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Food safety is a significant issue that affects people worldwide and is tied to their lives and health. The issue of

pesticide residues in food is just one of many issues related to food safety, which leave residues in crops and are

transferred through the food chain to human consumption. Foods contaminated with pesticide residues pose a

serious risk to human health, including carcinogenicity, neurotoxicity, and endocrine disruption. Although traditional

methods, including gas chromatography, high-performance liquid chromatography, chromatography, and mass

spectrometry, can be used to achieve a quantitative analysis of pesticide residues, the disadvantages of these

techniques, such as being time-consuming and costly and requiring specialist staff, limit their application.

pesticide residues  microfluidic  rapid detection  food samples

1. Introduction

Pesticides are crucial in contemporary agriculture because they prevent crop losses from pests. They also protect

crop growth and yields. The wide application of new pesticides has improved agricultural production, but the food

safety problem caused by them has attracted more and more attention. Pollution caused by pesticides has

gradually become a global public health problem . The excessive intake of pesticides seriously harms

human health . Overuse, heavy reliance, and improper processing have left residues in crops and enriched

them in the human food chain . The consumption of foods that are high in pesticides can cause endocrine

disorders, cancer, and neurological diseases . The risks posed by pesticide residues are more acute for

children and expectant women . The entire food business faces a severe challenge due to this focus. The

food business and producers are subject to more intense scrutiny and demand to ensure the quality and safety of

food due to greater regulatory enforcement and customer awareness. One of their most essential tasks is

identifying pesticide residues in food to safeguard people’s lives and health . However, conventional pesticide

detection technologies have numerous shortcomings that mean they cannot be used as rapid on-site detection

technology .

The primary traditional methods for detecting pesticide residues are gas chromatography, high-performance liquid

chromatography, and mass spectrometry . These detection techniques have the advantages of

accuracy and sensitivity. However, their sample processing and pretreatment procedure is complicated, time-

consuming, expensive, and labor-intensive. As a result, traditional detection technology cannot meet the needs of

consumers for the rapid and convenient detection of pesticide residues. Therefore, developing a technology that

can rapidly, conveniently, efficiently, and sensitively detect pesticide residues in food is essential. The demand for
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point-of-care testing for food safety is answered by microfluidics. Microfluidics provides a platform for rapidly

detecting trace pesticide residues with a small sample. Combining microfluidic technology with pesticide residue

detection devices effectively overcomes the shortages of traditional methods and realizes on-site detection 

.

Microfluidics integrates various functional units in submillimeter microchannels for a variety of analytical chemistry

operations such as purification , reaction , separation , and detection . Microfluidic sensors

have the advantages of high throughput, miniaturization, portability, and small reagent consumption 

, which can rapidly obtain more accurate detection results. It is significant for food safety to develop on-site

detection technologies and portable equipment . Microfluidic sensors can identify specific analytes through

biomolecules and enhance them into detectable signals . 

2. Microfluidic Devices for Pesticide Detection

2.1. Organophosphates Compounds

Pesticides with an organophosphate chemical as their primary component are known as organophosphate

pesticides . These insecticides are commonly used in horticulture and agriculture to improve crop yield and

quality while controlling various pests and illnesses. Organophosphate pesticides primarily poison pests via

acetylcholinesterase inhibition . However, the nervous system of people might also be impacted by this .

Prolonged or excessive exposure to organophosphate residues may cause neurological symptoms such as

headache, dizziness, nausea, vomiting, muscle cramps, neurasthenia, and memory loss . There are

numerous studies on the detection of organophosphate pesticides . Shi and colleagues used

phage and horseradish peroxidase to create an eco-friendly and safe electrochemical immunosensor .

A microfluidic device based on fluorescence intensity for quick pesticide residue detection in food has higher

sensitivity compared to the conventional method , and Hu et al. (2019) developed a microfluidic

array sensor based on QD-AchE aerogel that can detect organophosphates pesticide residues quickly and with

high sensitivity . Quantum dots’ fluorescence intensity gradually increases with an increase in organophosphate

concentration. Since acetylcholine catalyzes the production of thiochotine, organophosphates inhibit its activity and

restore the fluorescence intensity of acetylcholine-quenched quantum dots. With detection limits of less than 1.2

pM and a detection range of 10  M–10  M, the researchers evaluated three popular organophosphate

pesticides, including paraoxon, parathion, and dichlorvos. This further proved that the sensor has high sensitivity

and a broad detection range.

Electrochemical technologies  are more straightforward and sensitive than fluorescence detection

because they directly transform difficult-to-measure chemical parameters into simple-to-measure electrical ones.

Common electrochemical identification techniques frequently demand intricate electrode production procedures

and expensive detection costs. Yang et al. suggested a method for identifying pesticide residues based on

multilayer paper-based microfluidic chips to address this issue . After spraying pesticides on lettuce, the
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avermectin, phoxim, and dimethoate identification accuracy remained consistent at 93%. A stopper microfluidics-

based organophosphate-pesticide-detecting system was created by Wang et al. (2014) . 

2.2. Carbamate Compounds

Carbamate pesticides are widely used in agriculture and forestry because of their high selectivity, easy

decomposition, little residual toxicity, and low toxicity to humans and animals . However, carbamate

pesticides with heavy usage in foods spread through the food chain and accumulate in the human body through

the digestive system and the skin’s mucous barrier . In various studies, carbamate pesticides have been

shown to quickly produce nitroso compounds with nitrite in food (bread, yogurt, cheese, soy sauce, and vinegar),

which can substantially harm human health . They are also mutagenic, teratogenic, and carcinogenic under

acidic circumstances in the stomach . In this case, some researchers have proposed various methods of

detecting carbamate . However, the sample handling and pretreatment steps required for these

procedures are complex and time-consuming. To solve these problems, desirable methods like fluorescence,

colorimetry, and electrochemistry were proposed with high sensitivity and rapidity .

Microfluidic devices  offer a viable solution to achieve the detection of carbamate and overcome the issues

associated with complex procedures and transportation. Interestingly, microfluidics widely utilize unitary and

multiple signal readouts . For instance, based on colorimetry, M.D. Fernández-Ramos (2020)

suggests a bioactive microfluidic paper device for pesticide determination in water . The proposed device

contains three independent regions: a μPAD at the bottom for sampling, two microchannels separated by deposited

acetylcholinesterase and AChCl solutions, and a top μPAD containing a pH indicator for detection. The paper

device, working at room temperature, sets the reducing reaction’s rate as an analytical signal to be quantified

based on the color of μPAD. 

Meanwhile, multiple readouts are successfully utilized to achieve the detection of carbamate, increasing sensitivity

and integration. Zhao et al. (2021) built a portable automatic double-readout detector integrated with a 3D-printed

microfluidic nanosensor on the foundation of the colorimetric method . 

2.3. Other Pesticides

Organochlorine pesticides are organic compounds containing chlorine in their chemical structure, which are fat-

soluble and kill insects by interfering with the function of the nervous system . They are widely

used worldwide because of their low price, broad spectrum of insecticidal efficiency, and ease of use. The

excessive use of organochlorine pesticides will not only affect the environment but also cause harm to the human

body . Organochlorine pesticides mainly affect human health through food, respiration, and skin contact

and can destroy certain hormones, enzymes, growth factors, and neurotransmitters in the body. Changes in

relative homeostasis conditions within cells lead to oxidative stress and rapid cell death, leading to Parkinson’s

, cancer , and endocrine and reproductive diseases.
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In order to detect organochlorine pesticide residues, many people have carried out research. Malik et al.

successfully determined organochlorine pesticide residues using an electron capture detector (GC-ECD) in 2011

, and Chowdhury et al. achieved the same in 2013 using gas chromatography–tandem mass spectrometry

(GC-MS) . However, the testing equipment used requires professional personnel to operate it, and the

equipment is expensive.

Pyrethroid pesticides are synthesized by simulating the chemical structure of natural pyrethroids, also known as

biomimetic synthetic pesticides. They have a wide insecticidal spectrum, high efficacy, sterilization, and mold

inhibition . Pyrethroids have effectively reduced the incidence of malaria in Africa and other places , but

overuse has seriously affected people’s health, causing cardiovascular diseases, reproductive diseases, and so on

. Pyrethroid analysis is routinely used in gas chromatography–electron capture detector (GC-

ECD), gas chromatography–mass spectrometry (GC-MS), liquid chromatography–ultraviolet (LC-UV), and liquid

chromatography–mass spectrometry (LC-MS). The instrument technologies mentioned above have high accuracy

and precision, good sensitivity, and very low detection limits, but they are expensive, complex to operate, and

unsuitable for most environments.

2.4. Commercialized Products

For the quick and precise detection of pesticides in food and environmental samples, a number of microfluidic

devices have been developed. The portable, highly sensitive My-coLab  AflaQuick  by EnviroLogix Inc. can

identify aflatoxins in just 10 min. EnviroLogix Inc.’s Quick  has a high sensitivity and mobility level and can detect

aflatoxins in under 10 min. Multiplexed pesticide detection is available with the Advanced Animal Diagnostics

Raptor  Integrated Analysis Platform, although it is more expensive and demands specialist training. Pesticide

identification is possible with the Biosensing Instrument Inc. ToxiQuant  Pesticide Microarray Kit. However, it

requires refrigeration and has longer test times. The portable microfluidic sensor with SERS technology from GBC

Scientific Equipment allows for label-free detection but calls for SERS equipment. The RapidChek  SELECT

Salmonella from Romer Labs quickly identifies salmonella but has low sensitivity. Although it needs specialist

equipment, Detection’s BioFlash Biological Identifier offers quick and sensitive findings. Mass spectrometry

equipment is necessary for the ATHENA Integrated System, a lab-on-a-chip with quick results and customizable

choices.

The microfluidic devices mentioned above have special features and capabilities to detect pesticides in food and

environmental samples. While each technology has benefits like quick results, portability, and customizability

choices, it also has drawbacks like con-strained detection targets, reduced sensitivity, the need for specialized

equipment, and a range of prices. These aspects are important when choosing the best microfluidic device to meet

the unique pesticide detection and food safety application demands.
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