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Different geophysical methods provide information about various physical properties of rock formations and
mineralization. In many cases, this information is mutually complementary. At the same time, inversion of the data
for a particular survey is subject to considerable uncertainty and ambiguity as to causative body geometry and
intrinsic physical property contrast. One productive approach to reducing uncertainty is to jointly invert several
types of data. Non-unigueness can also be reduced by incorporating additional information derived from available
geological and/or geophysical data in the survey area to reduce the searching space for the solution. This

additional information can be incorporated in the form of a joint inversion of multiphysics data.

joint inversion multiphysics three-dimensional Gramian constraints focusing constraints

| 1. Introduction

Information from different surveys is mutually complementary, which makes it natural to consider a joint inversion of
the data to a shared model, a process which can be implemented using several different physical and
mathematical approaches. Integration of multiphysics data also helps reduce ambiguity, which is typical for
geophysical inversions. Over the last decades, several approaches were introduced to joint inversion of
geophysical data. The traditional technique is based on using the known petrophysical relationships between
different physical properties of the rocks within the framework of the inversion process LRIEBIAIBIEIABEILN The joint
inversion can use these relationships or can indicate and characterize the existence of this correlation, yielding an

improved final model.

Another approach to joint inversion uses a clustering concept from statistics, which assumes that the subsurface
geology can be described by the models with petrophysical parameters forming a specific number of the known
clusters in the space of the models (e.g., 21112 This approach requires a priori knowledge of the parameters of

these clusters, which is related to the lithology of the rocks.

In the cases where the model parameters are not correlated but nevertheless have similar geometrical features,
joint inversion can be based on structure-coupled constraints. For example, these constraints can be implemented

by the cross-gradient method, which enforces the gradients of the model parameters to be parallel [L3I[14I[15]116][17]

There still exist many challenges in incorporating typical geological complexity in joint inversion. For example,
analytic, empirical, or statistical correlations between different physical properties may exist for only part of the

shared earth model, and their specific form may be unknown. Features or structures that are present in the data of
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one geophysical method may not be present in the data generated by another geophysical method or may not be
equally resolvable.

| 2. Gramian Constraints

Gramian constraints enforce the correlation between different parameters or their transforms Bl They are
implemented by using a Gramian mathematical operator in regularized inversion, which results in producing

multimodal inverse solutions with enhanced correlations between the different model parameters or their attributes.

Let us consider forward geophysical problems for multiple geophysical data sets. These problems can be
described by the following operator relationships:

d{f)=A(f}(m[f}), i=1, 2, 3, - m (1)

where, in a general case, A1 is a nonlinear forward modeling operator ') (i=1, 2, 3, - n) are different
observed data sets  (which  may have different physical natures andf/or parameters); and
m[i} (i=1, 2, 3, - n)are the unknown sets of various physical properties (model parameters).

Note that diverse model parameters may have different physical dimensions (e.g., density is measured in g/cm?,
resistivity is measured in Ohm-m, etc.). It is convenient to introduce the dimensionless weighted model parameters,

m~(i)=Wm(i)m (i), where Wm (i) is the corresponding linear operator of model weighting [Z!.

Joint inversion of multiphysics data can be reduced to minimization of the following parametric functional,

mn

P(ﬁm(ﬂ,ﬁm(z], ﬁa["]) = Z q)(n:m) + as(ﬁa[l].m[z]. ...... , ﬁa[“]), )

i=1

where misfit functionals, q::(m (f}) are defined as follows,

o)) -

A= 1,2, . (3}
Lz

and A[f}(m(f}) (i=1, 2, 3, - n)arethe weighted predicted data:

;m(;m) = W‘{;)A (i}(;ﬁj)_

(4)

where W,Eﬂ is the corresponding linear operator of data weighting.

The selection of the model and data weights was discussed in many publications on inversion theory. For example,
in the framework of the probabilistic approach 18 the weights were determined as inverse data covariance or
model covariance matrices. In the framework of the deterministic approach 2l the weights were determined as
inverse integrated sensitivity matrices.
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Gramian provides a measure of correlation between the different model parameters or their attributes. By imposing
an additional requirement minimizing the Gramian in regularized inversion, we obtain multimodal inverse solutions

with enhanced correlations between the various model parameters.

For example, in the case of two model parameters (e.g., density and magnetic susceptibility), the Gramian is

computed as follows:

S0 @) () 4@
W o ) ( )
o{m %) = (1@0.50)  (:0,40) “

where (:,") stands for the inner product in the corresponding Hilbert space of model parameters [,

In a general case of n model parameters, the Gramian is computed as the determinant of the Gram matrix as

follows:

(nOm®) (D @) o ()
n @0 @D) (@ @) o (@)@

@@, ) = ( | ) ; ) | | ) .
(n® @) () @) o () )

Note that, in Equation (6) and everywhere below we drop the “tilde” sign above the model parameters to simplify
the notations. However, we still consider m(1),m(2), ... m(n) peing the dimensionless weighted or transformed
model parameters.

One can also choose various metrics of the Hilbert space in Equation (6), used in the definition of the Gramian .
This brings additional flexibility to the type of coupling between different model parameters enforced by the

Gramian constraints, which is illustrated below.

We can also introduce a Hilbert space with the metric defined by the covariance between random variables,
representing different model parameters. Under these assumptions, the Gramian stabilizing functional arises as a

determinant of the covariance matrix between different model parameters [20].
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ca'u(m (“}, m{l}) mp{m (”1 m(ﬂ) s cav(m[”],m(”))

In the last formula, cau(m(i].mm) represents a covariance between two random variables, m(i} and m{-i},

describing two different physical properties of the inverse model. MNote that the covariance of a datum with itself is
just the variance:

cou(m (i:l,m(j)) = ::r,?:, (2}

where g; is the standard deviation of model parameter, m(i].
For example, in a case of two model parameters, we have

mv(m(ﬂ,m(ﬂ) gap(m{ll m{z})

r:;(mil},m[ﬂ) = corfm(®) (D) cou{m(2) (2
(n&mlY)  con(mm )
@)
o7 cor{m (2
) cuv(m[z}_m[l}) G% - J%a%[l - rjlz(mlzl}l’m{z}l)]’

where o9 and oo are standard deviations of the random variables corresponding to parameters mm and mm,
respectively, and coefficient n is a correlation coefficient between these two parameters:

o{m @ m®) = eor{m(m(2)) .

T192

The last expression shows that the Gramian provides a measure of correlation between two parameters, m(1)

and m{z}_ Indeed, the Gramian goes to zero when the correlation coefficient is close to one, which corresponds to
linear correlation. This property shows that, by imposing the Gramian constraint, we enforce a linear correlation
between the model parameters.

We have demonstrated above that Gramian approach is based on the concept of linear correlation; however, by
applying this concept to the transforms of the model parameters, we can amplify a variety of different properties in
joint inversion. For example, Gramian of the gradients of the model parameters results in structural correlations.
Gramian applied to the nonlinear transforms of the model parameters results in nonlinear correlations. Gramian
applied locally (in the framework of the localized approach) results in spatially variable relationships between
different physical properties. In short, the Gramian approach is not limited to a strict linear correlation assumption.
This property of Gramian approach will be illustrated below in the sections dedicated to the structural and localized

Gramian-based constraints.
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3. Joint Inversion Using Gramian-Based Structural
Constraints

One of the most widely used approaches to imposing the structural constraints on the results of the joint inversion
is based on the method of cross gradients [L3I4ISII6ILT] The basic idea behind this method is that the gradients
of the model parameters should be parallel in order to enforce the geometrical similarities between the interfaces of
the models. Within the framework of the cross-gradient method, this requirement can be achieved by minimizing

the norm square of the cross product of the gradients of these functions:
2
Scg = ||"i’m[1:| * ‘Fm[z} || = min. (11}

In the framework of the Gramian approach, the same requirement for the gradients of the model parameters being
parallel is achieved by minimizing the structural Gramian functional, G V , which, in a case of two physical

properties, can be written using matrix notations, as follows:

EVIEY MO
() <| (7 T0) (o) "

(vm(z}J vm(ﬂ) (vm(z)’ .i,m(zj)

By minimizing the Gramian functional, G V , we enforce the linear correlation between the gradients of the model
parameters, making these vectors parallel to each other. The method can also be naturally expanded for any
number, n, of the model parameters, by considering the corresponding Gramian matrices between the gradients of
the different parameters. The practical advantage is, again, in the quadratic nature of this functional, which was
demonstrated in [, This property was proved based on the concept of the Gramian space which was shown to

be a Hilbert space with all related useful properties.

For example, we can introduce a stabilizing term in the parametric functional shown in Equation (2) as a

superposition of the structural Gramians between the first and all other physical model parameters:

$(n@m @), ) = G (@), @) + Gv(m{llm{z}j o Gﬁ(mnim{n}), "

Minimization of the expression in the right-hand side of Equation (13) keeps all gradient vectors,

vm(@), vm(@) . v paraliel to each other Considering that the gradient directions are orthogonal to the
interfaces between the structures with contrasting physical properties, this condition results in structural similarities
between the inverse models describing different physical properties of the earth.

| 4. Localized Gramian Constraints
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The constraints based on minimization of the Gramian of the model parameters, Equations (5) and (6), or of their
gradients, Equations (12) and (13), can be treated as the global constraints, because they enforce similar
correlation conditions over the entire inversion domain. In practical applications, however, the specific form of the
correlations may vary within the area of investigation. To address this situation, we can subdivide the inversion
domain, D, into N subdomains, D k , with potentially different types of relationships between the different model

parameters, and define the Gramians, G k , for each of these subdomains separately:

(m,(ﬁl}_ m£ﬂ) (ijl}J m&z}) ______ (mgﬂ.m iEnj)
o (m,ﬁz},ml{: 1}) (m,EZ}, m;{f}) ______ (mgz].m £nj) )
k™ : ; W ; , I
Em;E”jJ m_a(flj) (m;En].m;Ez]) ______ (m _;Eﬂ} m :(‘n::l}

In this case, the localized Gramian constraints will be based on using the following stabilizing functional:
N
Sra(m@m®, () = Z 6. e
k=1

In a similar way, we can introduce localized Gramian-based structural constraints, using the localized Gramian of
model parameter gradients, G V k , defined by the following formula:

(Fm£1}. ‘Fm;[;-l}) ('i"mIEIJ. ?m£z}) (Fmil;,l), "i-"m;(l,n))
(?m£z}. ?m;{;-l}) ('i"mg,z]. ?m;{:z}) (Fmilg,z), 'i’mg,nj)

Cvk = : : o : (16)
(Fmil;ﬂ}, ‘i"m,—Elj) (‘ij(fﬂ}, ij(czj) (‘Fm;[;ﬂ}. ‘i"m_;[;n})

For example, in a case of two model parameters, localized Gramian (16) takes the form:

ICY e W o)
Gv;—(m{j‘lm{z}) = (v “ o ) (v ) T ) = min (117
(Fm&z), 'i'm;El]) (Fmil;z), "i’mg,z])

and the corresponding stabilizing functional is written as follows:
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Evk(m{l}. m{z}) : (18)

SL6V (m(l}' m[Z}) - Z )

k=1

| 5. Joint Focusing Constraints

The structural similarities between various petrophysical models of the subsurface can be enforced by using the
joint total variation or focusing stabilizers 21122l For the solution of a nonlinear inverse problem shown in Equation

(1), following 211221 we introduce the following parametric functional with focusing stabilizers,

P“(m[ﬂ,m[z], ---,m(n}) = Z ||A[l](m[!]) - d{f] | |; + “S}MS,IMGS' (19}
i=1

where the terms Sjus. and Spygs are the joint stabilizing functionals, based on minimum support, and minimum
gradient support constraints, respectively.

The joint minimum support stabilizer,

S MOEORY
Sjn-fs:fff Ei:l( _ap;) dv, (20)
) sy (m@ - m3) 402

is proportional to the combined volume, or support, occupied by domains with anomalous physical parameters for

small e.

Indeed, we can rewrite Equation (20) as follows:
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m{L) mc[!.;:'.]l':l") +22-g2

SiMS = m(i}—mg‘g,,) -

2
Enzl(m(i}—m{l;gr) +g2 [21)

= spt Z (m{f] _mt{zgr)— e? ( (;}_lm(]' ) . dv.

apr

- Eggl(m(i}_mgg.,,)

In Equation (21) we denote by spt ¥, (m (i) — mgﬂ,.), a joint support of (m{i] — m&igr), which is defined as a

volume of the combined closed subdomain of vV where all m(f} +* mgﬁr, i=1.2,..n.
From Equation (21), one can find immediately that

n A N
SjMs = SPt ZEzl(m(i]_m‘Egr} if e=0. 2

Thus, s;us is proportional to the combined anomalous model parameters support for a small e.

It can be easily established by a simple geometrical analysis that the combined anomalous model parameters

support reaches the minimum when the volumes occupied by anomalous domains representing various physical

properties coincide. Indeed, if the anomalous properties are in different locations, their combined support is larger

in comparison to cases when the locations are the same.

A joint minimum gradient support functional (JMGS) is defined as follows:

‘Fm{lj ‘i‘mglj )
(i)

7 (23)
E!_ Vm (1) - Fmﬂpr) + &2

SiMGS =

Repeating the algebraic transformation presented in expression (21), one can demonstrate that:

https://encyclopedia.pub/entry/11918

8/11



Multiphysics Data for Mineral Exploration | Encyclopedia.pub

n . K
SjMGs — spt Zi:l 'F(ml:i'] - m};g]..), if e—0, (24}
where spt T ?(m[i}— mgﬂ,) is a joint support of the gradients of various anomalous model parameters,

'-J'(m{") - m‘[zgr) Therefore, s;ygs is proportional to the joint support of the gradients of different properties of the

rocks. It is obvious that these gradients are directed perpendicular to the interfaces between different lithologies and
they achieve the maximum values at these interfaces. By imposing the minimum joint gradient support constraint, we
force the interfaces expressed in diverse petrophysical parameters to merge, thus ensuring a structural similarity of
the multiphysics inverse problem solutions. The geometrical explanation of this fundamental property of the JMGS
functional is the same as for the case of the JMS functional, discussed above.

The minimization of the parametric functional shown in Equation (19) is based on the re-weighted regularized
conjugate gradient method (RRCG) [, which iteratively updates the model parameters to minimize the parametric
functional and the misfit between the observed and predicted data. The inversion iterates until the misfit reaches a
given threshold.

| 6. Conclusions

Interpretation of multimodal geophysical data represents a data fusion problem, as different geophysical fields
provide information about different physical properties of the Earth. In many cases, various geophysical data are
complementary, making it natural to consider their joint inversion based on correlations between the different
physical properties of the rocks. By using Gramian or joint focusing constraints, we are able to invert jointly
multimodal geophysical data by enforcing the correlations or shape similarities between the different model
parameters or their attributes. The case studies for joint inversion of various geophysical data demonstrate that the

joint inversion enhances the produced subsurface images of the geological target.

References

1. Afnimar, A.; Koketsu, K.; Nakagawa, K. Joint inversion of refraction and gravity data for the three-
dimensional topography of a sediment—basement interface. Geophys. J. Int. 2002, 151, 243-254.

2. Hoversten, G.M.; Cassassuce, F.; Gasperikova, E.; Newman, G.A.; Chen, J.; Rubin, Y.; Hou, Z.;
Vasco, D. Direct reservoir parameter estimation using joint inversion of marine seismic AVA and
CSEM data. Geophysics 2006, 71, C1-C13.

3. Moorkamp, M.; Heincke, B.; Jegen, M.; Robert, A.W.; Hobbs, R.W. A framework for 3-D joint
inversion of MT, gravity and seismic refraction data. Geophys. J. Int. 2011, 184, 477-493.

4. Moorkamp, M.; Lelievre, P.; Linde, N.; Khan, A. Integrated Imaging of the Earth: Theory and
Applications; Geophysical Monograph Series; Wiley: Hoboken, NJ, USA, 2016.

https://encyclopedia.pub/entry/11918 9/11



Multiphysics Data for Mineral Exploration | Encyclopedia.pub

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

. Gao, G.; Abubakar, A.; Habashy, T.M. Joint petrophysical inversion of electromagnetic and full-

waveform seismic data. Geophysics 2012, 77, WA3-WA18.

. Zhdanov, M.S.; Gribenko, A.V.; Wilson, G. Generalized joint inversion of multimodal geophysical

data using Gramian constraints. Geophys. Res. Lett. 2012, 39, L09301.

. Zhdanov, M.S. Inverse Theory and Applications in Geophysics; Elsevier: Amsterdam, The

Netherlands, 2015.

. Giraud, J.; Pakyuz-Charrier, E.; Jessell, M.; Lindsay, M.; Martin, R.; Ogarko, V. Uncertainty

reduction through geologically conditioned petrophysical constraints in joint inversion. Geophysics
2017, 82, ID19-1D34.

. Giraud, J.; Ogarko, V.; Lindsay, M.; Pakyuz-Charrier, E.; Jessell, M.; Martin, R. Sensitivity of

constrained joint inversions to geological and petrophysical input data uncertainties with posterior
geological analysis. Geophys. J. Int. 2019, 218, 666—688.

Leliévre, P.G.; Farquharson, C.G.; Hurich, C.A. Joint inversion of seismic traveltimes and gravity
data on unstructured grids with application to mineral exploration. Geophysics 2012, 77, K1-K15.

Sun, J.; Li, Y. Joint inversion of multiple geophysical data using guided fuzzy c-means clustering.
Geophysics 2016, 81, ID37-1D57.

Sun, J.; Li, Y. Joint inversion of multiple geophysical and petrophysical data using generalized
fuzzy clustering algorithms. Geophys. J. Int. 2017, 208, 1201-1216.

Gallardo, L.A.; Meju, M.A. Characterization of heterogeneous near-surface materials by joint 2D
inversion of DC resistivity and seismic data. Geophys. Res. Lett. 2003, 30, 1658.

Gallardo, L.A.; Meju, M.A. Joint two-dimensional DC resistivity and seismic travel-time inversion
with cross-gradients constraints. J. Geophys. Res. 2004, 109, B03311.

Gallardo, L.A.; Meju, M.A. Joint two-dimensional cross-gradient imaging of magnetotelluric and
seismic traveltime data for structural and lithological classification. Geophys. J. Int. 2007, 169,
1261-1272.

Gallardo, L.A.; Meju, M.A. Structure-coupled multi-physics imaging in geophysical sciences. Rev.
Geophys. 2011, 49, RG1003.

Hu, W.Y.; Abubakar, A.; Habashy, T.M. Joint electromagnetic and seismic inversion using
structural constraints. Geophysics 2009, 74, R99-R109.

Tarantola, A. Inverse Problem Theory; Elsevier: Amsterdam, The Netherlands, 1987.

Zhdanov, M.S. Geophysical Inverse Theory and Regularization Problems; Elsevier: Amsterdam,
The Netherlands, 2002.

https://encyclopedia.pub/entry/11918 10/11



Multiphysics Data for Mineral Exploration | Encyclopedia.pub

20. Shraibman, V.1.; Zhdanov, M.S.; Vitvitsky, O.V. Correlation methods of transformation and
interpretation of geophysical anomalies. Geophys. Prospect. 1980, 28, 919-934.

21. Molodtsov, D.; Troyan, V. Multiphysics joint inversion through joint sparsity regularization. In
Expanded Abstracts, Proceedings of the 88th SEG International Exposition and Annual Meeting,
Houston, TX, USA, 29 September 2017; Society of Exploration Geophysicists: Tulsa, OK, USA,
2017; pp. 1262-1267.

22. Zhdanov, M.S.; Cuma, M. Joint inversion of multimodal data using focusing stabilizers and
Gramian constraints. In Expanded Abstracts, Proceedings of the 89th SEG International
Exposition and Annual Meeting, Anaheim, CA, USA, 14-19 October 2018; Society of Exploration
Geophysicists: Tulsa, OK, USA, 2018; pp. 1430-1434.

Retrieved from https://encyclopedia.pub/entry/history/show/28101

https://encyclopedia.pub/entry/11918 11/11



