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A universal infrastructural issue is wetting of surfaces; millions of dollars are invested annually for rehabilitation and

maintenance of infrastructures including roadways and buildings to fix the damages caused by moisture and frost.

The biomimicry of the lotus leaf can provide superhydrophobic surfaces that can repel water droplets, thus

reducing the penetration of moisture, which is linked with many deterioration mechanisms in infrastructures, such

as steel corrosion, sulfate attack, alkali-aggregate reactions, and freezing and thawing. In cold-region countries, the

extent of frost damage due to freezing of moisture in many components of infrastructures will be decreased

significantly if water penetration can be minimized. Consequently, it will greatly reduce the maintenance and

rehabilitation costs of infrastructures.

biomimetic coating  durability  infrastructures  lotus leaf  self-cleaning

superhydrophobicity

1. Introduction

A consistent problem across several infrastructural fields is moisture damage. Rain and snow can create moisture

damage to surfaces which are exasperated during winter months, when the surfaces can deteriorate even further

due to salt and frost actions . This is most common in pavements of the winter-region countries, such as

Canada, Sweden, Russia, and Finland . During the winter months, cracking damage can occur in pavements

that increases the rehabilitation and maintenance costs as well as injures vehicles if left unrepaired for a long time.

While current research does exist to give a solution by creating hydrophobic materials, it would not be improbable

to consider superhydrophobic surfaces with a contact angle >150° .

Biomimicry has been used to produce superhydrophobic surfaces for various purposes. Biomimicry is the practice

of replicating naturally occurring phenomena from the environment via artificial means to resolve problems or

provide a service . This has been done several times in the past through innovation and application such as

the inventions of Velcro (replicating the Burdock plant’s adhesion)  and the bullet train’s streamlined forefront

(alike the kingfisher’s beak) . The replication of the lotus leaf is relatively a recent development in coating

technology. Lotus leaf, specifically the Nelumbo nucifera, has the natural ability to repel water droplets at a high

contact angle, thus being superhydrophobic . Along with this, the lotus leaf utilizes its high contact angle to

cause the water droplets to roll off the leaf—the rolling droplets collect any debris that the leaf contains, thus

providing a naturally occurring self-cleaning property . This is referred to as the “Lotus Effect”. This can be
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best demonstrated by Figure 1 below that features an image of the lotus leaf containing several water droplets

which have not contracted but remained buoyant.

Researchers are recently trying to use nanotechnology in coordination with biomimicry. As the term suggests,

nanotechnology is the application of materials, which fit between 1 and 100 nm that can affect the properties,

interactions, and conditions of materials on a nano scale . In nanotechnology, the properties of materials are

dictated by the fundamental behavior of atoms  due to the technology’s ability to capture electrons. The

biomimicry attempts to replicate the micro-nano surface structure of the lotus leaf in coating materials to perform

with superhydrophobic capability. Biomimetic superhydrophobic and self-cleaning surfaces have already been

developed using the natural lotus leaf as a model .

Figure 1. Lotus leaves with “lotus effect” (courtesy of Hossain ). The water droplets do not contract and remain

buoyant with a spherical structure.

2. Surface Structure and Characteristics of Lotus Leaf

The nanoscale hair-like wax crystals and microscale epidermal cells of a lotus leaf are attributed to its lotus effect

. Figure 2 provides a simple diagram of the hydrophobic structure that governs the lotus effect. The high

contact angle creates a rolling effect of the water droplets supported by the micro-protrusions (microscale

epidermal cells). The nanoscale wax crystals facilitate the water droplets to remain buoyant, roll down, and collect

the debris before descending from the leaf.
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The unique nature of the lotus leaf appears more obvious when examined by a scanning electron microscope, as

viewed in Figure 3, which resembles a natural terrain consisting of hills and valleys. The valleys exist between and

around the hills, which can be alluded to form the earlier discussed microscale structure. The debris never enter

deep enough into the valleys due to the larger size of the particles and the repelling nature of the nanoscale hair-

like structure, which pushes the debris up so it can be collected by the rolling water droplets .

Figure 2. A simple schematic for understanding of the lotus effect. The water droplet collects the debris as it

descends from the leaf. The figure has been created by the authors based on the concept illustrated by Poole .

Figure 3. An SEM image of a lotus leaf (modified from Ensikat et al. ). This image depicts the microscale

structure comprising hills with the valleys among them, as well as the nanoscale wax crystals. The diameters of
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two mountain peaks are also shown.

3. Lotus-Leaf-Inspired Biomimetic Coatings

Various biomimetic coatings have been developed replicating the micro-nano surface structure of the lotus leaf, as

can be seen from Table 1. The purpose behind each of them is to quickly repel water droplets for reducing the risk

of moisture damage, taking the advantage of the lotus leaf’s natural ability to self-clean. The repelling of water

droplets is crucial for urban projects as the water damage of pavements and buildings can be expensive for the

public and private sectors in the form of insurance claims and uninsured property damage . Despite various

attempts for replication of the lotus effect, there is no set-method yet to imitate the micro-nano surface structure of

the lotus leaf. Table 1 contains many examples of lotus-leaf-inspired biomimetic coating materials, some of which

have been used to alleviate certain infrastructural issues .

Table 1. Various biomimetic coating materials.
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Coating Material Key Characteristics Specific Purposes References

PDMS (Polydimethylsiloxane)

Intrinsic hydrophobic surface;
remarkably high contact angle
(close to 170°); sliding angle close
to that of the lotus leaf; highly water-
resistant; good self-cleaning
property; chemically and thermally
stable; stretchable.

Inverse-trapezoidal
microstructures;
microfabrication with
micropillars/nanohairs.

UPC (Ultrafine powder
coating)

At 3% PTFE
(polytetrafluoroethylene): High
contact angle (˃160°) and low
sliding angle (˂5°); lower film
thickness (controllable to 1 mil);
reduced surface roughness; high-
quality surface finishing.

Surface protection from
moisture intervention

CNT (Carbon nanotube) film

Excellent anti-aging performance;
effective to prevent the penetration
of small water droplets; long-term
durability after exposure to air and
corrosive liquids.

Electrodes, biosensors,
anti-fogging/icing and
anti-aging materials.

Nickel (Ni), Ni/Nano-C,
Ni/Nano-Cu

PFPE (perfluoropolyether) treated
Ni: high contact angle (156°) and a
rough surface; reduced friction
coefficient; high hardness.
Ni/Nano-C (Ni-C): better anti-
corrosion performance.
Ni/Nano-Cu (Ni-Cu): Large contact
angle (155.5°) at optimal brush

Substrate protection;
anti-corrosion surface
coatings.
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Coating Material Key Characteristics Specific Purposes References
speed and a Cu concentration of 5
g/L; a sliding angle of 5°.

FOTS-TiO  (Fluoro-octyl-
trichloro-silane-titanium)

Superamphiphobic (superhydro-
oleophobic); high contact angle with
peanut oil; liquid repellence with a
surface tension as low as 23.8
mN/m; high thermal stability; self-
cleaning; anti-fouling/anti-icing.

Surface treatment of
materials and products
(Zn plate, PU sponge,
filter paper, cotton
fibers, etc.); civil
infrastructure
maintenance;
temperature sensitive
nanotechnology
applications.

Janus particles

Superhydrophobic performance with
nanoscale roughness; covalent
binding with substrate; tolerant to
high water flushing speeds and
organic solvents.

Nanoprobes,
nanosensors, display
systems, water-
repellent textiles, drug
delivery and control
systems, functional
coatings, etc.

Diamond-like carbon (DLC)

Balance of hardness and flexibility
due to microstructures; high contact
angle; low friction coefficient;
greater corrosion resistance.

Bio-robotics, bio-
medical devices, anti-
corrosion surface
coatings.

Micro- and nanosized silica
(SiO ) particles

Strong liquid (e.g., water, brine,
acidic solution) repellency with a
high contact angle and a low sliding
angle for droplets; strong binding
adhesion with underlying substrate;
high weathering resistance including
UV (ultraviolet) protection; high
transmission of light with low
reflection; excellent wear and
scratch resistance.

Anti-abrasion, anti-
corrosion, and
waterproofing
applications; surface
coatings for self-
cleaning and energy
harvesting.

Calcium hydroxide [Ca(OH) ]
microcapsules with polymeric
shell

Regenerative lotus effect—
controllable via sodium stearate
solution; good resistance to water
flushing; strong binding adhesion to
substrate; superior corrosion
resistance in chloride environment.

Substrate
modifications,
corrosion-resistant
coatings.

Graphene oxide-silica (GO-
SiO )

Highly hydrophilic; superior barrier
performance and corrosion
protection; good binding adhesion
with substrate.

Electrode, capacitor,
and biosensor
fabrication; anti-
corrosion composite
coatings.
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Photopolymer (PP)

Transparent; anti-reflective and self-
cleaning abilities; increased solar
light absorbance; UV- or electron-
beam curable; resistant to acidic
and basic conditions.

Harvesting of
alternative energy—
coating on solar cells;
protective coatings and
decorative finishes;
surface modifications
of fibers and films;
coatings for biosensors
and electrodes.

Copper (Cu)

Superhydrophobic/superolephobic;
hierarchical flowerlike surface
morphology; long-term chemical
stability; high contact angle for pure
water as well as under both acidic
and basic conditions.

Protection of steel
surfaces; self-cleaning
steel structures; oil
pipelines for anti-
fouling and low fluid
drag.

Zinc oxide (ZnO) film

Can be either superhydrophobic or
superhydrophilic depending on
surface morphology;
superhydrophobicity with a contact
angle of 155° to more than 170°;
superhydrophilicity with a low
contact angle of approximately 1–
2.8°;
UV-stable.

Self-cleaning PV
(Photovoltaic) and
glazing applications

Acrylic polymer (AP)

High water repellency; delayed ice
nucleation; reduced binding
adhesion with ice; lower freezing
point of water.

Anti-icing coatings for
pavement/building
protection from frost
damage; anti/de-icing
systems for cars and
airplanes,
telecommunication
antennas, or wind
turbines.

Antimony doped tin
oxide/polyurethane (ATO/PU)
film

Superhydrophobicity and high heat-
insulation; water contact angle up to
about 155°; high visible light
transmittance (76%); low infrared
transmission; high thermal stability.

Self-cleaning solar
cells; heat-insulating
glass.

PMMA (Polymethyl
methacrylate)

Increased PV efficiency (up to 17%
gains); high optical transparency
(˃80%); low reflection; chemically
resistant to aqueous alkalis and
most acids; high moisture
resistance; protected from oxygen;
UV-durable; abrasion-resistant.

Natural light harvesting
for alternative energy;
roofing membranes;
balcony and parking
deck surfacing and
waterproofing
applications.
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