS components may function either as an oncogene or tumor suppressor and affects
cellular signaling in tumors. Further, we present current small inhibitors against the UPS and highlight issues that

has severely restricted its development.

Increasing evidence demonstrate ubiquitin enzymes are important in carcinogenesis. Though there are numerous
cancer-related studies on these enzymes, a large majority primarily focuses on E3 ligases. Studies on E1-
activating enzymes have been largely used to identify potential targets in UPS inhibition in cancer while studies on
E2-conjugated enzymes revealed their involvement in cell cycle progression, DNA repair, and regulation of
oncogenic signaling pathways during tumorigenesis 181291 Further E2 enzymes are often found upregulated and
highly correlated with poor prognosis in various malignancies including the pancreas, lung, breast, skin, and thyroid
(201 Currently, eight Els, > 40 E2s, and > 600 E3s have been identified in the human proteome 211,

| 2. Dysregulation of UPS in cancer

2.1. E2 enzymes

The ubiquitin-conjugating E2 family comprises > 40 members, and modulates protein stability and ubiquitination
through the conjugation of ubiquitin to target proteins 22, E2-conjugating enzymes are also found dysregulated in
cancers and reported to be potent mediators contributing towards multiple tumorigenic processes including
migration/invasion, proliferation, drug resistance, radiation resistance, cell cycle, apoptosis, and stimulation of
oncogenic pathways. Examples of dysregulated E2 enzymes in cancer are summarized in Table 1

Table 1. Summary of the functions of E2 and E3 enzymes in human cancers described in this review.

Test

Family Name Role Cancer Type Function Model Reference
Chromosomal stability, In
E2 UBE2C Oncogene Gastric Proliferation, Migration, vitro, [23]
Invasion In vivo
Oncogene Colon Cell cycle, Proloferation viltr;o [24]
Oncogene Colorectal Proliferation, Invasion viltr:o [25]
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Family Name Role Cancer Type Function I\I-Irgs:el Reference
Oncogene Thyroid Proliferation .In [26]
vitro
Proliferation, Drug In
Oncogene Breast resistance, Radiation vitro [27]
resistance
Proliferation, Drug In
Oncogene Liver resistance, Migration, vitro (28]
Invasion
Oncogene Non-small cell lung Drug resistance viltr:ro [29]
UBE2Q1 Oncogene Colorectal Proliferation 201
Oncogene Liver p53 signaling, Cell cycle V:SO (21
Oncogene Breast p53 signaling .In 2]
vitro
UBE2S Oncogene Endometrial _ SOX6/-catenin In 22
signaling, Proliferation vitro
Oncogene Lung adenocarcinoma .Proll_feratlon, p53_ .m [34]
signaling, Apoptosis vitro
Oncogene Liver p53 signaling, Cell cycle V:SO 23]
E3 FBW7 Tumor Burkitt's lymphoma c-Myc signaling .In el
suppressor vitro
Tumor Chronic myelogenous n
y .g c-Myc signaling vitro, (8]
suppressor leukemia .
In vivo
. . Lung, Melanoma, MTORC2/SREBP1 In [39]
Lipogenesis Thyroid, Cervical signaling vitro
Tumor n
T cell leukemia Notch signaling vitro, (491
suppressor .
In vivo
Tumor Colorectal c-Myc signaling, Cell !n [41]
suppressor cycle vitro
; ; 42
Tumor Esophageal c-Myc signaling In £
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. - Test
Family Name Role Cancer Type Function Model Reference
suppressor squamous cell vitro
Tumor Colorectal, Cervical, n
Ovarian, Non-small Apoptosis (via Mcl1) . [43]
suppressor vitro
cell lung
In
MDM2 Oncogene Neuroblastoma p53 signaling vitro, [44]
In vivo
Oncogene Cervical Cell cycle, Apoptosis viltr;o [45]
Metastasis, Dru n
Oncogene Liver ' 9 vitro, (461
response )
In vivo
Cdc20 Oncogene Breast Metastasis, Drug .In [47)
response vitro
Cdhl Tumor Breast Src signaling .In [48)
suppressor vitro
T . . I
B-TRCP urmor Breast, Prostate MTSS1 signaling .n [49]
suppressor vitro
In
Oncogene Lung FOXN2 vitro, =
In vivo tin chains
B In into four
Tumor Papillary thyroid VEGFR2 signalin vitro 511 5 h
suppressor piffary thy g g 0, ; are the
In vivo .
sting new
i I 3 i
EGAP Oncogene Prostate Radiation response vitr;o (2] 3 ligases
including
In umples of
Oncogene Prostate p27 signaling vitro, 53]
In vivo
In
Oncogene Prostate Metastasis vitro, [54]
In vivo )
y are still

unknown B8IE7l USPs are, by far, the largest class of DUBs, com- prising ~60 human proteases with most

containing several domains apart from the catalytic domain. Conserved sequences among these proteases are

restricted to the catalytic domain which is designated by the catalytic motif containing Cys, His, and Asp (or Asn)

residues. Conserved catalytic domains are thought to be important for substrate specificity, catalytic activity

regulation, and mediating protein—protein interaction to each USP. Dysregulated DUBs in cancer are hence

potential drug targets. The challenge in the development of drugs is the difficulty in designing a specific inhibitor for

a single DUB. 3D crystallography structures of catalytic domains of USP2, USP7, USP8, and USP14 reveal a
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remarkable structural conservation of their active site shared among these enzymes, thus providing evidence that

the development of inhibitors may prove to be challenging B8IBA6A. Fyrther, the crystal structures show that the

catalytic domains are in inactive conformation prior ubiquitin binding suggesting an alternative target for

intervention. Apart from deubiquitination, DUBs have been shown to modulate cellular processes in human

malignancies including DNA damage response, oncogenic signaling cascades, drug resistance, apoptosis, cell

cycle, immunomodulation, and invasion/migration. Examples of dysregulated DUBs in cancer are summarised in

Table 2.

Table 2. Summary of the functions of DUB enzymes described in this review.

Name Role

BAP1 Tumor

suppressor

Tumor

suppressor

USP7 Oncogene

Oncogene

Oncogene
UsP22 Oncogene

Oncogene

Oncogene

Oncogene

UCHL1 Oncogene

Ataxin 3 Oncogene

Oncogene

PSMD11 Oncogene

Cancer Type

Lung, Osteosarcoma,
Colon

Renal

Lung

Cervical

Non-small cell lung

Lung

Lung adenocarcinoma

Colon

Glioblastoma

Breast

Breast, Osteosarcoma,
Cervical, Colorectal

Testicular

Cervical. Osteosarcoma

Function

DNA double-strand repair

Ferroptosis signaling

p53 signaling

Self-renewal; Foxp3
signaling

Immune Response;
Foxp3 signaling

Cell Cycle

EGFR-TKI resistance

CCNBL signaling

KDMZ1A signaling

Drug resistance;
Invasion/migration

DNA

MTOR/Akt signaling

DNA damage response

Test
model

In vitro

In vitro

In vitro,
in vivo

In vitro

In vitro

In vitro

In vitro,
in vivo

In vitro,
in vivo

In vitro,

in vivo

In vitro

In vitro

In vitro

In vitro

Reference

[61][62][63]

[69]

[70]

[71]

[72]

https://encyclopedia.pub/entry/8526

6/17



UPS in Human Malignancies | Encyclopedia.pub

Lung, Prostate, . [76]
Oncogene Colorectal, Breast, Cervix Cell cycle In vitro
Oncogene Liver E2F1 signaling Invitro, 77
in vivo
A20 Tumor Colorectal Apoptosis signaling In vitro (78]
suppressor
Tumor Diffuse large B-cell NF-kg signaling In vitro [79]
suppressor lymphoma
Tumor Sarcoma NF-kp signaling In vitro [89]
suppressor
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