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Opioids are potent analgesics widely used to control acute and chronic pain, but long-term use induces tolerance that

reduces their effectiveness. The US Food and Drug Administration (FDA) define opioid tolerance as follows

(https://www.fda.gov);

Patients are considered opioid tolerant if they are taking, for 1 week or longer, at least:

- Oral morphine–60 mg daily

- Transdermal fentanyl–25 mcg/h

- Oral oxycodone–30 mg daily

- Oral hydromorphone–8mgdaily

- Oral oxymorphone–25mgdaily

- Equianalgesic daily dose of another opioid
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1. Introduction

Opioids such as fentanyl and morphine are widely used as excellent analgesics for both acute pain (e.g., during surgery)

and chronic pain (e.g., in cancer patients) . However, the increases in addiction and overdose death due to opioid

misuse arising from prescriptions made by medical institutions, especially in the United States where opioid analgesics

have been heavily used in recent years, have become serious social problems. US government agencies have declared

the Opioid Crisis as a national emergency . Chronic use of opioids induces tolerance that reduces analgesic effects,

and opioid-induced hyperalgesia increases painful sensation throughout the entire body , resulting in increased opioid

doses, more addiction, and even shorter life span . About 16,000 deaths, or 36% of the 44,000 drug overdose deaths

in the United States in 2013, were associated with prescribed opioids (2013 National Survey on Drug Use and Health).

Approximately 9.9 million people aged 12 or older in 2018 misused prescription pain relievers, corresponding to 3.6% of

the US population (2018 National Survey on Drug Use and Health).

Opioid tolerance develops due to multifaceted mechanisms such as altered intracellular signal transductions in sensory

neurons, inflammation of neurons and glial cells, and reconstitution of neural circuits . Opioids act via mu opioid

receptors (MORs) expressed on the plasma membrane of primary sensory neurons, as well as various neurons in the

cerebrum, brainstem, and dorsal horn of the spinal cord; opioid binding to MORs suppresses ascending nociceptive

transmission and enhances descending pain inhibitory pathways, resulting in analgesia. MORs activate various signaling

molecules through heterotrimeric guanine nucleotide-binding proteins (G proteins) , leading to an analgesic effect. MOR

activation also induces G-protein-coupled receptor kinases to phosphorylate MORs , which can then be recognized

by β-arrestins and internalized by clathrin-coated vesicles . Transient uncoupling of MORs from signaling pathways due

to their phosphorylation and subsequent intracellular trafficking causes opioid desensitization. β-arrestin-2 deletion

enhances morphine analgesia and prevents the development of tolerance, but not dependence . Most internalized

MORs eventually return to the cell surface, resulting in re-sensitization . Chronic morphine tolerance may

accompany adaptations of the intracellular signal transduction of post-MOR activation, including increased activity of

protein kinase A  and protein kinase C , and up-regulation of N-methyl-D-aspartate receptor signaling .

Chronic morphine treatment also activates the glycogen synthase kinase 3β (GSK3β) and Src kinase pathways, while

inhibition of these kinases has been shown to diminish morphine tolerance and restore analgesia .
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2. Data, Model, Applications and Influences

Dobashi et al. previously reported that signaling from the endoplasmic reticulum (ER) contributed to the development of

morphine tolerance . Accumulation of misfolded proteins in the ER induced the unfolded protein response (UPR) that

causes diverse pathological conditions. Persistent overload of misfolded proteins causes a diverse array of disorders due

to impaired functional protein synthesis and cell death , including neurodegenerative disease , dilated

cardiomyopathy , and renal disease . Another distinct mechanism by which ER stress causes human disease is that

the UPR alters signaling pathways required for important cellular functions . Obesity causes ER stress that induces the

UPR, which may attenuate insulin receptor signaling through hyperactivation of c-Jun N-terminal kinase and serine

phosphorylation of insulin receptor substrate-1. Crosstalk between the UPR and insulin receptor signaling has been

shown to cause insulin resistance in type II diabetes . Chronic morphine administration may alter signal transduction

due to persistent MOR activation . In addition, MOR signaling may induce the UPR via calcium (Ca ) kinetics, and the

ER is the main store of Ca . MOR activation induces the ER to release Ca  into the cytoplasm . ER chaperones

including BiP are Ca -binding proteins, and the release of Ca  may disturb protein folding and induce the UPR. It has

been shown that ER stress activates Src kinase  and GSK3β [ . MOR-signaling also induces the activation of

these kinases, which has been associated with tolerance formation . GSK3β plays important roles in a variety of

human disorders, including inflammation, Alzheimer’s disease, mood disorders, diabetes, and cancer . Thus, a

mechanism similar to that occurring in type II diabetes might underlie the crosstalk between the UPR and analgesic signal

transduction through MORs.

Okuyama et al. examined the effects of pharmacological chaperones on opioid tolerance development by assessing

thermal nociception in mice . The pharmacological chaperones, such as 4-phenyl butyric acid (PBA) and

tauroursodeoxycholic acid (TUDCA) facilitate protein folding in the ER, and function as proteostasis regulators .

Pharmacological chaperones suppressed the development of morphine tolerance and restored analgesia. Chaperones

alone did not cause analgesia. Those results suggest that ER stress may facilitate morphine tolerance due to intracellular

crosstalk between the UPR and MOR signaling. Pharmacological chaperones may be useful in the management of opioid

misuse.

Opioids such as oxycodone and fentanyl have been prescribed for chronic pain, but the efficacy of long-term therapy has

not been demonstrated . High doses of opioid preparations for chronic pain can cause unfavorable side effects

such as tolerance, hyperalgesia, addiction, and even death . Buprenorphine, methadone, and naltrexone are

currently used to reduce opioid use . Buprenorphine and methadone are less preferred options because they

themselves are opioids. Pharmacological chaperones such as PBA and TUDCA ameliorate opioid tolerance and maintain

morphine’s analgesia. Moreover, the analgesic effect of opioids could be recovered by pharmacological ER chaperone

administration even after tolerance had been induced . Both PBA and TUDCA have few clinical side effects and may be

effective treatments for opioid misuse through the reduction of opioid usage. Pharmacological chaperones may represent

a promising therapeutic option for maintaining opioid analgesia without increasing prescriptions.
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