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Grain quality involves the appearance, nutritional, and safety attributes of grains. With the improvement of people’s living

standards, problems pertaining to the quality of grains have received greater attention. Modern quality detection

techniques feature unique advantages including rapidness, non-destructiveness, accuracy, and efficiency in detecting

grain quality.
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1. Introduction

Grains, containing nutritional ingredients including carbohydrates, proteins, fats, vitamins, and minerals, are daily

necessities of human life. However, impurities, unsound kernels, fungal toxins, pesticides, and heavy metal residues pose

a risk to human health. With regular economic growth and social progress, consumers have begun to pay more attention

to the quality and safety of grains and have increasingly larger demands for high-quality and highly safe grains. The

quality attributes of grains acceptable to consumers mainly include appearance attributes (size, shape, and color),

nutritional attributes (protein, starch, fat, and vitamin), and safety attributes (contaminants such as mildew, pesticide

residues, and heavy metal residues). Detailed and specific requirements for quality indices of grains have been set in

Chinese National Standards. For appearance attributes, appearance indices including the color and shape, impurity, and

unsound kernels of wheat, maize, paddy, and soybean have been elucidated in detail in the Assistant Atlas of Grain

Sensory Inspection . As to nutritional attributes, the determination methods for nutrients including proteins ,

starches , fats , ashes , amino acids , dietary fibers , and trace elements  have been specified in the Chinese

National Standards for Food Safety. In terms of safety attributes, the maximum residue limits for pesticides , maximum

residue limits for fungal toxins , and maximum levels of contaminants  in grains have been listed in the Chinese

National Standards for Food Safety. There are also detailed requirements pertaining to the appearance ,

nutritional attributes , and safety attributes  of grains in international standards.

Grain quality is an important index in the grain circulation process involving the production, storage, trading, and

processing. Grain quality detection has always been one of the greatest challenges pertaining to the treatment,

processing, classification, and safety guarantees needed in the food industry. Traditionally, grain quality detection is

realized through sensory and chemical analyses. However, sensory analysis is time-consuming, inefficient, highly

subjective, and susceptible to external interference (influences of physical conditions such as fatigue); chemical analysis

is expensive, time-consuming, laborious, and destructive, and requires a laboratory. In recent years, to meet the

requirements of modern quality inspection, detection techniques based on physical properties such as acoustic, optical,

thermal, electrical, and mechanical properties and sensory features including visual, gustatory, and olfactory features

have been developed apace. The references of the state of the art were obtained within the last five years in the core

collection database of the Web of Science search engine. The researchers searched the references by combining the

keywords cereal, grain, and quality with the technical words of physical properties such as near-infrared spectroscopy

(NIRS), hyperspectral imaging (HSI), Raman spectroscopy (RS), optical, dielectric, nuclear magnetic resonance (NMR),

X-ray, electromagnetic, acoustic, thermal, and mechanical, and sensory features such as electronic eye (E-eye), computer

vision, electronic nose (E-nose), electronic tongue (E-tongue), and sensory, respectively. The researchers classified all the

references according to the quality as the first condition and the techniques as the second condition, and summarized and

analyzed the research purposes, research contents, research methods and research results of each reference. The

previous references have focused on the applications of a particular detection method to different objects, or some

detection methods for selected objects. Herein, the researchers analyzed and summarized the advantages and

disadvantages of the methods of physical properties and sensory features in terms of appearance, nutritional and safety
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attributes of cereal grains, and explored the techniques that can detect various quality indicators in different application

scenarios. Based on the latest technical references the researchers have collected, the researchers have mapped the

latest research progress of research institutes  (Figure
1) and commercial instruments 

 (Figure 2).

Figure 1. The research progress of research institutions on grain quality detection techniques 

.

Figure 2. Commercial instruments for grain quality detection 

.

Among detection techniques for grain quality based on physical properties, those based on optical features such as NIRS,

HSI, and RS detect nutritional attributes (proteins, starches, and fats) and safety attributes (pesticide residues and fungal

toxins) of grains . The detection is based on the response to light in grains, including its absorption, reflection,

transmission, and scattering. In addition, HSI can also be used to determine color and shape ; RS also can be adopted

to assay heavy metal residues . Detection techniques based on electromagnetic properties such as those based on
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dielectric properties, NMR, and X-ray realize detection according to response signals of grains in the electrical or

magnetic fields. They can be utilized to determine the moisture content  and nutritional attributes such as starches and

fats . X-rays also can be used to determine trace elements and heavy metals in grains . Detection techniques based

on acoustic features were adopted to study nutrients including proteins and appearance attributes such as unsound

kernels according to responses of grains to acoustic signals (reflection and transmission) . Detection techniques based

on thermal features were used to assess safety attributes involving fungi and appearance attributes including unsound

kernels based on differences in thermal radiation of each part of grains . Those based on mechanical properties were

employed to study nutritional attributes including proteins and starches according to mechanical features of grains under

all kinds of applied load . Among detection techniques for grain quality based on sensory features, E-eyes were used to

identify appearance attributes of grains including the color and shape, impurities, and unsound kernels according to

features such as color and shape in images . E-noses were employed to evaluate safety attributes involving pesticide

residues and fungal toxins and appearance attributes including unsound kernels in accordance with gaseous response

signals of volatile organic compounds in grains . E-tongues are often used to detect nutritional attributes such as

proteins and starches and safety attributes about heavy metals based on taste response signals in grain leachates .

The principles and objects of detection techniques for grain quality based on physical properties and sensory features are

listed in Table 1.

Table 1. Modern inspection techniques for grain quality.
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Detection methods Principles Objects Limitation

Physical

properties

Optical

properties

NIRS

Realizing quantitative

quality detection and

qualitative analysis

according to differences

in the absorption band

and intensity of hydric

groups in organic

components of grains in

the near-infrared region

Nutritional attributes

including proteins,

starches, and fats,

and safety attributes

pertaining to

pesticide residues

and fungal toxins

High precision

instruments are

expensive and the NIR

spectra of different

components overlap.

HSI

Realizing accurate

detection of grain quality

based on hyperspectral

and image data

Nutritional attributes

including proteins,

safety attributes

pertaining to

pesticide residues

and fungal toxins,

and appearance

attributes including

color and shape

HSI is costly, the

amount of

hyperspectral data is

extremely large, and it

is difficult to store and

analyze.

RS

Based on scattering

spectra of different

components in grains at

different light

frequencies; achieving

quality detection by

analyzing molecular

vibration and rotation of

these components in

grains

Nutritional attributes

including proteins,

and safety attributes

pertaining to fungal

toxins, pesticide

residues, and heavy

metals

Fluorescence

phenomena on Fourier

variation Raman

spectral interference,

optical systems

affecting different

vibrational peak

overlaps, and Raman

scattering intensity.

Electromagnetic

properties

Dielectric

According to the

response characteristics

of grains in the applied

electric field

Moisture content

High correlation mainly

with moisture.

NMR

Atomic nuclei with fixed

magnetic moments in

grains produce a string

of response signals with

attenuated intensity in

the specific impulse

trains.

Moisture content

and nutritional

attributes including

starches and fats

Mainly used for

moisture state,

migration process

analysis, high price,

complex signal

analysis, and imperfect

NMR spectrum

database.

X-ray

Elements in grains

release X-ray

fluorescence of specific

energy under X-ray

irradiation

Nutritional attributes

including trace

elements, and

safety attributes

pertaining to heavy

metals

X-ray control is

complicated and

dangerous.



Detection methods Principles Objects Limitation

Acoustic properties

According to the

reflection, scattering,

projection, and

absorption

characteristics of

acoustic waves in grains

Nutritional attributes

including proteins,

and appearance

attributes such as

unsound kernels

High environmental

noise interference.

Thermal properties

According to differences

in thermal radiation of

various parts of grains

Appearance

attributes such as

fungal infection and

unsound kernels

High ambient

temperature

disturbance.

Mechanical properties

According to the

mechanical features of

grains under all types of

mechanical load

Nutritional attributes

including proteins

and starches

The association

between mechanical

properties and quality

is unclear.

Sensory

features

E-eye

According to features

including color and

shape in images

Multiple appearance

attributes

High requirements for

clarity of acquired

images, difficulty to

identify early mold and

pest images, and

difficulty to segment

multi-seed images.

E-nose

According to gaseous

response signals of

volatile organic

compounds in grains

Safety attributes

pertaining to fungal

toxins and pesticide

residues

Early mold or mild

pesticide residues

produce low gas

concentrations that are

difficult to detect and

environmental gas

interference.

E-tongue

According to taste

response signals of

grain leachates

Nutritional attributes

including proteins

and starches, and

safety attributes

pertaining to heavy

metals

The detection object is

the leachate of seed

samples

The organizational structure of this research is shown in Figure 3.



Figure 3. Block diagram of the entry organization.

2. Overseas and Domestic Research Status

2.1. Non-Destructive Quality Detection Methods for Appearance Attributes of Cereal Grains

According to descriptions in the Assistant Atlas of Grain Sensory Inspection, the appearance attributes of grains mainly

include quality indices such as color and shape, impurities (screen underflows, inorganic impurities, and organic

impurities), and unsound kernels (immature, injured, specked, broken, germinated, and moldy grains). Traditionally,

appearance attributes are mainly inspected through an artificial sensory analysis, which is both time- and labor-consuming

and greatly affected by subjective factors. Among modern detection methods of appearance attributes, the HSI, NMR, X-

ray, those based on acoustic and thermal features, and E-eye all can detect indices of appearance attributes (Table 2).

Table 2. Non-destructive quality detection methods for appearance attributes of cereal grains.

Detection

Methods
Objects Devices References

HSI
Color and shape, unsound kernels, and

impurities

Zolix “GaiaSorter” hyperspectral imaging

system

NMR Unsound kernels NMI20 bench top pulsed NMR analyzer
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Detection

Methods
Objects Devices References

X-ray Unsound kernels Skyscan 1272 X-ray micro-CT scanner

Acoustic

properties
Unsound kernels

Self-made impulse signal acquisition

device

Thermal

properties
Unsound kernels MLG-II temperature sensor

E-eye
Color and shape, unsound kernels, and

impurities
CCD camera or smartphone

2.2. Non-Destructive Quality Detection Methods for Nutritional Attributes of Cereal Grains

The main nutritional indices of grains include proteins, starches, fats, ashes, amino acids, dietary fibers, and trace

elements. Traditionally, nutritional attributes are determined using physical and chemical experimental analysis. The

Kjeldahl method for nitrogen determination, hydrolysis, Randall extraction, incineration, amino-acid analyzers, enzymatic

gravimetric method, and plasmas are generally adopted to determine protein , starch , fat , ash , amino acid ,

dietary fiber , and trace element  contents in grains. Traditional detection methods generally call for destructive

sample preparation and are time-consuming and inefficient. In modern inspection methods for nutritional attributes,

methods including NIRS, HSI, RS, NMR, X-ray, and those based on acoustic properties, mechanical properties, and E-

tongues are mainly used (Table 3).

Table 3. Non-destructive detection methods for nutritional attributes of cereal grains.

Detection Methods Objects Devices References

NIRS Proteins, starches, and amino acids
Unity SpectraStar 2500XL-

spectrometer

HSI Proteins, oleic acids, and starches OCI-UAV-1000 hyper-spectrometer

RS
Proteins, starches, amino acids,

and oils
Renishaw Raman spectrometer

NMR Oils Minispec mq20 NMR spectrometer

X-ray Trace elements Hard X-ray microprobe

Acoustic properties Proteins and ashes Physical property analyzer

Mechanical

properties
Proteins and starches CT3 physical property analyzer

E-tongues Starches and proteins Self-made three-electrode E-tongue

2.3. Non-Destructive Inspection Methods for Safety Attributes of Cereal Grains

Regarding safety attributes, the maximum limits for pesticide residues, fungal toxins, and contaminants in grains have

been listed in the Chinese National Standards for Food Safety. Traditionally, gas chromatography and liquid
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chromatography are commonly used for determining the maximum limits of pesticide residues and fungal toxins, and

atomic absorption spectrometry (ABS) is utilized to measure heavy metal residues. Modern methods for detecting safety

attributes mainly include NIRS, HSI, RS, X-ray, and E-noses (Table 4).

Table 4. Non-destructive inspection methods for safety attributes of cereal grains.

Detection

Methods
Objects Devices References

NIRS Fungal toxins Zeiss fiber optical spectrometer

HSI Fungal toxins
ANDOR EMCCD camera + Xenics LWNIR

camera

RS
Pesticide residues and fungal

toxins
1064-nm NanoRam Raman spectrometer

X-ray Heavy metals and fungal toxins
Y. CHEETAN micron-resolution X-ray CT

scanner

E-noses
Pesticide residues and fungal

toxins
Fox3000 E-nose

3. Unsolved Technical Problems

For different quality indices of grains, different types of detection methods can be used to realize high-accuracy detection.

However, these methods still have room to improve in terms of grain-quality detection.

1. High ① Optical detection methods including NIRS, HSI, and RS have developed to relative maturity, while the detection

cost of full-spectrum devices is high. ② NMR instruments also face the problem of high cost.

2. Environmental interference. Grain quality detection based on acoustic and thermal features is greatly influenced by the

environment (ambient noise and temperature).

3. Detection principle. ① The relationship between the mechanical features and quality indices of grains remains unclear.

②  Water is an important factor that affects the dielectric property of grains, while the relationship between quality

indices and dielectric properties of grains is also poorly understood. ③ Detection objects of E-tongues must be grain

leachates, which limits the application thereof to the quality detection. ④ X-rays may contaminate grains.

4. E-nose detection is limited by the LOD of gas sensors and the method fails to identify problems including early mildew

in grains.

5. Moisture detection. Water is an important factor that influences grain quality and must be detected in all stages

including the harvest, storage, trading, transportation, and processing of grains.

6. Grading and classification of grains. Grains can be graded and classified according to differences in multiple quality

indices of grains in accordance with the national or international standards. However, research on grain quality using a

single detection technique can only determine one or several indices, which fails to meet the grading and classification

demands imposed in practice.

7. Practical application issues. In different applications, grain quality inspection equipment faces different challenges; for

example, the aerodynamic characteristics of the grain seeds during sowing, and the vibration of the machinery during

harvesting can affect the quality inspection results.

4. Future Research Directions

1. ① Considering that screening of characteristic wavelengths of different quality indices of grains is still an important part

in existing quality detection research, device development based on characteristic wavelengths can substantially

reduce the cost of analysis. This is conducive to the popularization and application of optical detection devices. In

recent years, NIRS spectrometers  have also been upgraded with the development of NIRS analysis and

chemometrics methods . Liu et al.  selected four characteristic wavelengths to develop the portable
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near-infrared quality detector, which can realize the real-time determination of proteins and moisture in wheat kernels.

The development of multispectral imaging  based on characteristic wavelengths can overcome this problem.

Sendin et al.  discriminated between high-quality and poor-quality maize using 19 characteristic wavelengths, with

the classification accuracy in the range of 83% to 100%. ② NMR can be divided into high-field and low-field ones .

A high-field NMR spectrometer contains expensive superconducting magnets, so it has complex structures and its

signals are difficult to process. A low-field NMR spectrometer uses low-cost permanent magnets, so it is preferred in

grain-quality detection.

2. Acoustic features include audible sound and ultrasonic waves. Detection based on audible acoustic features is

susceptible to the ambient noise, while acoustic detection based on ultrasonic waves can avoid environmental

interference, and is an important method of applying acoustic methods to grain-quality detection . Eliminating

interference (including the effect of changes in ambient temperature) with detection based on thermal features is the

top priority for improving the accuracy of detection of grain quality. Mangus et al.  performed environmental

calibration using a temperature reference plate, which compensates for environmental influences including air

temperature, relative humidity, solar radiation, and camera temperature, thus maintaining the measurement

temperature.

3. ①  The difference in mechanical properties of cereal grains is determined by the tightness of bonding of main

components including starches and proteins therein. By using an electronic universal testing machine, Cheng et al. 

measured the shear resistance of wheat. In this way, they obtained that the shear resistance is significantly positively

correlated with the protein content, positively correlated with wet and dry gluten, negatively (albeit insignificantly)

correlated with the starch content, and positively (albeit insignificantly) correlated with the bulk weight and thousand-

kernel weight. Existing research into the mechanical properties of cereal grains mainly focuses on grain quality

evaluation , while the correlation of these properties with quality indices remains to be further studied. ② Moisture

detection of grains based on dielectric properties has reached an extremely high accuracy, so developing detection

devices applicable to different application scenarios is a potential direction for future development . ③ Preparation

of grain leachates is laborious and the detection electrodes of E-tongues need to be cleaned and polished in a complex

process before the next detection . Therefore, the development of preparation techniques of detection samples for

E-tongues and the upgrading of detection electrode materials are the only way to realizing real-time efficient detection

of quality indices of grains. ④ X-rays include hard and soft variants ; hard X-rays may damage grains, while soft

ones have low penetrability and therefore, they are applicable to detection of quality indices of grains.

4. The multi-scale, systematic organization for imitating biological noses through bionics design is one of the methods to

improve the LOD of E-noses. In addition, development of high-LOD gas-sensing materials is also an important

approach to improving the performance of E-noses .

5. Research into moisture detection in grains has developed to relative maturity, and high-accuracy moisture detection

can be realized based on dielectric properties and NMR . Robust progress has been made in

moisture detection devices based on dielectric properties , while those based on NMR have not developed to

any substantial extent. Moisture detection devices for grains in different application scenarios should be a focus of

future research.

6. The combination of multiple quality detection techniques of grains can detect multiple quality indices in the grading and

classing requirements, thus realizing grain grading and classification. At present, some studies have combined multiple

detection techniques to improve the detection accuracy . Realizing the grading and classification of

cereal grains by combining multiple quality detection techniques remains the focus of future research.

7. To guarantee the normal operation of grain quality detection equipment, the interference factors affecting grain quality

detection equipment are studied for specific application scenarios. Gierz et al.  collected seed image data at the air

velocity (15, 20, 25 m/s) of a pneumatic seeder pipeline conveying seeds based on the aerodynamic characteristics of

grain seeds , and constructed a classification model based on multilayer-based perceptron network, which has

a correct classification coefficient of 0.99 for contaminants in seeds at a sowing speed of 15 m/s. Studying the

influencing factors in different application scenarios is necessary to promote the application of grain quality detection

instruments.
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