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The ubiquitin proteasome system (UPS) governs the non-lysosomal degradation of oxidized, damaged, or

misfolded proteins in eukaryotic cells. This process is tightly regulated through the activation and transfer of

polyubiquitin chains to target proteins which are then recognized and degraded by the 26S proteasome complex.

The role of UPS is crucial in regulating protein levels through degradation to maintain fundamental cellular

processes such as growth, division, signal transduction, and stress response. Dysregulation of the UPS, resulting

in loss of ability to maintain protein quality through proteolysis, is closely related to the development of various

malignancies and tumorigenesis.

ubiquitin proteasome system  dysregulation  chemoresistance  cancer  therapy

inhibitors

1. The Ubiquitin Proteasome System

The ubiquitin proteasome system (UPS) is essential for the regulation of protein homeostasis and control of

eukaryotic cellular processes including cell cycle progression, stress response, signal transduction, and

transcriptional activation . UPS controls the degradation of approximately 80% of intracellular proteins which

are oxidized, damaged, or misfolded in eukaryotic cells . Though the UPS and autophagy are both important

systems of degradation of proteins, the sizes of substrates critically influence the choice of degradation pathway .

The UPS typically degrades single unfolded polypeptides, whereas autophagy deals with larger cytosolic

complexes, cellular aggregates, and organelles.

Degradation of targeted proteins involves a tightly coordinated process where ubiquitin is covalently attached to the

substrate protein through the sequential action of three enzymes. Ubiquitin is a small protein comprising 76 amino

acids found in all eukaryotic cells . The energy derived from ATP hydrolysis initiates the activation of ubiquitin

activating enzyme (E1) allowing the formation of thioester bond between E1 and ubiquitin. This is followed by

transfer of ubiquitin from E1 to ubiquitin-conjugating enzyme (E2), forming a thioester bond similar to that of E1.

The third final step involves the covalent attachment of ubiquitin to lysine residues of target protein, catalyzed by

ubiquitin ligase (E3) . The 26S proteasome complex comprises a core 20S proteasome and one or two units of

the regulatory 19S proteasome (Figure 1). Once a target protein has been modified with a polyubiquitin chain, it is

recognized by the 19S proteosome which removes the polyubiquitin chain and the protein is then unfolded and

translocated into the 20S proteasome where it is degraded into short peptides . While polyubiquitination has been

associated with protein clearance through proteasomal degradation, mono-ubiquitination, which involves the
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addition of a single ubiquitin moiety to the substrate protein, is shown to affect a range of cellular processes

including kinase activity, epigenetic regulation, protein translocation, and DNA damage signaling .

Figure 1. Overview of the ubiquitin proteasome system (UPS). The UPS cascade. Substrate protein is

ubiquitinated through the sequential action of three enzymes. E1 binds to activated ubiquitin and is transferred to

the ubiquitin-conjugating enzyme (E2). The E2 carries the activated ubiquitin to ubiquitin ligase (E3), which then

facilitates the transfer of ubiquitin from E2 to a lysine residue in the target protein. Proteins can be modified with a

single mono-ubiquitin molecule, or with ubiquitin chains of different lengths and linkage types. Substrate proteins

modified with specific chains are recognized and subsequently degraded by the 26S proteasome. Deubiquitinating

enzymes (DUBs) remove ubiquitin from substrate proteins by removing mono-ubiquitination or by trimming or

removing the ubiquitin chain. Typically, poly-ubiquitination has been associated with protein clearance through

proteasomal degradation while mono-ubiquitination which involves the addition of a single ubiquitin moiety to the

substrate protein affects cellular processes.

 

Ubiquitin contains seven important lysine residues which can be ubiquitinated (K6, K11, K27, K33, K48, and K63)

and can form polyubiquitin chains. The two best characterized ubiquitin linkages are K48 and K63 where K48

polyubiquitination targets proteins for degradation by the 26S proteasome complex  and K63 participates in DNA

damage signaling and recruits DNA repair proteins to damage sites . Protein ubiquitination can be reversed

through the removal of ubiquitin from target proteins by deubiquitinating enzymes (DUBs), and this rescues protein
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destined for degradation. DUBs have also been implicated in the maturation, recycling, and editing of ubiquitin 

. Further, chain configuration and linkage can endow ubiquitin with additional roles through the formation of

more complex topologies with unknown activities . Dysregulation or abnormal UPS function is frequently seen in

various human malignancies and this identifies the aberrant components of the UPS as potential drug targets 

. This review endeavors to present recent literature on the functional roles of UPS in human cancers. We cover

how the dysregulation of UPS components may function either as an oncogene or tumor suppressor and affects

cellular signaling in tumors. Further, we present current small inhibitors against the UPS and highlight issues that

has severely restricted its development.

Increasing evidence demonstrate ubiquitin enzymes are important in carcinogenesis. Though there are numerous

cancer-related studies on these enzymes, a large majority primarily focuses on E3 ligases. Studies on E1-

activating enzymes have been largely used to identify potential targets in UPS inhibition in cancer while studies on

E2-conjugated enzymes revealed their involvement in cell cycle progression, DNA repair, and regulation of

oncogenic signaling pathways during tumorigenesis . Further E2 enzymes are often found upregulated and

highly correlated with poor prognosis in various malignancies including the pancreas, lung, breast, skin, and thyroid

. Currently, eight E1s, > 40 E2s, and > 600 E3s have been identified in the human proteome .

 

2. Dysregulation of UPS in cancer

2.1. E2 enzymes

The ubiquitin-conjugating E2 family comprises > 40 members, and modulates protein stability and ubiquitination

through the conjugation of ubiquitin to target proteins . E2-conjugating enzymes are also found dysregulated in

cancers and reported to be potent mediators contributing towards multiple tumorigenic processes including

migration/invasion, proliferation, drug resistance, radiation resistance, cell cycle, apoptosis, and stimulation of

oncogenic pathways. Examples of dysregulated E2 enzymes in cancer are summarized in Table 1  

Table 1. Summary of the functions of E2 and E3 enzymes in human cancers described in this review.
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Family Name Role Cancer Type Function Test
Model Reference

E2 UBE2C Oncogene Gastric
Chromosomal stability,
Proliferation, Migration,

Invasion

In
vitro,

In vivo

    Oncogene Colon Cell cycle, Proloferation
In

vitro

    Oncogene Colorectal Proliferation, Invasion
In

vitro
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Family Name Role Cancer Type Function Test
Model Reference

    Oncogene Thyroid Proliferation
In

vitro

    Oncogene Breast
Proliferation, Drug

resistance, Radiation
resistance

In
vitro

    Oncogene Liver
Proliferation, Drug

resistance, Migration,
Invasion

In
vitro

    Oncogene Non-small cell lung Drug resistance
In

vitro

  UBE2Q1 Oncogene Colorectal Proliferation  

    Oncogene Liver p53 signaling, Cell cycle
In

vitro

    Oncogene Breast p53 signaling
In

vitro

  UBE2S Oncogene Endometrial
SOX6/β-catenin

signaling, Proliferation
In

vitro

    Oncogene Lung adenocarcinoma
Proliferation, p53

signaling, Apoptosis
In

vitro

    Oncogene Liver p53 signaling, Cell cycle
In

vitro

E3 FBW7
Tumor

suppressor
Burkitt’s lymphoma c-Myc signaling

In
vitro

   
Tumor

suppressor
Chronic myelogenous

leukemia
c-Myc signaling

In
vitro,

In vivo

    Lipogenesis
Lung, Melanoma,
Thyroid, Cervical

mTORC2/SREBP1
signaling

In
vitro

   
Tumor

suppressor
T cell leukemia Notch signaling

In
vitro,

In vivo

   
Tumor

suppressor
Colorectal

c-Myc signaling, Cell
cycle

In
vitro

    Tumor Esophageal c-Myc signaling In
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2.2. E3 Ligases

E3 ubiquitin ligases are a large family of enzymes that promote ubiquitin transfer to proteins or polyubiquitin chains

. E3 ligases play an important role in the ubiquitin- mediated proteolytic cascade and are classified into four

main classes, according to their domain structure and substrate recognition. The four E3 classes are the

homologous to the E3 ubiquitin ligase E6-associated protein (E6AP) C-terminus (HECT), really interesting new

gene (RING)-finger, U-box, and plant homeodomain (PHD)-finger. Depending on the substrate targets, E3 ligases

can function either as a tumor suppressor or oncogene and can participate in various cellular processes including

cell cycle, apoptosis, drug response, metastasis, radiation response, and oncogenic signaling. Examples of

dysregulation of E3 ligases in cancer are summarised in Table 1. 

2.3. Deubiquitinating enzymes (DUBs)

Currently, about >100 DUB genes have been identified where the biological functions for the majority are still

unknown . USPs are, by far, the largest class of DUBs, com- prising ~60 human proteases with most

containing several domains apart from the catalytic domain. Conserved sequences among these proteases are

restricted to the catalytic domain which is designated by the catalytic motif containing Cys, His, and Asp (or Asn)

residues. Conserved catalytic domains are thought to be important for substrate specificity, catalytic activity

regulation, and mediating protein–protein interaction to each USP. Dysregulated DUBs in cancer are hence

potential drug targets. The challenge in the development of drugs is the difficulty in designing a specific inhibitor for

a single DUB. 3D crystallography structures of catalytic domains of USP2, USP7, USP8, and USP14 reveal a

Family Name Role Cancer Type Function Test
Model Reference

suppressor squamous cell vitro

   
Tumor

suppressor

Colorectal, Cervical,
Ovarian, Non-small

cell lung
Apoptosis (via Mcl1)

In
vitro

  MDM2 Oncogene Neuroblastoma p53 signaling
In

vitro,
In vivo

    Oncogene Cervical Cell cycle, Apoptosis
In

vitro

    Oncogene Liver
Metastasis, Drug

response

In
vitro,

In vivo

  Cdc20 Oncogene Breast
Metastasis, Drug

response
In

vitro

  Cdh1
Tumor

suppressor
Breast Src signaling

In
vitro

  β-TRCP
Tumor

suppressor
Breast, Prostate MTSS1 signaling

In
vitro

    Oncogene Lung FOXN2
In

vitro,
In vivo

   
Tumor

suppressor
Papillary thyroid VEGFR2 signaling

In
vitro,

In vivo

  E6AP Oncogene Prostate Radiation response
In

vitro

    Oncogene Prostate p27 signaling
In

vitro,
In vivo

    Oncogene Prostate Metastasis
In

vitro,
In vivo
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remarkable structural conservation of their active site shared among these enzymes, thus providing evidence that

the development of inhibitors may prove to be challenging . Further, the crystal structures show that the

catalytic domains are in inactive conformation prior ubiquitin binding suggesting an alternative target for

intervention. Apart from deubiquitination, DUBs have been shown to modulate cellular processes in human

malignancies including DNA damage response, oncogenic signaling cascades, drug resistance, apoptosis, cell

cycle, immunomodulation, and invasion/migration. Examples of dysregulated DUBs in cancer are summarised in

Table 2. 

Table 2. Summary of the functions of DUB enzymes described in this review.
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Name Role Cancer Type Function
Test
model

Reference

BAP1
Tumor
suppressor

Lung, Osteosarcoma,
Colon

DNA double-strand repair In vitro

 
Tumor
suppressor

Renal Ferroptosis signaling In vitro

USP7 Oncogene Lung p53 signaling
In vitro,
in vivo

  Oncogene Cervical
Self-renewal; Foxp3
signaling

In vitro

  Oncogene Non-small cell lung
Immune Response;
Foxp3 signaling

In vitro

USP22 Oncogene Lung Cell Cycle In vitro

  Oncogene Lung adenocarcinoma EGFR-TKI resistance
In vitro,
in vivo

  Oncogene Colon CCNB1 signaling
In vitro,
in vivo

  Oncogene Glioblastoma KDM1A signaling
In vitro,
in vivo

UCHL1 Oncogene Breast
Drug resistance;
Invasion/migration

In vitro

Ataxin 3 Oncogene
Breast, Osteosarcoma,
Cervical, Colorectal

DNA  In vitro

  Oncogene Testicular mTOR/Akt signaling In vitro

PSMD11 Oncogene Cervical. Osteosarcoma DNA damage response In vitro
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3. UPS Inhibitors in Cancer therapy

The progress in targeting the UPS has been slow and this delay has been attributed to the following reasons. First,

most components of the ubiquitin system do not possess a well-defined catalytic pocket to allow binding of small

inhibitors. Second, the ubiquitination process relies on the dynamic rearrangement of multiple protein–protein

interactions that traditionally have been challenging to disrupt with small molecule inhibitors. Third, components of

the UPS are shown to possess both oncogenic and tumor suppressor properties due to the complexity of their

regulatory cellular processes. Despite these challenges, components of the UPS have been considered as

attractive targets for cancer treatment. In the following sections, we introduce some inhibitors against components

of the UPS that have been tested in preclinical and clinical studies as summarized in Table 3.

Table 3. Summary of UPS inhibitors which are FDA-approved and/or tested in clinical trials described in this

review.
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4. Conclusion

Frequent aberrant UPS activity seen in human malignancies indicate that the proteasome and components of the

UPS are attractive therapeutic targets. Targeting the proteasome, in the clinic, has achieved success with FDA-

approved proteasome inhibitors such as bortezomib, carfilzomib and ixazomib. Being the last step in the UPS, the

use of proteasome inhibitors has shown undesirable side-effects arising from the action of up-stream UPS

components. This shows that there is an untapped potential for the devel-opment of drugs against other

components of the UPS. Thus, ubiquitin activating steps, E2, E3 and DUBs can be exploited for inhibition .

Unfortunately, most of these inhibitors show good efficacy in culture models but less so in animal models and

clinical trials . Traditionally, the ubiquitin activating steps and degradation possess the greatest potential

due to presence of well-defined activity pockets but face issues of substrate specificity. The other UPS components

however do not possess defined pockets for targeting with small inhibitors. Hence, delay in the development of

successful UPS inhibitors can be attributed to the lack of knowledge of target protein structures and identifiable

activity pockets for inhibitor binding. Advances in technology such as computer-aided design, mass

spectrophotometry and high throughput screening may aid in the identification of suitable candidates. Further, the

occurrence of oncogenic signaling together with aberrant UPS activity may affect the success of future UPS

inhibitors. Nevertheless, a greater effort is required to elucidate the functions of aberrant UPS at both preclinical

and clinical levels to better understand their roles in human malignancies to develop alternative paradigms for

therapeutic intervention.  
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