

# Current Nanomaterials in Nanomedicine

Subjects: **Nanoscience & Nanotechnology**

Contributor: Chih-Hsin Lin

Anticancer nanomedicines have been studied over 30 years, but fewer than 10 formulations have been approved for clinical therapy today. Despite abundant options of anticancer drugs, it remains challenging to have agents specifically target cancer cells while reducing collateral toxicity to healthy tissue. Nanocompartments that can be selective toward points deeply within malignant tissues are a promising concept, but the heterogeneity of tumor tissue, inefficiency of cargo loading and releasing, and low uniformity of manufacture required from preclinical to commercialization are major obstacles. Technological advances have been made in this field, creating engineered nanomaterials with improved uniformity, flexibility of cargo loading, diversity of surface modification, and less inducible immune responses.

nanoparticles

nanomedicines

nanomaterials

nanotechnology

## 1. Introduction

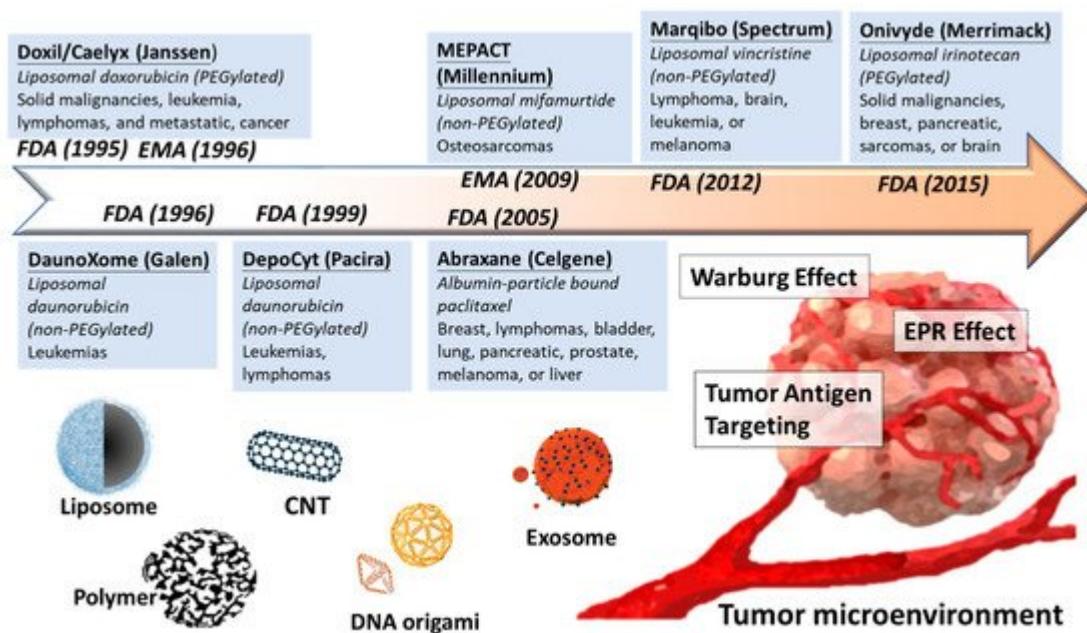
The National Institutes of Health (NIH) defines nanoparticles as structures ranging from 1 to 100 nm in at least one dimension, while current nanoparticles in therapeutic application are acceptable up to hundreds of nm. Considering the tissue junction between capillaries (150–200  $\mu\text{m}$ ), nanoscale structures exhibit unique properties to enhance reactive areas as well as across cell or tissue barriers <sup>[1]</sup>. For pharmacokinetic properties, the optimal size of nanoparticles is around 100 nm in a hydrodynamic diameter.

Currently, nanoparticles are applied to conventional drugs to improve their efficacy and reduce morbidity for advanced cancer therapies. Antitumor cargos are either capsuled or covalently linked to the nanocarrier. The advantage of covalent links is a precise number of therapeutical molecules for each nanoparticle, while the encapsulation of materials provides more flexibility. Many antitumor drugs are hydrophobic, posing challenges for physiological uptake (**Table 1**).

**Table 1.** Hydrophobic and hydrophilic anticancer drugs in clinical use.

| Drug               | Solubility<br>(in Water; 25<br>°C) | Clinical Use                                                                   |
|--------------------|------------------------------------|--------------------------------------------------------------------------------|
| <i>Hydrophobic</i> |                                    |                                                                                |
| Docetaxel          | insoluble (<0.3<br>µg/mL)          | Breast, prostate, non-small cell lung cancer, carcinoma, and<br>adenocarcinoma |

| Drug               | Solubility<br>(in Water; 25<br>°C) | Clinical Use                                                                                                                                         |
|--------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paclitaxel         | insoluble (<0.3<br>µg/mL)          | AIDS-related Kaposi sarcoma, breast, ovarian, and non-small cell lung cancer                                                                         |
| Alitretinoin       | 0.6 µg/mL                          | Acute promyelocytic leukemia, and AIDS-related Kaposi sarcoma                                                                                        |
| Etoposide          | 0.03 mg/mL                         | Small cell lung and testicular cancer                                                                                                                |
| Cisplatin          | 2.5 mg/ml                          | Testicular, ovarian, breast, glioblastoma, non-small cell lung cancer, malignant mesothelioma, and lymphoma                                          |
| Methotrexate       | 2.6 mg/mL                          | ALL, breast, and lung, head and neck cancer, non-Hodgkin lymphoma, and osteosarcoma                                                                  |
| Fludarabine        | 3.53 mg/mL                         | CLL                                                                                                                                                  |
| Doxorubicin        | 10 mg/mL                           | ALL, AML, neuroblastoma, soft tissue and bone sarcomas, breast, ovary, urinary bladder, thyroid, gastric, thyroid, gastric cancer, Hodgkin's disease |
| Irinotecan HCL     | 25 mg/mL                           | Colon, and rectal cancer                                                                                                                             |
| Cyclophosphamide   | 15.1 mg/mL                         | ALL, AML, CLL, CML, breast cancer, Hodgkin lymphoma, multiple myeloma, and neuroblastoma                                                             |
| Gemcitabine        | 51.3 mg/mL                         | Pancreatic, breast, ovarian, and non-small cell lung cancer                                                                                          |
| <i>Hydrophilic</i> |                                    |                                                                                                                                                      |


Besides stabilizing anticancer agents, designed nanoparticles can also enhance the delivery efficacy by targeting cancer lesions. This concept led to variable nanoparticle designs fitting physicochemical properties via surface modification for a multitude of biomedical applications. The targeting ability of nanoparticles, either passive or active, is aimed for enhancement of drug concentration within the specific tissue of interest, such as tumors, while limiting toxicity to healthy organs. Passive targeting depends on pathophysiological characteristics of tumor vessels, enabling nanomaterials to accumulate in the microenvironment. In tumor tissue, fast angiogenesis with highly disorganized and loosened vessel structure leads to enlarged gap junctions between endothelial cells, resulting in enhanced permeability and retention (EPR) effect [2]. The EPR effect allows diffusion of molecules less than 400 nm in diameter, which is suitable for nanoscale complex. The other phenomenon generally observed in tumor tissue is the Warburg effect, a local high metabolic and glycolysis rate result in an acidic environment [3]. Designed pH-sensitive biocarrier could be stable at physiological pH = 7.4, but rapidly disassembled and released payload once it reaches an acidic microenvironment. Common design of pH-sensitive nanoparticle is based on polymers with pKa in the range of 6.5–7.2, such as poly(L-histidine) (PHis) and poly(β-amino esters).

Unlike passive targeting, active delivery incorporates other high-affinity molecules to recognize cells directly. Active targeting based on surface receptors on target cells has been widely explored since malignant cells upregulate

certain tumor-preferred receptors. For example, transferrin receptor (TfR) and folate receptors (FRs) are physiologically expressed on various normal cells but overexpressed in many cancer types in response to their higher metabolic rate [4][5].

Conjugation is the process to join the recognition molecules with the therapeutical complex, including direct conjugation or indirect method via linker. One of the main challenges in conjugation design is homogeneity of the molecules. By using a hydrazone ligation, Dawson et al. synthesized viral nanoparticles and conjugated with VEGFR-1 ligand (F56f peptide) on benzaldehyde cowpea mosaic virus nanoparticle for tumor targeting and imaging [6]. Moreover, considering orientations of ligands or antibodies; thus, conjugation via linker chemistry is better than direct conjugation for targeting molecules to nanoparticle.

Overall, development of nanomedicine from past decades is a proof of concept to selectively increase the concentration of anticancer agents in tumor malignancy but minimize the side effect from healthy tissues (Figure 1).



**Figure 1.** Development for nanomedicine reaching for tumor microenvironment. In past decades, plenty of nanocarriers are moving from preclinical bench work into clinical trial and finally approved for cancer therapy. The driving force of nanomedicine toward tumor microenvironment could be passive or active. Passive delivery relies on loose tumor vessels (EPR effect) and low pH (Warburg effect), while the active delivery can directly recognize tumor antigens by conjugating high-affinity molecules. Various novel and advanced materials of nanocarriers are designed for drug delivery, including liposome, polymer, CNT, DNA origami, and exosome.

## 2. Current Materials in Nanomedicine

### 2.1. Lipocomplex

Liposomal nanocomplex is the first delivery tool since the first discovery in the 1960s by A.D Bangham's group. Liposome formulation ranges from 50 to 200 nm with spherical vesicles composed of phospholipids, and steroids form bilayers in aqueous media can benefit as biocarriers [7][8]. The properties of liposome were simply applied to increase the solubility of hydrophobic molecules and accelerate physiological metabolism in the beginning. For example, plenty of liposome formulations tried to fit numerous biochemical agents and provide less toxic than the free form. Liposomes were used to deliver lysophosphatidic acids and its analog which regulate normal or malignant blood cell differentiation and proliferation [9][10]. However, the liposomal formulations in this period faced a severe problem of short pharmacokinetic half-life, until the "stealth liposomes" was designed the 1990s. The second generation of liposome introduced the surface polyethylene glycol (PEG) coating, which highly improved stability and longer circulation time by alleviating the uptake of macrophages [11][12]. The PEGylation, constructed with a hydrophilic film on surface, can protect the liposome from clearance of reticuloendothelial system, making liposomal delivery clinical practical.

Several lipid complexes have been approved for clinical treatment after fifty years studying of lipocomplex (**Table 2**).

**Table 2.** Nanotherapeutics approved for oncological therapy.

| Name                             | Particle Base          | Anticancer Drug | Cancer Type                            | Approval  |
|----------------------------------|------------------------|-----------------|----------------------------------------|-----------|
| <i>Liposome-based</i>            |                        |                 |                                        |           |
| <b>Doxil/Caelyx</b><br>(Janssen) | PEGylated liposome     | Doxorubicin     | Ovarian, breast cancer, leukemia       | FDA, 1995 |
| <b>DaunoXome</b><br>(Galen)      | Non-PEGylated liposome | Daunorubicin    | HIV-related Kaposi sarcoma             | FDA, 1996 |
| <b>DepoCyt</b> (Pacira)          | Non-PEGylated liposome | Cytarabine      | AML, non-Hodgkin lymphoma              | FDA, 1999 |
| <b>Myocet</b> (Teva UK)          | Non-PEGylated liposome | Doxorubicin     | Metastatic breast cancer               | EMA, 2000 |
| <b>Marqibo</b> (Spectrum)        | Non-PEGylated liposome | Vincristine     | Ph-ALL, Non-Hodgkin's lymphoma         | FDA, 2012 |
| <b>Onivyde</b><br>(Merrimack)    | PEGylated liposome     | irinotecan      | Breast, pancreatic, sarcomas, or brain | FDA, 2015 |
| <i>Polymer-based</i>             |                        |                 |                                        |           |
| <b>Oncaspar</b> (Sigma Tau)      | PEGylation             | L-asparaginase  | ALL                                    | FDA, 1994 |
| <b>Abraxane</b>                  | Albumin-bound          | Paclitaxel      | Metastatic pancreatic cancer           | FDA, 2005 |

P.E. Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging

| Name      | Particle Base | Anticancer Drug | Cancer Type | Approval   |
|-----------|---------------|-----------------|-------------|------------|
| (Celgene) | polymer       |                 |             | biological |

cell membranes. *Nature* 1962, **196**, 952–955.

## 2.2. Polymeric and Dendrimer Nanoparticles

8. Bangham, A.D.; Horne, R.W. Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents as Observed in the Electron Microscope. *J. Mol. Biol.* 1964, **8**, 660–668.
9. Bentrop, A.M.; Gerrard, J.M.; Michel, T.; Kindom, S.E. Are lysophosphatidic acids or phosphatidic acid polymers (e.g. glycerophospholipid, glycolipid, and polymerate) more active than phosphatidic acid gel and oil? [\[13\]](#) [\[14\]](#) [\[15\]](#) [\[16\]](#) [\[17\]](#) [\[18\]](#) [\[19\]](#) [\[20\]](#) [\[21\]](#) [\[22\]](#) [\[23\]](#) [\[24\]](#) [\[25\]](#) [\[26\]](#) [\[27\]](#) [\[28\]](#) [\[29\]](#) [\[30\]](#) [\[31\]](#) [\[32\]](#) [\[33\]](#) [\[34\]](#) [\[35\]](#) [\[36\]](#) [\[37\]](#) [\[38\]](#) [\[39\]](#) [\[40\]](#) [\[41\]](#) [\[42\]](#) [\[43\]](#) [\[44\]](#) [\[45\]](#) [\[46\]](#) [\[47\]](#) [\[48\]](#) [\[49\]](#) [\[50\]](#) [\[51\]](#) [\[52\]](#) [\[53\]](#) [\[54\]](#) [\[55\]](#) [\[56\]](#) [\[57\]](#) [\[58\]](#) [\[59\]](#) [\[60\]](#) [\[61\]](#) [\[62\]](#) [\[63\]](#) [\[64\]](#) [\[65\]](#) [\[66\]](#) [\[67\]](#) [\[68\]](#) [\[69\]](#) [\[70\]](#) [\[71\]](#) [\[72\]](#) [\[73\]](#) [\[74\]](#) [\[75\]](#) [\[76\]](#) [\[77\]](#) [\[78\]](#) [\[79\]](#) [\[80\]](#) [\[81\]](#) [\[82\]](#) [\[83\]](#) [\[84\]](#) [\[85\]](#) [\[86\]](#) [\[87\]](#) [\[88\]](#) [\[89\]](#) [\[90\]](#) [\[91\]](#) [\[92\]](#) [\[93\]](#) [\[94\]](#) [\[95\]](#) [\[96\]](#) [\[97\]](#) [\[98\]](#) [\[99\]](#) [\[100\]](#) [\[101\]](#) [\[102\]](#) [\[103\]](#) [\[104\]](#) [\[105\]](#) [\[106\]](#) [\[107\]](#) [\[108\]](#) [\[109\]](#) [\[110\]](#) [\[111\]](#) [\[112\]](#) [\[113\]](#) [\[114\]](#) [\[115\]](#) [\[116\]](#) [\[117\]](#) [\[118\]](#) [\[119\]](#) [\[120\]](#) [\[121\]](#) [\[122\]](#) [\[123\]](#) [\[124\]](#) [\[125\]](#) [\[126\]](#) [\[127\]](#) [\[128\]](#) [\[129\]](#) [\[130\]](#) [\[131\]](#) [\[132\]](#) [\[133\]](#) [\[134\]](#) [\[135\]](#) [\[136\]](#) [\[137\]](#) [\[138\]](#) [\[139\]](#) [\[140\]](#) [\[141\]](#) [\[142\]](#) [\[143\]](#) [\[144\]](#) [\[145\]](#) [\[146\]](#) [\[147\]](#) [\[148\]](#) [\[149\]](#) [\[150\]](#) [\[151\]](#) [\[152\]](#) [\[153\]](#) [\[154\]](#) [\[155\]](#) [\[156\]](#) [\[157\]](#) [\[158\]](#) [\[159\]](#) [\[160\]](#) [\[161\]](#) [\[162\]](#) [\[163\]](#) [\[164\]](#) [\[165\]](#) [\[166\]](#) [\[167\]](#) [\[168\]](#) [\[169\]](#) [\[170\]](#) [\[171\]](#) [\[172\]](#) [\[173\]](#) [\[174\]](#) [\[175\]](#) [\[176\]](#) [\[177\]](#) [\[178\]](#) [\[179\]](#) [\[180\]](#) [\[181\]](#) [\[182\]](#) [\[183\]](#) [\[184\]](#) [\[185\]](#) [\[186\]](#) [\[187\]](#) [\[188\]](#) [\[189\]](#) [\[190\]](#) [\[191\]](#) [\[192\]](#) [\[193\]](#) [\[194\]](#) [\[195\]](#) [\[196\]](#) [\[197\]](#) [\[198\]](#) [\[199\]](#) [\[200\]](#) [\[201\]](#) [\[202\]](#) [\[203\]](#) [\[204\]](#) [\[205\]](#) [\[206\]](#) [\[207\]](#) [\[208\]](#) [\[209\]](#) [\[210\]](#) [\[211\]](#) [\[212\]](#) [\[213\]](#) [\[214\]](#) [\[215\]](#) [\[216\]](#) [\[217\]](#) [\[218\]](#) [\[219\]](#) [\[220\]](#) [\[221\]](#) [\[222\]](#) [\[223\]](#) [\[224\]](#) [\[225\]](#) [\[226\]](#) [\[227\]](#) [\[228\]](#) [\[229\]](#) [\[230\]](#) [\[231\]](#) [\[232\]](#) [\[233\]](#) [\[234\]](#) [\[235\]](#) [\[236\]](#) [\[237\]](#) [\[238\]](#) [\[239\]](#) [\[240\]](#) [\[241\]](#) [\[242\]](#) [\[243\]](#) [\[244\]](#) [\[245\]](#) [\[246\]](#) [\[247\]](#) [\[248\]](#) [\[249\]](#) [\[250\]](#) [\[251\]](#) [\[252\]](#) [\[253\]](#) [\[254\]](#) [\[255\]](#) [\[256\]](#) [\[257\]](#) [\[258\]](#) [\[259\]](#) [\[260\]](#) [\[261\]](#) [\[262\]](#) [\[263\]](#) [\[264\]](#) [\[265\]](#) [\[266\]](#) [\[267\]](#) [\[268\]](#) [\[269\]](#) [\[270\]](#) [\[271\]](#) [\[272\]](#) [\[273\]](#) [\[274\]](#) [\[275\]](#) [\[276\]](#) [\[277\]](#) [\[278\]](#) [\[279\]](#) [\[280\]](#) [\[281\]](#) [\[282\]](#) [\[283\]](#) [\[284\]](#) [\[285\]](#) [\[286\]](#) [\[287\]](#) [\[288\]](#) [\[289\]](#) [\[290\]](#) [\[291\]](#) [\[292\]](#) [\[293\]](#) [\[294\]](#) [\[295\]](#) [\[296\]](#) [\[297\]](#) [\[298\]](#) [\[299\]](#) [\[300\]](#) [\[301\]](#) [\[302\]](#) [\[303\]](#) [\[304\]](#) [\[305\]](#) [\[306\]](#) [\[307\]](#) [\[308\]](#) [\[309\]](#) [\[310\]](#) [\[311\]](#) [\[312\]](#) [\[313\]](#) [\[314\]](#) [\[315\]](#) [\[316\]](#) [\[317\]](#) [\[318\]](#) [\[319\]](#) [\[320\]](#) [\[321\]](#) [\[322\]](#) [\[323\]](#) [\[324\]](#) [\[325\]](#) [\[326\]](#) [\[327\]](#) [\[328\]](#) [\[329\]](#) [\[330\]](#) [\[331\]](#) [\[332\]](#) [\[333\]](#) [\[334\]](#) [\[335\]](#) [\[336\]](#) [\[337\]](#) [\[338\]](#) [\[339\]](#) [\[340\]](#) [\[341\]](#) [\[342\]](#) [\[343\]](#) [\[344\]](#) [\[345\]](#) [\[346\]](#) [\[347\]](#) [\[348\]](#) [\[349\]](#) [\[350\]](#) [\[351\]](#) [\[352\]](#) [\[353\]](#) [\[354\]](#) [\[355\]](#) [\[356\]](#) [\[357\]](#) [\[358\]](#) [\[359\]](#) [\[360\]](#) [\[361\]](#) [\[362\]](#) [\[363\]](#) [\[364\]](#) [\[365\]](#) [\[366\]](#) [\[367\]](#) [\[368\]](#) [\[369\]](#) [\[370\]](#) [\[371\]](#) [\[372\]](#) [\[373\]](#) [\[374\]](#) [\[375\]](#) [\[376\]](#) [\[377\]](#) [\[378\]](#) [\[379\]](#) [\[380\]](#) [\[381\]](#) [\[382\]](#) [\[383\]](#) [\[384\]](#) [\[385\]](#) [\[386\]](#) [\[387\]](#) [\[388\]](#) [\[389\]](#) [\[390\]](#) [\[391\]](#) [\[392\]](#) [\[393\]](#) [\[394\]](#) [\[395\]](#) [\[396\]](#) [\[397\]](#) [\[398\]](#) [\[399\]](#) [\[400\]](#) [\[401\]](#) [\[402\]](#) [\[403\]](#) [\[404\]](#) [\[405\]](#) [\[406\]](#) [\[407\]](#) [\[408\]](#) [\[409\]](#) [\[410\]](#) [\[411\]](#) [\[412\]](#) [\[413\]](#) [\[414\]](#) [\[415\]](#) [\[416\]](#) [\[417\]](#) [\[418\]](#) [\[419\]](#) [\[420\]](#) [\[421\]](#) [\[422\]](#) [\[423\]](#) [\[424\]](#) [\[425\]](#) [\[426\]](#) [\[427\]](#) [\[428\]](#) [\[429\]](#) [\[430\]](#) [\[431\]](#) [\[432\]](#) [\[433\]](#) [\[434\]](#) [\[435\]](#) [\[436\]](#) [\[437\]](#) [\[438\]](#) [\[439\]](#) [\[440\]](#) [\[441\]](#) [\[442\]](#) [\[443\]](#) [\[444\]](#) [\[445\]](#) [\[446\]](#) [\[447\]](#) [\[448\]](#) [\[449\]](#) [\[450\]](#) [\[451\]](#) [\[452\]](#) [\[453\]](#) [\[454\]](#) [\[455\]](#) [\[456\]](#) [\[457\]](#) [\[458\]](#) [\[459\]](#) [\[460\]](#) [\[461\]](#) [\[462\]](#) [\[463\]](#) [\[464\]](#) [\[465\]](#) [\[466\]](#) [\[467\]](#) [\[468\]](#) [\[469\]](#) [\[470\]](#) [\[471\]](#) [\[472\]](#) [\[473\]](#) [\[474\]](#) [\[475\]](#) [\[476\]](#) [\[477\]](#) [\[478\]](#) [\[479\]](#) [\[480\]](#) [\[481\]](#) [\[482\]](#) [\[483\]](#) [\[484\]](#) [\[485\]](#) [\[486\]](#) [\[487\]](#) [\[488\]](#) [\[489\]](#) [\[490\]](#) [\[491\]](#) [\[492\]](#) [\[493\]](#) [\[494\]](#) [\[495\]](#) [\[496\]](#) [\[497\]](#) [\[498\]](#) [\[499\]](#) [\[500\]](#) [\[501\]](#) [\[502\]](#) [\[503\]](#) [\[504\]](#) [\[505\]](#) [\[506\]](#) [\[507\]](#) [\[508\]](#) [\[509\]](#) [\[510\]](#) [\[511\]](#) [\[512\]](#) [\[513\]](#) [\[514\]](#) [\[515\]](#) [\[516\]](#) [\[517\]](#) [\[518\]](#) [\[519\]](#) [\[520\]](#) [\[521\]](#) [\[522\]](#) [\[523\]](#) [\[524\]](#) [\[525\]](#) [\[526\]](#) [\[527\]](#) [\[528\]](#) [\[529\]](#) [\[530\]](#) [\[531\]](#) [\[532\]](#) [\[533\]](#) [\[534\]](#) [\[535\]](#) [\[536\]](#) [\[537\]](#) [\[538\]](#) [\[539\]](#) [\[540\]](#) [\[541\]](#) [\[542\]](#) [\[543\]](#) [\[544\]](#) [\[545\]](#) [\[546\]](#) [\[547\]](#) [\[548\]](#) [\[549\]](#) [\[550\]](#) [\[551\]](#) [\[552\]](#) [\[553\]](#) [\[554\]](#) [\[555\]](#) [\[556\]](#) [\[557\]](#) [\[558\]](#) [\[559\]](#) [\[560\]](#) [\[561\]](#) [\[562\]](#) [\[563\]](#) [\[564\]](#) [\[565\]](#) [\[566\]](#) [\[567\]](#) [\[568\]](#) [\[569\]](#) [\[570\]](#) [\[571\]](#) [\[572\]](#) [\[573\]](#) [\[574\]](#) [\[575\]](#) [\[576\]](#) [\[577\]](#) [\[578\]](#) [\[579\]](#) [\[580\]](#) [\[581\]](#) [\[582\]](#) [\[583\]](#) [\[584\]](#) [\[585\]](#) [\[586\]](#) [\[587\]](#) [\[588\]](#) [\[589\]](#) [\[590\]](#) [\[591\]](#) [\[592\]](#) [\[593\]](#) [\[594\]](#) [\[595\]](#) [\[596\]](#) [\[597\]](#) [\[598\]](#) [\[599\]](#) [\[600\]](#) [\[601\]](#) [\[602\]](#) [\[603\]](#) [\[604\]](#) [\[605\]](#) [\[606\]](#) [\[607\]](#) [\[608\]](#) [\[609\]](#) [\[610\]](#) [\[611\]](#) [\[612\]](#) [\[613\]](#) [\[614\]](#) [\[615\]](#) [\[616\]](#) [\[617\]](#) [\[618\]](#) [\[619\]](#) [\[620\]](#) [\[621\]](#) [\[622\]](#) [\[623\]](#) [\[624\]](#) [\[625\]](#) [\[626\]](#) [\[627\]](#) [\[628\]](#) [\[629\]](#) [\[630\]](#) [\[631\]](#) [\[632\]](#) [\[633\]](#) [\[634\]](#) [\[635\]](#) [\[636\]](#) [\[637\]](#) [\[638\]](#) [\[639\]](#) [\[640\]](#) [\[641\]](#) [\[642\]](#) [\[643\]](#) [\[644\]](#) [\[645\]](#) [\[646\]](#) [\[647\]](#) [\[648\]](#) [\[649\]](#) [\[650\]](#) [\[651\]](#) [\[652\]](#) [\[653\]](#) [\[654\]](#) [\[655\]](#) [\[656\]](#) [\[657\]](#) [\[658\]](#) [\[659\]](#) [\[660\]](#) [\[661\]](#) [\[662\]](#) [\[663\]](#) [\[664\]](#) [\[665\]](#) [\[666\]](#) [\[667\]](#) [\[668\]](#) [\[669\]](#) [\[670\]](#) [\[671\]](#) [\[672\]](#) [\[673\]](#) [\[674\]](#) [\[675\]](#) [\[676\]](#) [\[677\]](#) [\[678\]](#) [\[679\]](#) [\[680\]](#) [\[681\]](#) [\[682\]](#) [\[683\]](#) [\[684\]](#) [\[685\]](#) [\[686\]](#) [\[687\]](#) [\[688\]](#) [\[689\]](#) [\[690\]](#) [\[691\]](#) [\[692\]](#) [\[693\]](#) [\[694\]](#) [\[695\]](#) [\[696\]](#) [\[697\]](#) [\[698\]](#) [\[699\]](#) [\[700\]](#) [\[701\]](#) [\[702\]](#) [\[703\]](#) [\[704\]](#) [\[705\]](#) [\[706\]](#) [\[707\]](#) [\[708\]](#) [\[709\]](#) [\[710\]](#) [\[711\]](#) [\[712\]](#) [\[713\]](#) [\[714\]](#) [\[715\]](#) [\[716\]](#) [\[717\]](#) [\[718\]](#) [\[719\]](#) [\[720\]](#) [\[721\]](#) [\[722\]](#) [\[723\]](#) [\[724\]](#) [\[725\]](#) [\[726\]](#) [\[727\]](#) [\[728\]](#) [\[729\]](#) [\[730\]](#) [\[731\]](#) [\[732\]](#) [\[733\]](#) [\[734\]](#) [\[735\]](#) [\[736\]](#) [\[737\]](#) [\[738\]](#) [\[739\]](#) [\[740\]](#) [\[741\]](#) [\[742\]](#) [\[743\]](#) [\[744\]](#) [\[745\]](#) [\[746\]](#) [\[747\]](#) [\[748\]](#) [\[749\]](#) [\[750\]](#) [\[751\]](#) [\[752\]](#) [\[753\]](#) [\[754\]](#) [\[755\]](#) [\[756\]](#) [\[757\]](#) [\[758\]](#) [\[759\]](#) [\[760\]](#) [\[761\]](#) [\[762\]](#) [\[763\]](#) [\[764\]](#) [\[765\]](#) [\[766\]](#) [\[767\]](#) [\[768\]](#) [\[769\]](#) [\[770\]](#) [\[771\]](#) [\[772\]](#) [\[773\]](#) [\[774\]](#) [\[775\]](#) [\[776\]](#) [\[777\]](#) [\[778\]](#) [\[779\]](#) [\[780\]](#) [\[781\]](#) [\[782\]](#) [\[783\]](#) [\[784\]](#) [\[785\]](#) [\[786\]](#) [\[787\]](#) [\[788\]](#) [\[789\]](#) [\[790\]](#) [\[791\]](#) [\[792\]](#) [\[793\]](#) [\[794\]](#) [\[795\]](#) [\[796\]](#) [\[797\]](#) [\[798\]](#) [\[799\]](#) [\[800\]](#) [\[801\]](#) [\[802\]](#) [\[803\]](#) [\[804\]](#) [\[805\]](#) [\[806\]](#) [\[807\]](#) [\[808\]](#) [\[809\]](#) [\[810\]](#) [\[811\]](#) [\[812\]](#) [\[813\]](#) [\[814\]](#) [\[815\]](#) [\[816\]](#) [\[817\]](#) [\[818\]](#) [\[819\]](#) [\[820\]](#) [\[821\]](#) [\[822\]](#) [\[823\]](#) [\[824\]](#) [\[825\]](#) [\[826\]](#) [\[827\]](#) [\[828\]](#) [\[829\]](#) [\[830\]](#) [\[831\]](#) [\[832\]](#) [\[833\]](#) [\[834\]](#) [\[835\]](#) [\[836\]](#) [\[837\]](#) [\[838\]](#) [\[839\]](#) [\[840\]](#) [\[841\]](#) [\[842\]](#) [\[843\]](#) [\[844\]](#) [\[845\]](#) [\[846\]](#) [\[847\]](#) [\[848\]](#) [\[849\]](#) [\[850\]](#) [\[851\]](#) [\[852\]](#) [\[853\]](#) [\[854\]](#) [\[855\]](#) [\[856\]](#) [\[857\]](#) [\[858\]](#) [\[859\]](#) [\[860\]](#) [\[861\]](#) [\[862\]](#) [\[863\]](#) [\[864\]](#) [\[865\]](#) [\[866\]](#) [\[867\]](#) [\[868\]](#) [\[869\]](#) [\[870\]](#) [\[871\]](#) [\[872\]](#) [\[873\]](#) [\[874\]](#) [\[875\]](#) [\[876\]](#) [\[877\]](#) [\[878\]](#) [\[879\]](#) [\[880\]](#) [\[881\]](#) [\[882\]](#) [\[883\]](#) [\[884\]](#) [\[885\]](#) [\[886\]](#) [\[887\]](#) [\[888\]](#) [\[889\]](#) [\[890\]](#) [\[891\]](#) [\[892\]](#) [\[893\]](#) [\[894\]](#) [\[895\]](#) [\[896\]](#) [\[897\]](#) [\[898\]](#) [\[899\]](#) [\[900\]](#) [\[901\]](#) [\[902\]](#) [\[903\]](#) [\[904\]](#) [\[905\]](#) [\[906\]](#) [\[907\]](#) [\[908\]](#) [\[909\]](#) [\[910\]](#) [\[911\]](#) [\[912\]](#) [\[913\]](#) [\[914\]](#) [\[915\]](#) [\[916\]](#) [\[917\]](#) [\[918\]](#) [\[919\]](#) [\[920\]](#) [\[921\]](#) [\[922\]](#) [\[923\]](#) [\[924\]](#) [\[925\]](#) [\[926\]](#) [\[927\]](#) [\[928\]](#) [\[929\]](#) [\[930\]](#) [\[931\]](#) [\[932\]](#) [\[933\]](#) [\[934\]](#) [\[935\]](#) [\[936\]](#) [\[937\]](#) [\[938\]](#) [\[939\]](#) [\[940\]](#) [\[941\]](#) [\[942\]](#) [\[943\]](#) [\[944\]](#) [\[945\]](#) [\[946\]](#) [\[947\]](#) [\[948\]](#) [\[949\]](#) [\[950\]](#) [\[951\]](#) [\[952\]](#) [\[953\]](#) [\[954\]](#) [\[955\]](#) [\[956\]](#) [\[957\]](#) [\[958\]](#) [\[959\]](#) [\[960\]](#) [\[961\]](#) [\[962\]](#) [\[963\]](#) [\[964\]](#) [\[965\]](#) [\[966\]](#) [\[967\]](#) [\[968\]](#) [\[969\]](#) [\[970\]](#) [\[971\]](#) [\[972\]](#) [\[973\]](#) [\[974\]](#) [\[975\]](#) [\[976\]](#) [\[977\]](#) [\[978\]](#) [\[979\]](#) [\[980\]](#) [\[981\]](#) [\[982\]](#) [\[983\]](#) [\[984](#)

20. Estamahroob, T.; Orlita, M.; AlyRob (amidoamine)s (PAMAM) dendrimers for targeted drug delivery of a single payload. *Journal of Biomedical Applications and Drugs Discovery*. 2011, 6, 127–136.

21. Fan, W.; Wang, X.; Ding, B.; Cai, H.; Wang, X.; Fan, Y.; Li, Y.; Liu, S.; Nie, S.; Lu, Q. Thioaptamer of nanotube could improve biomedical reagent delivery with advanced chemical modification on its surface. *Conjugated CD44-targeted delivery system for the treatment of breast cancer in vitro and in vivo*. *J. Drug Target*. 2015, 1–13.

22. Wang, Y.; Guo, R.; Cao, X.; Shen, M.; Shi, X. Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. *Biomaterials*. 2011, 32, 3322–3329.

23. Madani, S.Y.; Mandel, A.; Seifalian, A.M. A concise review of carbon nanotube's toxicology. *Nano Rev.* 2013, 4, 21921.

24. He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon nanotubes: modification. Al Faraj et al. have recently demonstrated enhancement of delivery of doxorubicin by antibody-conjugated magnetic SWCNTs, which can also perform as a noninvasive imaging biomarker [\[25\]](#)[\[26\]](#). A. Pistone et al.

25. Al Faraj, A.; Olofsson, K.; Hydri, M.; Gaitan, S.; Dam, S. *SWCNTs as a biocompatible magnetic drug delivery system of Carbon Nanotube-Based Distribution Using Magnetic Resonance Imaging*. *Nano Lett.* 2009, 9, 27.

## 2.4 Nucleotide-Based Origami

- 2.4. Nucleotide-Based Origami  
 26. Al Faraj, A.; Shaik, A.P.; Shaik, A.S. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: Noninvasive monitoring using a Rothenmund in 2008 weighted magnetic resonance imaging as sensitive imaging biomarker. *Int. J. Nanomed.* 2015, 10, 157–168. In the 2000s, DNA origami was widely investigated as candidates to serve as the next-generation drug-delivery vehicle [30]. Compared to other nanoscale methods for drug delivery, such as 27. Pistoia, A.; Iahnazzo, D.; Panseri, S.; Montesi, M.; Tampieri, A.; Galvagno, S. Hydroxyapatite-lipocomplex and inorganic nanoparticles, nucleotide-based origami performs several advantages: (i) uniformity of magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for size, shape, and charge for each particle with self-assembled nanostructures; and (ii) precise control of the cargo bone tissue engineering. *Nanotechnology* 2014, 25, 425701.  
 loading on the scaffold by specific oligos or functional groups. The small DNA nanocarrier could serve as an 28. O'Neill, P.; Rothenmund, P.W.; Kumar, A.; Engelson, D.K.; Sturdier, DNA nanotubes via ligation, effective delivery tool for anticancer drugs, RNA interference reagents, oligo-DNA, and antigen molecules, either in Nano Lett. 2006, 6, 1379–1383.  
 vitro or in vivo. Jiang et al. first showed a high level of doxorubicin loaded in DNA origami, and the complex exhibited prominent cytotoxicity in human breast cancer cells (MCF-7) and doxorubicin-resistant cancer cells [31].  
 29. Rothenmund, P.W. Polding DNA to create nanoscale shapes and patterns. *Nature* 2006, 440, 297–

## 2.5. Exosome-Derived Vehicle

30. Shih, W.M.; Quispe, J.D.; Joyce, G.F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale extracellular vesicle. *Nature* 2004, **427**, 181–181. Exosomes contain non-coding RNAs [30] that are present in many and perhaps all biological fluids for cellular communication. Exosomes were first described by Trams et al. and later substantiated by Jiang, Q.; Song, C.; Nangréave, J.; Liu, X.; Lin, L.; Qiu, D.; Wang, Z.G.; Zou, G.; Liang, X.; Yan, Johnstone et al. who observed intracellular interaction with small particles [32][33]. The main function of exosome H., et al. DNA origami as a carrier for circumvention of drug resistance. *J. Am. Chem. Soc.* 2012, was suggested as a route of cellular communication, which allows cells to exchange biomaterials, such as RNA, 134, 13396–13403. proteins, and lipid components. Since it is composed of partial cellular membrane, implying properties of high compatibility, low toxicity, and limited immunostimulation, exosomes are now regarded as a potential carrier of 32. Trams, E.G.; Lauter, C.J.; Salem, N.; Heine, H. Exfoliation of Membrane Eco-Enzymes in the Form of Micro-Vesicles. *Biochim. Biophys. Acta* 1981, **645**, 63–70. cargo to be delivered to the secondary cell. The lipid composition of exosome shares certain similarity to parental

33. Johnston, R.; McGuigan, M.; Hammar, P.; Cull, L.; Turbide, C. Vesicle Formation Induced by Phosphatidylserine Maturation Activity in Plasma Membrane Vesicles. *Science* 1984, 234, 1156–1159. Released Vesicles (Exosomes). *J. Biol. Chem.* 1987, 262, 9412–9420.

## 3 Conclusions

34. Rappa, S.; Capita, J.; Anzanello, F.; Pope, R.M.; Lorico, A. Biochemical and biological characterization of exosomes containing prominin-1/CD133. *Mol. Cancer* 2013, 12, 1–7.
- Nanocarriers are designed to improve the pharmacological and therapeutic properties from traditional free drugs.
35. Zhang, Y.; Hong, H.; Cai, W. PET Tracers Based on Zirconium-89. *Curr. Radiopharm.* 2011, 4, 131–139. With growing knowledge of tumor heterogeneity and identified biomarkers, new nanomedicines are optimized with efficiency and selection to tumor lesions. From briefly prolonging circulation time to leading anticancer drugs toward lesions, the control of releasing would be the next step. Patients would benefit from the reduction of dosage index as concentrating therapeutic reagents pharmacologically to local tumor tissue and avoiding the universal side effect.
36. Siva, O.O.; Pinto, J.O.; Lopes, J.M.; Almeida, A.J.; Gaspar, M.M.; Reis, C. Current trends in cancer nanotheranostics: metals, polymers, and lipid-based systems. *Pharmaceutics* 2019, 11, 22.

Retrieved from <https://encyclopedia.pub/entry/history/show/32371>

Increasing the need for a new strategy of disease treatment achieves the coordination of diagnosis and therapy by using advanced nanomaterials. The new direction of nanotechnology attempts to integrate therapeutics and diagnostics into a single nanomaterial, referred to as theranostics. The concept of theranostics provide the major applications in clinics which can improve targeted delivery, achieve gene delivery, and have the disease monitoring with the imaging platform by well-engineered nanoparticles. Currently, the pharmaceutical company Cristal Therapeutics is participating in a phase I clinical trial of CriPec® docetaxel combined with the imaging agent Zirconium-89 for PET imaging [35]. The platform evaluates the biodistribution and accumulation of the nanomedicine in solid tumors, leading to a better targeted therapy and follow-up prognosis. In the other clinical trial, Nanobiotix performs phase I/II trials for NBTXR3 comprising hafnium oxide nanoparticles as a radio-enhancer to kill tumor burden by locally additional radiation [36]. This also provides a new perspective to coordinate the imaging and radiology by advanced nanotechnology. Despite considerable development in this direction, nanomedicine of theranostics still faces challenges. The major challenge to successfully translate theranostic nanomedicine into routine clinics is the nano–bio interaction. The therapeutic nanoparticles generally have a larger window of treatment in patients which requires low tolerance of nano–bio interaction, while the diagnostic nanomaterials could be one-dose and real-time imaging every couple months. The cooperation of these different fields of nanomedicine requires further effort on developing innovative nanomaterials to achieve the goal.

Overall, most approved nanomedicines are those developed early and classic antineoplastic, meaning plenty of room for improvement. The next generation of nanomedicines will incorporate more diversity of new small-molecular compounds (pathway inhibitors, such as Rapamycin, a selective mTOR inhibitor) or gene therapeutic agents (siRNA, mRNA and gene editing). This flourishing field of nanoparticle delivery is expected to expand the versatility and potency of nanocarrier for cancer therapeutics. Given recent technical and material advancements in the past decades, smart and precise nanoparticles as drug carriers will revolutionize cancer therapy, not only significantly extending the patient's lifespan but improving their quality of life.