

Prejunctional 5-HT Receptors/Mechanisms and Modulation of Neurovascular Transmission

Subjects: **Pharmacology & Pharmacy**

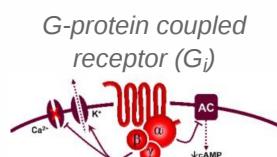
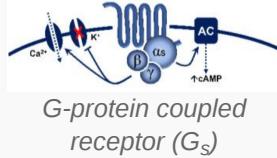
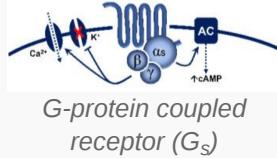
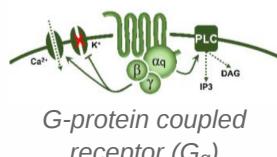
Contributor: Abimael González-Hernández , Bruno A. Marichal-Cancino , Antoinette MaassenVanDenBrink , Carlos M. Villalón

5-Hydroxytryptamine (5-HT), or serotonin, plays a crucial role as a neuromodulator and/or neurotransmitter of several nervous system functions. Its actions are complex, and depend on multiple factors, including the type of effector or receptor activated. Briefly, 5-HT can activate: (i) metabotropic (G-protein-coupled) receptors to promote inhibition (5-HT₁, 5-HT₅) or activation (5-HT₄, 5-HT₆, 5-HT₇) of adenylate cyclase, as well as activation (5-HT₂) of phospholipase C; and (ii) ionotropic receptor (5-HT₃), a ligand-gated Na⁺/K⁺ channel. Regarding blood pressure regulation (and beyond the intricacy of central 5-HT effects), this monoamine also exerts direct postjunctional (on vascular smooth muscle and endothelium) or indirect prejunctional (on autonomic and sensory perivascular nerves) effects. At the prejunctional level, 5-HT can facilitate or preclude the release of autonomic (e.g., noradrenaline and acetylcholine) or sensory (e.g., calcitonin gene-related peptide) neurotransmitters facilitating hypertensive or hypotensive effects. Hence, we cannot formulate a specific impact of 5-HT on blood pressure level, since an increase or decrease in neurotransmitter release would be favoured, depending on the type of prejunctional receptor involved.

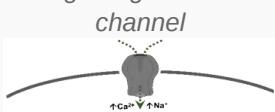
5-hydroxytryptamine

serotonin

CGRP





blood pressure

hypertension


1. 5-HT Receptors

As summarized in **Table 1**, with the conjunction of structural, transductional, and operational (pharmacological) criteria, 5-HT receptors have been classified into seven receptor types (5-HT₁-5-HT₇) that can be grouped into: (i) six metabotropic (G-protein-coupled) receptors, namely: the 5-HT₁ (further subdivided into the 5-HT_{1A}, 5-HT_{1B}, 5-HT_{1D}, 5-HT_{1E} and 5-HT_{1F} subtypes), 5-HT₂ (further subdivided into the 5-HT_{2A}, 5-HT_{2B} and 5-HT_{2C} subtypes), 5-HT₄, 5-HT₅ (further subdivided into the 5-HT_{5A} and 5-HT_{5B} subtypes), 5-HT₆ and 5-HT₇ receptor types; and (ii) one ligand-gated ion channel represented by the ionotropic 5-HT₃ receptor type [\[1\]](#)[\[2\]](#)[\[3\]](#)[\[4\]](#). The corresponding subtypes of the 5-HT₁, 5-HT₂, and 5-HT₅ receptor types share similar structural and transductional properties, but display very different pharmacological profiles.

Table 1. Classification of 5-HT receptors ^a.

5-HT Receptor	Receptor Subtype	Agonists	Antagonists	Some Functions	Canonical Transduction System
5-HT ₁	5-HT _{1A}	8-OH-DPAT	WAY 100635	Central hypotension	
	5-HT _{1B}	Sumatriptan CP-93,129 (rodents)	SB224289	Vasoconstriction, sympatho-inhibition	
	5-HT _{1D}	PNU-109291 PNU-142633	BRL15572	Autoreceptor, sympatho-inhibition	
	5-HT _{1e} *	5-HT >> 5-CT LY334370	Methiothepin (non-selective)	Unknown	
	5-HT _F	LY344864, Iasmiditan, LY334370	Methysergide (non-selective)	(-) Trigeminal system	
5-HT ₅	5-HT _{5A}	5-HT, ergotamine	SB699551	Cardiac sympatho-inhibition in rats	
	5-HT _{5b} *	5-CT (non-selective)	Unknown	Unknown	
5-HT ₄	-	Renzapride, BIMU8, ML10302, SC53116	GR 113808 SB204070	(+) Neuronal activity, vasodilatation, tachycardia in pigs and humans	
5-HT ₆	-	5-MeO-T ≥ 5-HT SB357134 SB271046	Ro 630563	Memory, not involved in cardiovascular regulation	
5-HT ₇	-	5-CT>>5-HT AS-19	SB269970 SB258719	Circadian rhythm, vasodilation, tachycardia in cats	
5-HT ₂	5-HT _{2A}	DOI, DOB α-methyl-5-HT	MDL100907 Ketanserin	Vasoconstriction, platelet aggregation	
	5-HT _{2B}	DOI, BW723C86 α-methyl-5-HT	SB204741 RS-127445	Vasoconstriction, release of NO	
	5-HT _{2C}	DOI, Ro 60-0175 α-methyl-5-HT	SB242084 RS-102221	CSF production	

1. Barnes, N.M.; Ahern, G.P.; Becamel, C.; Bockaert, J.; Camilleri, M.; Chaumont-Dubel, S.; Claeyen, S.; Cunningham, K.A.; Fone, K.C.; Gershon, M.; et al. International Union of Basic and

5-HT Receptor	Receptor Subtype	Agonists	Antagonists	Some Functions	Canonical Transduction System	ology
5-HT ₃	Pentameric ion channel **	Phenylbiguanide 2-methyl-5-HT	Tropisetron Granisetron MDL-72222	(+) Neuronal activity, reflex bradycardia		he SA,

3. Hoyer, D.; Clarke, D.E.; Fozard, J.R.; Hartig, P.R.; Martin, G.R.; Mylecharane, E.J.; Saxena, P.R.; Humphrey, V.P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). *J. Pharmacol. Rev.* **1994**, *46*, 157–203. OT, 5-methoxytryptamine; 5-CT, 5-carboxamidotryptamine; DOI, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane; NO, nitric oxide; (–), inhibits; (+), stimulates. * Lowercase is used to denote a receptor with unknown functional roles in native cells or tissues. ** Five receptors. *Pharmacol. Biochem. Behav.* **2002**, *71*, 533–554. known subunits have been described (5-HT_{3A}–5-HT_{3E}) forming homomeric or heteromeric complexes. At least two subunits of the 5-HT_{3A} type are required for functional receptor. The pharmacological profile of each 5-HT receptor type is identified by applying inclusion and exclusion criteria.

6. Watts, S.W.; Davis, R.P. 5-hydroxytryptamine receptors in systemic hypertension: An arterial focus. Some agonists and antagonists employed to identify the pharmacological profile of each 5-HT receptor type are shown in **Table 1**. As previously established [\[1\]](#)[\[2\]](#)[\[3\]](#)[\[4\]](#), the pharmacological identification of a specific 5-HT receptor type is based on the application of inclusion criteria (i.e., selective agonists for this receptor that have effects of 5-HT, while selective antagonists for this receptor produce a blockade of the effects of 5-HT and the corresponding agonist); and (ii) exclusion criteria (i.e., agonists and antagonists for the other 5-HT receptors—and sometimes even for receptors unrelated to 5-HT—are inactive) (see **Table 1**).

7. Watts, S.W.; Morrison, S.F.; Davis, R.P.; Barman, S.M. Serotonin and blood pressure regulation. *Cardiovasc. Ther.* **2011**, *29*, 54–67.

8. Gonzalez-Hernandez, A.; Marlanch-Cancino, B.A.; Lozano-Cuenca, J.; Lopez-Canales, J.S.; Munoz-Islas, E.; Ramirez-Rosas, M.B.; Villalon, C.M. Heteroreceptors Modulating CGRP Release at Neurovascular Junction: Potential Therapeutic Implications on Some Vascular-Related Diseases. *Biomed. Res. Int.* **2016**, *2016*, 2056786.

9. Ramage, A.G. Influence of 5-HT_{1A} receptor agonists on sympathetic and parasympathetic nerve activity. *J. Cardiovasc. Pharmacol.* **1990**, *15* (Suppl. S7), S75–S85. [\[1\]](#)[\[2\]](#)[\[3\]](#)[\[4\]](#)[\[5\]](#)[\[6\]](#)[\[7\]](#).

10. Ramage, A.G. Central cardiovascular regulation and 5-hydroxytryptamine receptors. *Brain Res. Bull.* **2001**, *55*, 171–180.

2. An Overview of the Effects of 5-HT on the Cardiovascular System

11. Sanchez-Lopez, A.; Centurion, D.; Vazquez, E.; Arulmani, U.; Saxena, P.R.; Villalon, C.M.

Pharmacological profile of the 5-HT-induced inhibition of cardioaccelerator sympathetic outflow in pithed rats: Correlation with 5-HT₁ and putative 5-HT_{5A}/5B receptors. *Br. J. Pharmacol.* **2003**, *140*, 725–735. The cardiovascular effects of 5-HT are complex and include bradycardia/tachycardia, hypotension/hypertension, and vasodilation/vasoconstriction. This complexity of effects is due to (i) the capability of 5-HT to interact at various levels, including the heart and blood vessels, as well as the central and peripheral (autonomic and sensory) nervous systems; and (ii) the involvement of other 5-HT₁, 5-HT₅, 5-HT₆, 5-HT₇, 5-HT₁₀, and 5-HT₁₁ receptors, as receptor blockade by antagonists the role of 5-HT₁ receptors in the inhibition of cardioaccelerator sympathetic outflow. *Environ. Physiol. Pharmacol.* **2018**, *9*, 323–336. [\[1\]](#)[\[2\]](#)[\[3\]](#)[\[4\]](#)[\[5\]](#)[\[6\]](#)[\[7\]](#).

12. Garcia-Pedraza, J.; Garcia, M.; Martín, M.L.; Gómez-Escudero, J.; Rodríguez-Barbero, A.; Roman, L.S.; Moran, A. Peripheral 5-HT_{1D} and 5-HT₁₁ serotonergic receptors modulate

3. The Specific Interactions of 5-HT at Peripheral and Central Levels to Induce Cardiovascular Effects

3.1. Sensory Afferents

14. Dabiré, H. Central 5-hydroxytryptamine (5-HT) receptors in blood pressure regulation. Therapie 1991, 46, 421–429.

15. Bedi, U.S.; Arora, R. Cardiovascular manifestations of posttraumatic stress disorder. J. Natl. Med. ASSOC. 2007, 99, 642–649.

16. Tania, V.; Catherine, V. Roles of the Serotonergic System in Coping with Traumatic Stress: Inhibition or

17. Paine, N.J.; Watkins, L.L.; Blumenthal, J.A.; Kuhn, C.M.; Sherwood, A. Association of depressive and anxiety symptoms with 24-hour urinary catecholamines in individuals with untreated high

blood pressure. Psychosom. Med. 2015, 77, 136–144.

3.2. Sympathetic Ganglia

18. Brindley, R.L.; Bauer, M.B.; Blakely, R.D.; Currie, K.P.M. An interplay between the serotonin transporter (SERT) and 5-HT receptors controls stimulus-secretion coupling in sympathetic adrenal chromaffin cells. *Neuropharmacology* 2016, 110, 438–448.

19. Nakatani, Y.; Sato, Suzuki, I.; Tsuji, N.; Nakasato, A.; Seki, Y.; Fumoto, M.; Arita, H. Augmented overall, two central 5-HT receptors regulate cardiovascular function: 5-HT_{1A} receptors (generally inhibiting the sympathetic drive) and 5-HT₂ receptors (largely stimulating the sympathetic drive) [29][30]; some of the agonists and antagonists used to identify these receptors are shown in Table 1. Admittedly, central administration of 5-HT

20. Wang, H.M.; Wang, Y.; Liu, M.; Bai, Y.; Zhang, X.H.; Sun, Y.X.; Wang, H.L. Fluoxetine inhibits monooctamine-induced pulmonary arterial remodeling involved in inhibition of RHOA/RHO kinase and AK5 signalling pathways in rats. *Can. J. Physiol. Pharmacol.* 2012, 90, 1506–1515.

21. Lin, J.C.; Chou, C.C.; Tu, Z.; Yeh, L.F.; Wu, S.C.; Khoo, K.H.; Lin, C.H. Characterization of protein serotonylation via bioorthogonal labeling and enrichment. *J. Proteome Res.* 2014, 13, 3523–3529.

22. Penumatsa, K.C.; Fanburg, B.L. Transglutaminase 2-mediated serotonylation in pulmonary hypertension. *Am. J. Physiol. Lung Cell. Mol. Physiol.* 2014, 306, L309–L315. Retrieved from <https://encyclopedia.pub/entry/history/show/105875>. This response involves the Bezold–Jarisch reflex, originating from the depolarization of afferent cardiac sensory neurons via activation of 5-HT₃ receptors [2][5]. Furthermore, 5-HT can also produce bradycardia by (i) a cardiac sympatho-inhibition via activation of prejunctional 5-HT_{1B}, 5-HT_{1D} and 5-HT_{5A} receptors in pithed rats [2][11][12]; or (ii) a cardiac vagal stimulation via activation of 5-HT₃ receptors on parasympathetic ganglia and postganglionic vagal nerves in rabbits [2][5] (see Table 1 for pharmacological tools).

3.3.1. Bradycardia

I.v. administration of 5-HT in vagotomised animals induces a tachycardic effect that may be mediated by a wide variety of receptors/mechanisms, depending on the species and the experimental conditions [2][5]. These receptors/mechanisms include: (i) a tyramine-like action in spinal guinea pigs; (ii) direct stimulation of 5-HT_{2A} receptors on the cardiac pacemaker in reserpinized pithed rats; (iii) activation of 5-HT₃ receptors on cardiac

sympathetic neurons in the perfused heart of a rabbit, resulting in noradrenaline release and cardiac stimulation; (iv) activation of 5-HT₃ receptors on a calcitonin gene-related peptide (CGRP)-containing sensory neurons in an isolated guinea pig atrium, resulting in CGRP release and cardiac stimulation; (v) direct stimulation of 5-HT₃ receptors on a cardiac pacemaker in conscious dogs; (vi) direct stimulation of 5-HT₄ receptors on a cardiac pacemaker in healthy anaesthetized pigs (which is also involved in the positive inotropic effects of 5-HT in isolated human atria and in rats with chronic heart failure); (vii) direct stimulation of 5-HT₇ receptors on a cardiac pacemaker in spinal cats; and (viii) unidentified mechanisms in the isolated hearts of certain lamellibranch and gastropod species (including *Mercenaria mercenaria*, *Patella vulgata*, *Tapes watlingi*, *Helix aspersa*, *Aplysia*, etc.). These receptors were pharmacologically identified using selective agonists and antagonists for each type (see **Table 1**).

3.4. Vascular and Blood Pressure Effects of 5-HT

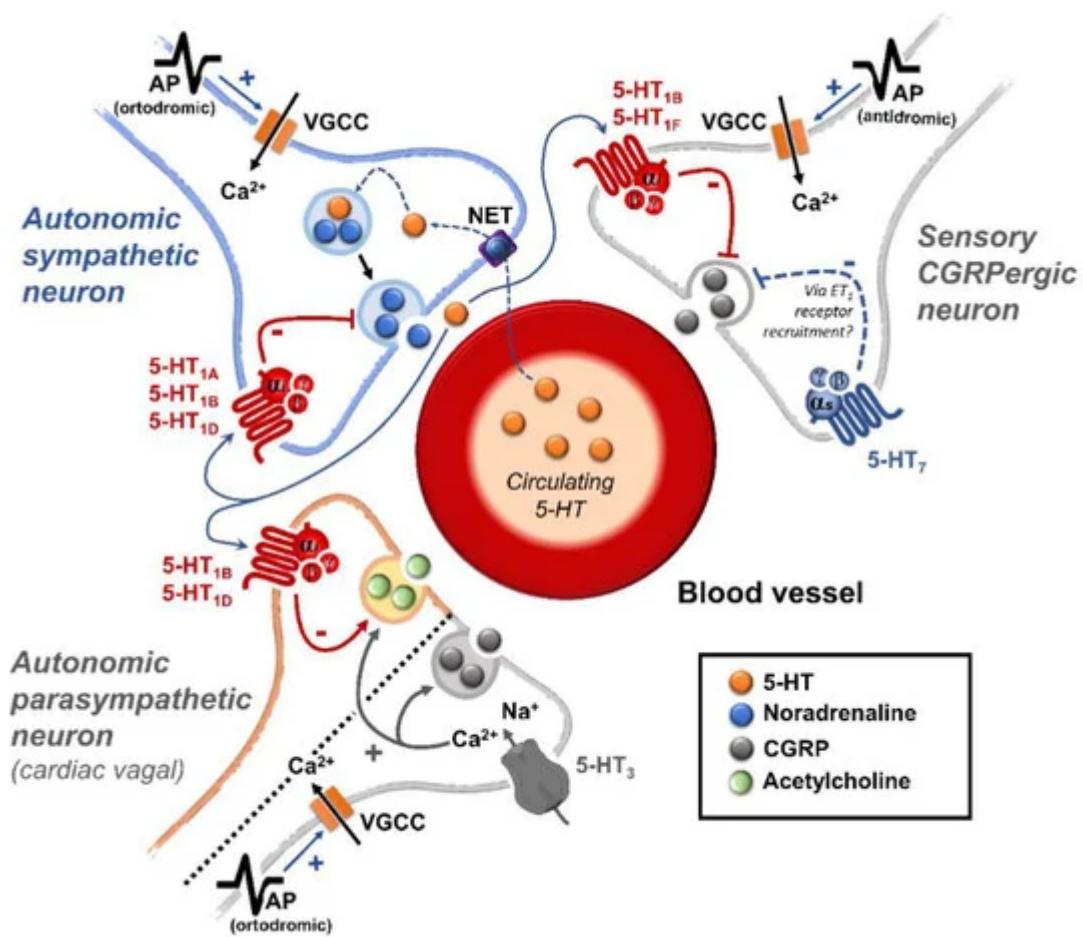
As explained in other reviews [2][6][7], i.v. administration of 5-HT results in a triphasic effect on arterial blood pressure, consisting of an initial transient vasodepressor effect followed by a vasopressor effect, and then a late long-lasting vasodepressor effect.

3.4.1. Initial Transient Vasodepressor Effect

This response results from an abrupt bradycardia (and the consequent decrease in cardiac output) following stimulation of 5-HT₃ receptors on afferent cardiac vagal afferents (i.e., the Bezold–Jarisch reflex; see above and **Table 1**).

3.4.2. Vasopressor Effect

This effect (which varies quantitatively, depending on the species and the experimental conditions) involves the activation of vascular 5-HT₂ receptors in resistance blood vessels (resulting in peripheral vasoconstriction). It is worth noting that a release of catecholamines by activation of 5-HT₂ receptors in the adrenal medulla also plays a role in dogs, whereas activation of 5-HT_{1B} receptors produces vasoconstriction in cranial and carotid arteries in humans, pigs and dogs [2]. Interestingly, 5-HT_{1B} and 5-HT₂ receptors elicit vasoconstriction in the internal carotid bed of anaesthetised dogs, while 5-HT directly activates, *in vitro*, α -adrenoceptors in rabbit ears and external carotid arteries [2]. Some of the agonists and antagonists used to identify these receptors are shown in **Table 1**.


3.4.3. Late Long-Lasting Vasodepressor Effect

This effect predominantly involves the activation of musculotropic 5-HT₇ receptors [2][6][7], although several receptors/mechanisms may play a role, depending on the experimental conditions. These receptors/mechanisms may include:

(i) *Direct vasodilatation*. The direct vasodilatation to 5-HT involves 5-HT₇ receptors in a wide variety of blood vessels under different experimental conditions [2][5][6][7]. Some of the agonists and antagonists used to identify

these receptors (applying the aforementioned inclusion and exclusion criteria) are shown in **Table 1**. Moreover, in the blood vessels where 5-HT₇ receptors produce vasodilatation and 5-HT₂/5-HT_{1B} receptors produce vasoconstriction, the final effect of 5-HT would depend on the pre-existing vascular tone, the dose employed, and the proportions in which these receptors are distributed [2].

(ii) *Prejunctional inhibition of perivascular sympathetic neurons*. The prejunctional inhibition induced by 5-HT and related agonists on perivascular sympathetic neurons has been confirmed in vitro and in vivo in many blood vessels [2]. This vascular sympatho-inhibition, generally mediated by 5-HT₁ receptors, may involve the 5-HT_{1A}, 5-HT_{1B} and/or 5-HT_{1D} receptor subtypes, depending on the vascular bed under study, the species, and the experimental conditions [2]. Interestingly, sympatho-inhibitory 5-HT₇ receptors could also be involved when rats are chronically pretreated with the 5-HT₂ receptor antagonist sarpogrelate [2][13]. These receptors were pharmacologically identified by applying the inclusion and exclusion criteria (see **Table 1** and **Figure 1**).

Figure 1. Prejunctional 5-HT receptors are involved in the inhibition of postganglionic autonomic and sensory CGRPergic function at the vascular level. Generally, 5-HT can inhibit the release of noradrenaline, acetylcholine, and CGRP via activation of the 5-HT₁ receptor family (coupled to G_{i/o} proteins; this figure shows the corresponding G_{α/βγ} subunits). In the case of the parasympathetic outflow, activation of 5-HT₃ (ligand-gated ion channel) receptors favours the release of acetylcholine. Furthermore, in sensory CGRPergic neurons, prejunctional activation of 5-HT₇ receptors seems to recruit the endothelin system (via an unknown pathway), favouring the

activation of the ET_1 receptor and promoting inhibition of CGRP release. Interestingly, (i) in some isolated cases, activation of prejunctional 5-HT₃ receptors on parasympathetic fibres facilitates the release of CGRP; and (ii) circulating 5-HT can be recaptured via NET, and subsequently vesiculated and released upon electrical stimulation of the sympathetic outflow. See text for details. AP: action potential; NET: noradrenaline transporters; VGCC: voltage-gated ion channels.

(iii) *Endothelium-dependent vasodilatation.* In isolated blood vessels of several species without a functional endothelium, the vasodilatation to 5-HT is attenuated, while the vasoconstriction is augmented [2]. This vasodilatation, involving endothelial release of nitric oxide (NO), is mainly mediated by 5-HT₁ receptors [2]. Interestingly, in porcine blood vessels, the 5-HT-induced endothelium-dependent vasodilatation involves (i) 5-HT_{1B/1D} receptors in coronary arteries; or (ii) 5-HT_{2B} receptors in pulmonary arteries (see **Table 1**).

(iv) *Actions in the CNS.* Central administration of 5-HT may produce vasodepressor, vasopressor or biphasic effects, depending on the exact site of application, dose employed, depth of anaesthesia, the species used, etc. [2]. As previously reviewed [2][10], the cardiovascular regulation by central 5-HT neurons involves (i) 5-HT_{1A} receptors (associated with sympatho-inhibition, hypotension, and bradycardia); and (ii) 5-HT₂ receptors (associated with sympatho-excitation and hypertension). Indeed, when directly applied in the CNS, 5-HT may produce both sympatho-inhibition and cardiac-vagal stimulation via 5-HT_{1A} receptors [9][14]. In fact, psychiatric conditions that involve alterations in the serotonergic limbic components are usually accompanied by an autonomic imbalance; for example, posttraumatic stress disorder includes clinical manifestations such as cardiac arrhythmia, tachycardia, high blood pressure, etc. [15][16]. Moreover, anxiety correlates strongly with adrenaline levels in a positive direction [17], while aberrations in the autonomic nervous system (ANS) have been reported in patients with depression or other mood alterations [18]. Hence, central 5-HT is a powerful modulator of the ANS whose complex mechanisms fall beyond the scope of the present research. Interestingly, brain 5-HT can cross the blood–brain barrier via the 5-HT reuptake transporter (SERT) in endothelial cells and, consequently, can reach systemic circulation [19].

3.5. Receptor-Independent Actions of 5-HT

Apart from the above cardiovascular effects of 5-HT mediated by 5-HT receptors, other studies suggest that 5-HT can also play cardiovascular (patho)physiological roles independent of 5-HT receptor activation [2]. For example, (i) rats pretreated with fluoxetine (a SERT inhibitor) were protected from monocrotaline-induced pulmonary hypertension [20]; and (ii) 5-HT uptake can “serotonylate” proteins by transglutaminase-2 [21], a mechanism involved in the mitogenic and profibrotic effects of 5-HT without receptor activation [22].