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Trifolium L. is an economically important genus that is characterized by variable karyotypes relating to its ploidy

level and basic chromosome numbers. The advent of genomic resources combined with molecular cytogenetics

provides an opportunity to develop our understanding of plant genomes in general.

Trifolium  Chromosome

1. Introduction

The Fabaceae family (Leguminosae, legume or bean family) is the third-largest flowering plant family, after the

Asteraceae and Orchidaceae families . It is agronomically important, as it can form a symbiotic association with

nitrogen-fixing bacteria. Several species from this family serve as genetic model organisms (e.g., Medicago

truncatula Gaertn. , Pisum sativum L., and Lotus japonicus L.). With more than 250 species, the clover genus,

Trifolium , is one of the largest genera in this family . This herbaceous genus acquired its name in reference

to the characteristic form of the leaf, usually consisting of three leaflets (trifoliolate), and includes both annual and

perennial species occurring natively across a large range of biotopes from meadows and open woodlands to semi-

deserts and mountain ridges in temperate and, to a lesser extent, subtropical regions. The genus’s origin has been

estimated to have occurred in the Early Miocene, 16–23 million years ago, and its center of origin was first

assumed to be in California with its subsequent spread into Asia and hence to Europe and Africa . Later, a new

hypothesis was proposed of clovers originating in the Mediterranean region due to their species diversity, including

the diversity in their chromosome numbers, and because the greatest occurrence of their endemic species is found

in this area, with a secondary center of distribution in North America and East Africa . By contrast, native

clovers are absent from Australia and Southeast Asia.

Attempts have been made to divide this genus into natural groups. In the 19th century, Bossier  divided the

genus into seven sections. A century later, eight subgenera were recognized and revised . Better insight into

phylogeny and the origin of the genus was facilitated by molecular analyses. These showed that Trifolium is a

member of a large clade of legumes that lack one copy of the chloroplast inverted repeat , and a further

molecular phylogenetic analysis of the internal transcribed spacer (ITS) and chloroplast genes provided evidence

that most of these proposed sections are not monophyletic . The most recent subgeneric classification, based

on phylogenetic analyses of 218 species’ ribosomal ITS and chloroplast trnL intron sequences, was proposed by

Ellison et al. , who divided the genus into two subgenera, Chronosemium and Trifolium , with the further

subdivision of Trifolium into eight sections— Glycyrrhizum (2 species), Paramesus (2 species), Lupinaster (3

species), Trifolium (73 species), Trichocephalum (9 species), Vesicastrum (54 species), Trifoliastrum (20 species),
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and Involucrarium (72 species). In 2014, Trifolium phylogenetic analyses were conducted, based on highly unusual

Trifolium plastomes .

The economic importance of this genus lies in its agricultural utilization. Historically, clovers, and especially red

clovers, have been cultivated in rotation with other crops to maintain soil fertility due to their ability to establish a

mutualistic relationship with root-nodulating and nitrogen-fixing bacteria. Their value was later diminished by the

advent of nitrogen fertilizers, but the global need for sustainable and conservation agriculture is bringing this

historical approach back into focus. Nowadays, many Trifolium species are extensively cultivated as fodder plants (

Trifolium pratense L., Trifolium repens L., Trifolium hybridum L., and Trifolium resupinatum L.), and also as green

manure crops to enhance soil fertility and sustainability . Further knowledge about the genomes of both wild and

cultivated clovers and an understanding of their evolution will prove to be of great benefit in the future of clover

breeding.

2. Chromosome Identification in Trifolium

In legumes with large chromosomes, such as Pisum sativum L. or Vicia faba L., individual chromosomes can be

distinguished by ordinary karyotyping or banding methods , although the process is rather complicated in

species with small chromosomes, such as Trifolium. Both repetitive and low- or single-copy sequences are

important tools for chromosome identification in cytogenetic studies. Usually, a mix of different probes is used,

which can include localizing ribosomal DNA (rDNA) sites, telomeric probes, large plasmid, bacteriophage, or

bacterial artificial chromosomes (BACs) containing specific single-copy or repetitive inserts. Based on 5S rDNA,

25S rDNA, and seven bacterial artificial chromosome probes containing microsatellite markers with a known

position, a cytogenetic map has been constructed for red clover (Figure 1).
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Figure 1. Cytogenetic map of T. pratense based on the hybridization pattern of probes derived from 5S rDNA

(orange circles) and 26S rDNA (pink boxes) and localization of 7 (A) or 14 (B) BAC clones corresponding to

chromosome-specific microsatellite markers (green circles) (adapted from Sato et al.  and Kataoka et al. .

The easy design and production of oligonucleotide libraries has presented new opportunities to plant cytogenetics.

Recently, an oligonucleotide barcode system was developed to identify all cowpea and common bean

chromosomes . Despite the availability of genome sequences for selected Trifolium spp., however,

oligonucleotide libraries have not yet been exploited for Trifolium research.

3. Chromosomal Distribution of Ribosomal DNA Genes

Because ribosomal genes are among the best-researched regions of eukaryotic genomes, fluorescence in situ

hybridization (FISH) analyses, using rDNA genes as probes, have been conducted in numerous plant species,

including Trifolium. The 35S and 5S ribosomal genes are located independently in one or several loci as tandem

repeats, ranging from hundreds to thousands of copies in higher vascular plant genomes . While polycistronic

gene 35S consists of 18S-5.8S-25S rDNA and occurs on chromosomal regions known as nucleolus organizer

regions (NORs), the 5S rDNA gene is usually independent from NORs . Ribosomal genes have undergone

rapid evolution in their means of altering the number of copies and their localization on chromosomes .

Therefore, rDNA genes have been proven to act as excellent cytogenetic markers for karyotype analysis, and they
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have been widely used to examine and understand phylogenetic relationships, chromosomal organization, and

evolution in many plant species.

Roa and Guerra  found that, in angiosperms rDNA sites, most often number one or two 45S and one 5S per

haploid genome. The localization of 45S rDNA sites was observed preferentially on the short arm and in the

terminal region of chromosomes in general, but genera with predominant proximal localization were found in some

families, including Fabaceae (Arachis, Lens). On the other hand, 5S rDNA localization varies in different

angiosperm families. In Fabaceae, 5S rDNA is preferentially found in the proximal region.

To date, the numbers and positions of rDNA loci on chromosomes have been reported for 42 Trifolium species

(Table 1; adapted from Vozárová et al. ). Based on ancestral state reconstruction, Vozárová et al.  suggested

the occurrence of one 5S and one 26S locus per haploid genome separately as an ancestral condition for the

whole genus. The ancestral karyotype referencing the basic chromosome number and rDNA loci constitution may

resemble the karyotype of T. diffusum (Figure 2).

Figure 2. Fluorescence in situ hybridization image and schematic karyotype of T. diffusum with 5S (red) and 26S

(green) rDNA probes suggested to represent the ancestral state in the Trifolium genus (adapted from Vozárová et
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al. ).

Table 1. Reported chromosome numbers 5S and 25S rRNA loci numbers in Trifolium species (adapted from

Vozárová et al. ).

Subgenus/Section Trifolium Species 2n

Loci
Number per

2n
Reported

in
5S 25S

CHRONOSEMIUM      

 

T. aureum

2x
=
16

4 2

Vozárová
et al. 

 
2x
=
14

4 2

 T. badium
2x
=
14

2 4

2 2

 T. campestre
2x
=
14

2 2

Ansari et
al. 

 T. micranthum
2x
=
16

2 2

 T. dubium
4x
=
30

4 4

TRIFOLIUM      

TRIFOLIUM
T. alpestre

2x
=
16

10 2 Vozárová
et al. 

 11 2

 T. arvense
2x
=
14

2 2

 T. bocconei
2x
=
12

2 2

 T. cherleri 2x
=

4 10

[31]

[31]

[31]

[32]

[31]



Trifolium L. | Encyclopedia.pub

https://encyclopedia.pub/entry/16286 6/14

Subgenus/Section Trifolium Species 2n

Loci
Number per

2n
Reported

in
5S 25S

10

 T. diffusum
2x
=
16

2 2

 T. hirtum
2x
=
10

6 2

 

T. ligusticum

2x
=
12

2 2

 
2x
=
14

2 2

 T. pallidum
2x
=
16

4 2

 T. purpureum
2x
=
14

2 2

 T. rubens
2x
=
16

4 2

 T. squamosum
2x
=
16

4 2

 

T. stellatum

2x
=
12

4 2

 
2x
=
14

4
(2w)

2

 T. pannonicum
16x
=

128
16 16

 T. pratense 4x
=

8 8 Dluhošová
et al. [33]
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Subgenus/Section Trifolium Species 2n

Loci
Number per

2n
Reported

in
5S 25S

28

 
2x
=
14

4 5
Sato et al.

 T. medium
8x
=
64

12 8
Dluhošová
et al. 

TRICHOCEPHALUM
T. subterraneum

subsp.
subterraneum

2x
=
16

2
4

(2w)
Vozárová
et al. 

 
T.

subterraneumsubsp.
subterraneum

2x
=
16

2 2

Falistocco
et al.  

T. subterraneum
subsp.

brachycalycinum

2x
=
16

2
4

(2w)

 T. israeliticum
2x
=
12

10 4

VESICASTRUM T. fragiferum
2x
=
16

2 2

Vozárová
et al. 

 

T. resupinatum

2x
=
16

2 2

 
2x
=
14

2 2

 
T. spumosum

2x
=
16

2 2

 4 2

TRIFOLIASTRUM T. glomeratum
2x
=
16

2 2
Vozárová
et al. 

 T. montanum 2x
=

2 2

[18]

[33]

[31]

[34]

[31]

[31]



Trifolium L. | Encyclopedia.pub

https://encyclopedia.pub/entry/16286 8/14

Subgenus/Section Trifolium Species 2n

Loci
Number per

2n
Reported

in
5S 25S

16

 T. occidentale
2x
=
16

4 2 Ansari 

 T. pallescens
2x
=
16

2 2

Vozárová
et al. 

 T. thalii
2x
=
16

2 2

 T. repens
4x
=
32

4 2

Ansari 

 T. uniflorum
4x
=
32

4 4

 
T. nigrescens

subsp. nigrescens

2x
=
16

2 2

 
T. nigrescens

subsp. petrisavii

2x
=
16

2 2

 T. ambiguum
2x
=
16

2 2

 T. hybridum
2x
=
16

2 2

 T. isthmocarpum
2x
=
16

2 6

INVOLUCRARIUM T. chilense
2x
=
16

4 2
Vozárová
et al. 

 T. microdon 2x
=

2 2
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Subgenus/Section Trifolium Species 2n

Loci
Number per

2n
Reported

in
5S 25S

16

 
T. microcephalum

2x
=
16

16 16

 16 2

PARAMESUS

T. glanduliferum
2x
=
16

4 2

Vozárová
et al. 

 
5

(1w)
2

 4 2

 T. strictum 2x=
14

2 2

LUPINASTER

T. lupinaster

4x
=
28

8 4

Vozárová
et al. 

 
4x
=
32

8 4

4. Conclusions and Future Prospects

Improving clover productivity as a means of boosting yields and nitrogen fixation efficiency is therefore a central

focus of plant breeders today. Information is mainly limited to the related legume model species, however, and

unraveling the genome organization and understanding the evolution of clover are essential for greater breeding

efficiency.

Advances in clover research within the genomics era have assisted in the development of an impressive array of

genomic resources, including complete genome sequences of some clovers and related legumes. As high-

throughput sequencing has revolutionized genome sequencing with its ultralow cost and overwhelmingly large data

output, more and more new plant species sequences, as well as species’ resequences, supported by a large range

of bioinformatic tools, provide us with more data applicable for more efficient breeding strategies. The combination

of genomic and bioinformatic data with molecular cytogenetics may provide a more developed understanding of

plant genomes in general.

Ribosomal DNA and other repetitive sequences have been widely used as plant cytogenetic markers, and recently,

the development of large-DNA clones carrying target sequences, such as BACs, has facilitated the easier

localization of low- or single-copy DNA sequences . BAC-FISH has been applied successfully
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in clover karyotype characterization, and cross-species BAC-FISH has helped to identify chromosome structure

and rearrangements in clover relatives such as the common and lima bean . However, the extension of BAC-

FISH to the BAC-painting of large chromosome regions is suitable only for species with small genomes and low

proportions of repetitive fractions, and it has not been successfully established beyond crucifers , with the

singular exception of Brachypodium .

The remarkable progress in plant genome research relating to reference sequences production and artificial DNA

synthesis has provided an alternative chromosome painting technique. In silico designed and artificially

synthesized oligonucleotide pools have already been applied successfully in various plant species to characterize

chromosomal rearrangements . The availability of the Trifolium genome and reference

sequences means that the adoption of oligo painting within this genus, and the legume family more generally, is

both possible and to be expected.
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