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Phase separation is a process by which a well-mixed solution of macromolecules such as proteins or nucleic acids

spontaneously separates into two phases: a dense phase and a dilute phase.
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1. Introduction

Biological evolution is the evolutionary process of the development of all life forms, and an important characteristic

is the progressive complexity and refinement of the different levels of morphological structures. Typically, different

biological reactions take place in different organelles in an orderly manner; for example, transcription occurs

primarily in the nucleus, protein modification occurs in the endoplasmic reticulum and Golgi, and molecular

degradation occurs in lysosomes. These organelles are surrounded by a single or double layer of molecular

membranes and are isolated from the surrounding environment. To ensure that various cellular components can

aggregate at the correct time and in the proper space to perform their corresponding functions, cellular molecules

are isolated in different cellular compartments as needed. In addition to classic membrane-bound organelles, much

evidence further suggests that cells possess various membraneless compartments, including the nucleolus, Cajal

body, and PcG body in the cellular nucleus , along with stress granules (SGs) and P-bodies in the cytoplasm 

. Proteins, RNA, and other molecular components constitute these membraneless organelles, and phase

separation drives the processes involved . Although not covered by cell membranes, membraneless organelles

are still capable of frequent molecular exchange with the environment. With ongoing scientific inquiry, many

insights have been gained into the structure of these organelles. However, questions about why these organelles

form, the mechanisms involved, and how their biological properties affect their function have not been answered.

As science has advanced, these questions have begun to be resolved, and a deeper understanding of the

organization, molecular properties, and regulation of membraneless organelles has emerged . In recent years,

there has been growing evidence that membraneless organelles are involved in the development of multiple

cancers . These findings have given rise to a new domain of cellular biology. The emphasis is on learning how

cell substances are organized into membraneless organelles, how to promote their activity, and how disorders in

these organelles frequently lead to diseases, encouraging researchers to consider the biological processes

involved from the viewpoint of phase separation.

Cancer is a disease that seriously threatens human health. Both in terms of morbidity and mortality, cancer is a

major global public health problem and second only to cardiovascular disease in terms of mortality . Although

research on the occurrence and development of cancer has a history spanning many years, its treatment is still a
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great problem facing the world. To overcome this challenge, new concepts are urgently needed to characterize and

explain the complicated mechanisms of human cancer. An increasing body of evidence suggests that there is a

close link between abnormal phase separation condensation assembly and aberrant oncogenic procedures. The

advent of protein phase separation offers a novel possibility for targeting refractory cancer.

2. Overview of Phase Separation

Phase separation is a process by which a well-mixed solution of macromolecules such as proteins or nucleic acids

spontaneously separates into two phases: a dense phase and a dilute phase . Whether phase separation

occurs in a solution depends greatly on the concentration and properties of the macromolecules and the solution,

as well as on the environmental conditions . With a growing understanding of the basic molecular principles of

phase separation, there is an awareness of the different functions of phase separation in various cellular

processes. In general, the main ones include stress response, regulation of gene expression and control of signal

transduction , protein degradation , cytoskeleton assembly , and gene activation  or repression ,

including epigenetics, transcription, and translation. Furthermore, it has been demonstrated that many fundamental

biological processes are inseparable from phase separation, including heterochromatin formation ,

nucleocytoplasmic transport , supramolecular assemblies , and assembly of membraneless compartments,

such as SGs . Cell architectures formed by phase separation are named biomolecular condensates to mirror

their provenance through condensation reactions . Contrary to other types of components, they can enrich

molecules, and rapid exchange of components and agglomeration of droplets can form specific cellular structures

called membraneless organelles by phase separation. In different physiopathological situations, biomolecular

condensates can be converted into different states of matter. Similarly, condensates play an essential role in the

life activities of various organisms, including advanced structures, gene expression regulation , autophagic

degradation of incorrectly folded or unneeded proteins , signal cluster assembly, and synaptic plasticity

regulation of the formation of signaling molecules .

2.1. Phase Separation to Form Membraneless Organelles

In 2009, Hyman and Brangwynne found that some properties of P granules resemble liquids and that regulated

dissolution/condensation drives their localization, and the researchers first realized that membraneless organelles

may be driven by phase separation . Membraneless organelles are dynamic structures with liquid-like physical

properties . Due to a lack of lipid-rich membranes, changes in the surrounding environment can easily affect

their internal homeostasis, so the protein composition and morphology of membraneless organelles respond

accordingly to changes in the cellular environment, and this ability may represent the mechanism underlying the

stress response sensed by membraneless organelles . For example, oncogenic ARF protein is localized in the

nucleolus and released into the nucleoplasm through changes in phase separation in response to environmental

stresses of DNA damage and oncogene activation, hence activating the p53 oncogenic pathway .

What is the unique role of membraneless organelles driven by phase separation? The nucleolus is the largest and

most intensively studied membraneless organelle, serving as the center of ribosomal RNA synthesis and nascent
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ribosome assembly in eukaryotic cells. Ribosome biogenesis is vectorial, starting from fibrillar centers (FCs), where

rDNA is transcribed into rRNA . Paraspeckles are located in chromatin gaps and are subnuclear bodies built on

NEAT1 (a long noncoding RNA). Paraspeckles are involved in many physiological processes, including the cellular

stress response, cell differentiation, corpus luteum formation, and cancer development . The proteins that

comprise paraspeckles are related to RNA polymerase II transcription and RNA processing. Cajal bodies (CBs)

and histone locus bodies (HLBs) could be responsive to stress conditions, and they are nuclear bodies (NBs)

involved in the transcriptional and posttranscriptional regulation of small nuclear RNAs and histone genes . With

the deepening of research, an increasing number of membraneless organelles and their functions are being

discovered (Figure 1).

Figure 1. Biomolecular condensates located throughout the nucleus and cytoplasm. Created with BioRender.com.

2.2. Multivalent Interactions Promote the Formation of a Phase Separation Network

Recent studies have shown that biomolecular phase separation occurs through multivalency or the capacity to

participate in weak multivalent effects that rapidly assemble, disconnect, and recombine. These multiple

interactions are facilitated by proteins that embrace multiple folding module domains or intrinsically disordered

regions (IDRs)  or oligomerization domains . Another type of phase separation protein contains polymeric

structural fields, such as DIX domains, which can cross-link to form three-dimensional condensates . These

multivalent interactions mainly include two types: one class of intracellular interactions, such as protein–protein,

protein–RNA, and RNA–RNA interactions; and another class of weak, instant, multivalent interplay between IDRs,
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consisting of π–π interactions, cation–anion interactions, dipole–dipole interactions, and π–cation interactions 

.

In addition, another mechanism, called bridging-induced phase separation (BIPS), has been demonstrated in a

number of chromatin-related phase separation phenomena. It has been confirmed that BIPS is the basis for DNA-

mediated clustering cohesion . Local bridging along distal segments of DNA molecules is an essential element

of BIPS and a characteristic of BIPS that does not exist in other forms of phase separation . In this way, phase

separation is induced between chromatin regions (stable or transient) that interact with different types of bridging

factors .

How do cells use phase separation to respond to changes in cell surroundings? Cells construct and regulate

dynamic membraneless organelles through characteristics encoded in intrinsically disordered proteins (IDPs) of

related proteins, many of which play central functions in a variety of cell features. IDPs are conformationally

flexible, often interacting with their bonding companions via short sequence motifs that reappear within disordered

areas, and this multivalent interplay is common in macromolecular complexes . As T-cell receptor components

form a cluster of membrane-associated phase separation signals, during T-cell activation, phase separation is

driven by the multivalence of LAT, GRB2, SLP-76, Nck, and WASP .

3. Mechanisms of Phase Separation in Tumorigenesis

Incorrect or abnormal phase separation of biological macromolecules is closely related to the occurrence of many

types of diseases, such as cancer, neurodegenerative diseases, and infectious diseases . The formation

and regulation of aberrant biomolecular condensates is changing the way people think about coping with many

diseases, including tumor genesis, diagnosis, and treatment. Researchers are no longer considering highly

recurrent point mutations in tumors merely based on the structural visual field but are also considering the

condensates involved in these mutations. Generally, combined with current existing research, there are three

mechanisms of abnormal biological phase separation leading to disease: (a) The first mechanism is

biomacromolecule condensate dysregulation. In cancer, IDR-related signal receptor mutations or chromosome

translocations can promote the shape of signal clusters or condensates at transcription or DNA damage repair sites

and then change the cell signal cascade, drive abnormal transcription programs or DNA damage repair, and

promote cancer cell proliferation . (b) The second mechanism is the changing of the critical catalysts required for

phase separation. There is evidence that enzymes can regulate the assembly of biomolecular condensates

through posttranslational modification (PTM). For example, DYRK3 is located in condensate and phosphorylates

several serine and threonine residue groups in IDRs . During stress recovery, inactivation and activation of

DYRK3 are crucial to the formation and dissolution of SG . (c) The third mechanism is the altering of general

physicochemical conditions in cells. Cells exposed to stress undergo extreme fluctuations in the levels of ion

concentration, osmotic conditions, and pH values, which can change the solubility and interactions of biological

macromolecules, resulting in abnormal phase separation  (Figure 2).
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Figure 2. Mechanisms of abnormal phase separation in disease. Theoretical possibilities of how disease

phenotypes arise from abnormal phase separation and condensate formation. Created with BioRender.com.

Cancer is the abnormal proliferation of cells in local tissues under the action of various tumorigenic factors in the

body. In addition to having unlimited proliferation and multidirectional differentiation potential, many cancer cells

have the ability to evade growth repression, engage in replicative immortality, avoid immune destruction, and cause

instability of the genome , as well as newly discovered tumor features, such as unlocking phenotypic plasticity

and reprogramming nonmutational epigenetics . It is worth noting that gene mutations, tumor-promoting

inflammation, unlocking phenotypic plasticity, and polymorphic microbiomes increase the possibility of tumors.

Gene mutations in cancer often lead to oncogene activity imbalance or inactivation of tumor suppressor genes,

thus promoting the carcinogenic process. Despite considerable advances in the understanding of how mutations

promote the carcinogenic process, the exact pathogenesis of tumorigenesis remains unclear, as does the

mechanism by which tumor cells acquire these features. Phase separation offers a new direction for understanding

cancer phenotypes (Figure 3). Generally speaking, it can be divided into two aspects. Dysregulation is driven by

phase separation itself. For example, interferon-γ improves tumor sensitivity to immunotherapy by inhibiting YAP

phase separation ; phase separation of YAP and TAZ participates in activating EMT ; and increasing the

formation of SGs overcomes stress-induced cancer cell death . In addition to this, carcinogenicity can also be

affected by the dysregulation of signaling proteins involved in phase separation. For instance, MYC forms

transcription condensates by binding to superenhancers, which lead to VEGF expression and the promotion of

angiogenesis . In addition, aberrant phase segregation of the ENL protein can recruit a large number of

associated transcription complexes, which lead to genomic rearrangements in cancer . Fusion between

promyelocytic leukemia protein (PML) bodies permit telomere lengthening and enable replicative immortality ,

and SPOP mutation inhibits the catabolism of prooncogenic substrates, thus escaping growth inhibition . An

increasing number of studies has shown that the process of phase separation cannot be ignored for the

progression and treatment of human diseases.
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Figure 3. Phase separation abnormalities are involved in most of the processes known as cancer hallmarks.

Created with BioRender.com.

Abnormality of phase separation may promote the occurrence of some cancers. For example, one study has

directly linked protein phase separation to cancer. In vitro, substrates can trigger phase separation of speckle-type

BTB/POZ protein (SPOP) and colocalization in membraneless organelles in cells, and carcinogenic mutations in

cancer suppressor SPOP result from interference with phase separation and colocalization in membraneless

organelles linked to specific phase separation defects . Cullin3-ring ubiquitin ligase is associated with a variety

of solid tumors, and SPOP as its substrate adapter is one of the first cancer-specific related proteins to undergo

phase isolation . Molecular pathologist Miguel Rivera found a protein associated with Ewing sarcoma. This

protein can activate oncogene expression when it accumulates near the genome related to tumorigenesis, and

abnormal “phase separation” may promote the aggregation of this protein near these regions, leading to the

occurrence of Ewing sarcoma . Moreover, the FUS/EWS/TAF15 (FET) fusion oncoprotein enhances abnormal

gene transcription by site-specific phase separation and is an indispensable carcinogenic driver in various human

cancers . This research reveals that phosphatase protein can undergo phase separation, suggesting that

phase separation is a notable means for cells to regulate phosphatase activity. Gene mutation can change the

phase separation ability of protein and then change the protein function, leading to the occurrence of human

diseases, highlighting the importance of phase separation in human disease occurrence and development . The

following is a summary of the various types of cancer condensate formation and the regulation of cancer-

associated proteins (Table 1 and Figure 4).
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Figure 4. Cancer-related condensates in human cancers. Distribution of various types of cancer and related

condensates in the human body. Created with BioRender.com.

Table 1. Condensates in cancer. Abnormal protein phase separations are involved in the progression of various

cancers.

Tumor Types Proteins Biomolecular
Condensates Biological Roles References

Hepatocellular
Carcinoma

YAP
Laforin-Mst1/2

complex
Block Hippo kinase and

accelerate tumorigenesis

  YAP, TAZ
Transcriptional
condensates

Activate prevalently in
cancer

  NEAT1_2 Paraspeckles
Induce transcription of
various gene sustained

by cancer cells

  p62 p62 bodies Induce carcinogenesis

Lung Cancer KEAP1/NRF2/p62 p62 bodies
Increase the risk of tumor

genesis

Pancreatic Cancer KRAS Stress granules
Improve cancer cell

suitability

  p53 Paraspeckles
Promote the expression

of tumor suppressors

  ACM Amyloid bodies
Promote tumor tissue

growth

  p62 p62 bodies
Critical in regulating

tumorigenesis through
autophagy
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Tumor Types Proteins Biomolecular
Condensates Biological Roles References

Colorectal Cancer APC Disruption complex
Effective β-catenin

degradation

  53BP1
DNA repair

condensates
Respond to DNA damage

  YTHDF1/2/3
YTHDF–m6A–

mRNA complexes
Weaken mRNA

translation

  β-catenin
Transcriptional
condensates

Wnt factor driving cancer

Leukemia NUP98 FOs Puncta
Associated with malignant

transformation of
hematopoietic cells

  NUP214
SQSTM1-NUP214

chimera

Associated with malignant
transformation of

hematopoietic cells

  YTHDC1 nYACs

Maintains mRNA stability
and controls cancer cell

survival and
differentiation

  PML/RARA PML NBs
Involved in oncogenic

signaling

  MYB
Transcriptional
condensates

Drive oncogenic TAL1
expression

  ENL Puncta
Regulates oncogenic

transcriptional program

  NPM1 RNP bodies Ribosome biosynthesis

Leukemia/Sarcoma FUS/TAF15 PLD
Transcriptional
condensates

Drive aberrant
tumorigenic

transcriptional program

Sarcoma KSHV/LANA KSHV/LANA-NBs
Cause alterations in gene

expression

  FUS/CHOP Stress granules
Carcinogenic
transformation

  EWS/FLI1
Transcriptional
condensates

Promote gene
transcription associated
with Ewing’s sarcoma

[72][73]

[74]

[75][76]

[77][78]

[79]

[80]

[81]

[82][83]

[84]

[53][85]

[86][87]

[88]

[89][90]

[91]

[92]



Protein Phase Separation | Encyclopedia.pub

https://encyclopedia.pub/entry/38097 9/18

References

1. Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular condensates: Organizers of
cellular biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298.

2. Jain, S.; Wheeler, J.R.; Walters, R.W.; Agrawal, A.; Barsic, A.; Parker, R. ATPase-Modulated
Stress Granules Contain a Diverse Proteome and Substructure. Cell 2016, 164, 487–498.

3. Sachdev, R.; Hondele, M.; Linsenmeier, M.; Vallotton, P.; Mugler, C.F.; Arosio, P.; Weis, K. Pat1
promotes processing body assembly by enhancing the phase separation of the DEAD-box
ATPase Dhh1 and RNA. Elife 2019, 8.

Tumor Types Proteins Biomolecular
Condensates Biological Roles References

  YB-1 Stress granules Cancer metastatic marker

Medulloblastoma DDX3X Stress granules Impair global translation

Breast Cancer YAP/TAZ
Transcriptional
condensates

Promote expression of
target gene

  CBX2 PRC1 condensates Gene suppression

  HP1α
nPhos-HP1α
condensates

Epigenetic regulation

  ER eRNP condensates
Synergistic assembly of
activated chromosome

enhancers

  P-TEFb P-TEFb complexes
Activate and increase
transcription of EMT
transcription factors

  MeCP2
Heterochromatin

condensates

Chromosome
maintenance and

transcriptional silence

Prostate/Endometrial
cancer

SPOP
SPOP/DAXX
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