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Increasingly popular, ultra-endurance participation exposes athletes to extremely high levels of functional and structural

damage. Ultra-endurance athletes commonly develop acute kidney injury (AKI) and other pathologies harmful to kidney

health. There is strong evidence that non-steroidal anti-inflammatory drugs, common amongst ultra-athletes, is linked to

increased risk and severity of AKI and potentially ischaemic renal injury, i.e., acute tubular necrosis. Ultra-endurance

participation also increases the risk of exertional rhabdomyolysis, exercise-associated hyponatremia, and gastrointestinal

symptoms, interlinked pathologies all with potential to increase the risk of AKI. Hydration and fuelling both also play a role

with the development of multiple pathologies and ultimately AKI, highlighting the need for individualised nutritional and

hydration plans to promote athlete health. Faster athletes, supplementing nitrates, and being female also increase the risk

of developing AKI in this setting.
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1. Introduction

Since the turn of the millennium ultra-endurance events, defined by distance (>42.195 km for running), duration (>6 h or

multiple days/stages), and environment (mountain, desert)  have increased in popularity . As regular exercise

including endurance and/or resistance is recommended to promote health benefits and prolong life , ultra-endurance

athletes are considered to be healthy due to their increased cardiovascular fitness, commitment to high-volume training,

and increased energy expenditure . Preliminary evidence suggests repeated extremely strenuous exercise can promote

increased mortality and reductions in health benefits in relation to increasing training dose endorsing a J- or U- shaped

relationship . Of interest to this entry is the common development of acute kidney injury (AKI) post-ultra-endurance

participation . Although a consensus has not been reached regarding the true incidence of AKI for these athletes

due to the multiple and inconsistent methods used .

Ultra-athletes are at increased risk of AKI, especially those participating in high volume and intensity ultra-running events,

are exposed to high levels of functional and structural damage , increased serum creatinine (SCr) levels  and

increasing renal filtration requirements . The ingestion of non-steroidal anti-inflammatory drugs (NSAIDs), which is

common in sports medicine  with up to 75% of ultra-athletes reporting NSAIDs use  is also a concern.

NSAIDs are a contributing factor to ultra-endurance event completion success  as they assist in mitigating muscle

inflammation, postpone fatigue, and improve pain tolerances . High doses, equalling the maximal over-the-

counter doses, can compromise training adaptations, reduce performance , increase the risk of AKI and accelerate

progression of AKI to chronic kidney disease (CKD) . Additionally, being of female sex, dehydration status ,

experiencing significant weight loss during races  and running faster over shorter durations  are associated

with increased AKI risk for ultra-athletes.

Ultra-endurance events require prolonged extremely strenuous exercise while self-managing nutritional and hydrational

status to facilitate optimal physical and mental performance . Sub-optimal nutritional status in ultra-athletes is common

and often requires participant withdrawal and/or medical intervention . Conventionally, ultra-athletes do not prioritise

protein  where nutrition and fuelling mainly focuses on carbohydrates . In times of limited energy availability or

insufficient protein ultra-events can incite muscle breakdown via inducing a catabolic state , which although

uncommon can result in exertional rhabdomyolysis (ER)  which can induce kidney tubule damage and AKI . Over-

hydrating and intolerable fuelling regimes can result in exercise-associated hyponatremia (EAH) , gastro-intestinal

symptoms (GIS) and endotoxemia  all of which can lead to kidney tubule damage and impaired kidney function.

AKI can be described as a sudden decrease in renal function which if prolonged can result in structural damage to renal

tissues and impairment  but is mostly asymptomatic and reversible . Increased blood levels of nitrogen waste
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products are characteristic of AKI  and changes SCr, blood urea, and cystatin-C (Cyst-C) levels are indicators of kidney

function . More novel and less used biomarkers reflecting renal tissue injury are neutrophil gelatinase-associated

lipocalin (NGAL) and kidney injury molecule 1 (KIM-1) . However, clinical AKI criteria, such as Risk, Injury, Failure,

Loss, End-stage (RIFLE) and Kidney Disease Improving Global Guidelines (KDIGO) for AKI, are founded on changes

observed to SCr levels and urine volume (Figure 1) . Other structural and subclinical measures have been

suggested but their use lacks consensus  while no established range of values exists for sport participation .

Figure 1. Outline of 2 different criteria for acute kidney injury (AKI); Risk, Injury, Failure, Loss, End-stage (RIFLE)

classification (left) and the clinical practice guidelines published by Kidney Disease Improving Global Guidelines (KDIGO)

for acute kidney injury (right).

2. Acute Kidney Injury and Ultra-Endurance Events

Acute kidney injury (AKI) in ultra-endurance events has been frequently reported , however, the prevalence of AKI in

ultra-endurance athletes has not reached a consensus ranging from 0%  up to 85% . Differing and inconsistent

methodologies relying on changes to serum creatinine (SCr) levels, in addition to observing different modalities of ultra-

events for measuring the impact on kidney function during ultra-endurance likely explains variances . Recently 96.2%

of AKI cases that also occurred in conjunction with exertional rhabdomyolysis (ER) were linked to ultra-running events .

The majority of studies in this entry pertained to ultra-running events however 3 studies included ultra-cycling participants

. The serum creatinine (SCr) levels for all the participants observed by Chlibkova et al. (2015) in both ultra-

mountain bike and ultra-running races increased, however there was a significant increase in post-race SCr for 24 h ultra-

running athletes compared to those competing in 24 h mountain biking events (p < 0.01). It should be noted that very few

ultra-athletes seek or need medical intervention in the presence of an AKI diagnosis .

Multiple factors effect SCr levels as seen in Figure 2. Endogenous creatine production occurs within the liver and kidneys

(Figure 2) from glycine, methionine, and arginine which is subsequently transported to skeletal, cardiac muscles and

other tissues  where the non-enzymatic anhydration of creatine results in creatinine . High protein diets including

cooked meats provide an additional creatine source (Figure 2). Renal elimination of serum creatine occurs via glomerular

filtration and low, yet unpredictable levels of tubular secretion, which is affected by multiple drugs, while small

gastrointestinal losses also occur  (Figure 2).
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Figure 2. Serum creatinine determinants.  = increase,  = decrease.

Creatinine clearance is a useful indicator of GFR though overestimates it by around 10% compared the gold standard

inulin clearance . Measuring creatinine clearance requires prolonged and impractical urine collection in addition to

blood sampling , in clinical practice GFR is usually estimated using equations based on SCr modified by sex, age and

ethnicity to provide some degree of correction for differences in creatinine generation . SCr GFR equations were

generated using the general population or hospitalised patients  and assume creatinine generation is steady state,

not always true (Figure 2), especially during or after extreme exercise , as significant increases in SCr levels are

common post ultra-events. Severe muscle damage is common during ultra-endurance events  therefore increases in

SCr levels can reflect muscle damage rather than reductions in GFR . Using SCr as an indicator of renal function

produces inaccurate reflections of the impact of exercise on kidney function  and may lead to overdiagnosis of AKI in

ultra-athletes. Poussel et al. (2020) found using creatinine produced an overestimation of AKI prevalence compared to

use the cystatin C. Additionally, the normal GFR for ultra-endurance athletes is unknown due to a lack of baseline data 

and back-calculating estimates of baseline SCr for ultra-athletes has been shown to be inaccurate . Hence, avoiding

SCr in settings of extreme exercise has been recommended . This highlights the importance of pre-race testing,

participant screening, and the need for a more accurate and valid method for monitoring renal function for this population.

More accurate biomarkers of renal dysfunction are required which can identify abnormal kidney function and discriminate

between intrinsic renal disease and prerenal azotaemia which is often induced by strenuous exercise . As there are 3

groups of AKI biomarkers: indicators of renal function (low molecular weight proteins such as Cystatin C) , indicators of

tubular damage (urinary neutrophil gelatinase-associated lipocalin (NGAL) and urinary kidney injury molecule-1 (KIM-1))

 and renal inflammatory mediators (leukocytes and prostaglandins) . Cystatin C (Cyst-C) has less non-GFR

determinants, being unrelated to muscle mass or diet, compared to SCr  and has been recommended in

populations with increased muscle mass or extreme diets . Over the marathon distance, the rise in Cyst-C was equal to

half that of the increase in SCr, supporting that Cyst-C is less affected by sport related renal blood flow changes or muscle

damage . Mccullough et al., (2011) found that there was a comparable rise and normalisation for both SCr and Cyst-C

after marathon running. Additionally, this study found a 5-fold increase in NGAL and a lesser increase in KIM-1 measures

supporting a real decrease in renal function due to renal tissue injury . As an 25 kDa acute phase protein, NGAL is

mainly produced in the kidney tubules , is a key indicator of early ischemic damage to the kidneys  and

early detection of AKI and predicting renal disease progression . NGAL levels have been shown to significantly

increase during then returned to baseline within 24 h  or continued to increase post ultra-race  indicating that tubular

injury was present independent of changes to SCr. The minimal increase in urinary neutrophil gelatinase-associated

lipocalin (NGAL) and urinary kidney injury molecule-1 (KIM-1) levels in another study also argues against the diagnosis of

AKI using criteria based on increased SCr . Therefore, future studies should compare the sensitivity of available

biomarkers while also meetings the practical needs of medical professionals present at ultra-endurance events.

3. Non-Steroidal Anti-Inflammatory Drugs

Five studies reported AKI alongside positive use of NSAIDs for ultra-athletes. In only one study was use of NSAIDs

denied by ultra-athletes , whilst the remaining 16 studies did not specify whether there was use of NSAIDs by their

participants. NSAIDs inhibits cyclo-oxygenase production thus preventing the synthesis of prostaglandins resulting in

increased renal vasodilation and decreasing homeostasis  (Figure 3). Exercise reduces renal blood flow, however
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renal perfusion is augmented, and homeostasis maintained via vasodilatory prostaglandins . The absence of

prostaglandins and the subsequent reduced renal perfusion results in reduced GFR contributing to mild increases in renal

function markers and ultimately, occasionally, kidney failure . For healthy individuals, prostaglandin stimulated

vasodilation is unnecessary for maintenance of renal function , while those with renal disease requires prostaglandin

driven vasodilation of renal vascular beds to maintain renal perfusion  and avoid renal ischemic injury .

Figure 3. Multiple pathologies and mechanisms promoting acute kidney injury (AKI) in ultra-endurance athletes. Non-

steroidal anti-inflammortory drugs (NSAIDs), glomerular filtration rate (GFR), exertional rhabdomyolysis (ER), myoglobin

(MB), serum creatine kinase (S-CK), arginine vasopressin (AVP), exercise-associated hyponatremia (EAH),  =

increase,  = decrease.

Compared to marathon (42 km) and trail runners (67 km), ultramarathon runners (112 km) had the highest per-event

NSAIDs intake indicating that the duration of the event plays a role in the quantity and chronological consumption of

NSAIDS in ultra-events . Although NSAIDs have been found to be a significant risk factor for AKI after endurance

events, some debate exists regarding whether NSAIDs induce a reduced renal function in ultra-athletes. Wharam et al.,

(2006) found that NSAIDs significantly increase SCr compared to non-NSAIDs users. More recently, Lipman et al., (2014)

showed a 18% increase in overall AKI incidence and severity for NSAIDs users, as 12% more ultra-athletes met the AKI

at-risk criteria and 6% more met the injury criteria (Figure 1) . Poussel and colleagues found that observing only non-

NSAIDs user ultra-athletes reduced the incidence of AKI compared to other ultra-athlete studies . However, contrary

evidence exists as both Dumke et al. (2007) and Page et al. (2007) found no significant difference in SCr levels between

NSAID using and non-using ultra-runners, though both sample sizes were small, the NSAIDs doses subtherapeutic, and

the studies were unblinded.

In the 11 case reports systematically reviewed by Hodgson et al. (2017) investigating the concern of severe AKI after

various marathon and ultramarathon events, 22 of 27 cases of severe AKI in ultra-athletes required hospitalisation, 18

(67%) reported NSAIDs use. In the studies discussed in this entry no renal biopsies were completed, although 1 case of

acute tubular necrosis (ATN) was made from urinalysis, serology, and ultrasound results . However, in studies reviewed

by Hodgson et al., (2015), 4 kidney biopsies were completed, all revealing ATN for both marathon and ultramarathon

distance events, suggesting an ischaemic aetiological link in developing AKI and ATN for endurance athletes using

NSAIDs . NSAIDs have also been linked to the development of EAH and ER in ultra-athletes which may also contribute

to subsequent AKI and hospitalisation . Ultra-athletes should approach the consumption of NSAIDs with caution and

pay closer attention the potential negative health outcome, especially the development of AKI and ATN rather than

performance benefits.

4. Hydration

Ultra-endurance events occur across the world and expose athletes to a multitude of different and fluctuating

environmental conditions including hot, humid, tropical conditions . Physical exertion in these ambient

conditions often promotes kidney damage and ultra-athletes often experience inadequate hydration status .

Altered kidney function is promoted due to combinations of dehydration, high internal and external metabolic loads, and
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heat strain . Severe dehydration is widely recognized as a contributor to AKI after endurance exercise and other life-

threatening consequences . Increased loss of electrolytes and water via increased sweating can also cause

hyponatremia . While adequate hydration status maintenance does not prevent ER in ultra-athletes , dehydration

induced reduction of renal blood flow and renal ischemia resulting in an accumulation of muscle proteins within a reduced

total blood volume can increase the risk AKI  and ER  for ultra-athletes (Figure 3).

Loss of body mass does not directly translate into an absolute measure of dehydration however it is a simple method of

assessing hydration status during exercise . Previous studies have found that limiting the body exercise induced weight

loss to ~2–3% is necessary to avoid dehydration while maintaining or improving performance . The average body

weight loss for ultra-marathon runners was ~5%, reaching >11% of body weight in some cases . Water can be

produced during exercise via a combination of the utilisation of endogenous and exogenous substrates and the release of

glycogen bound water through glycogenolysis  assisting in alleviating dehydration . Therefore, maintaining

euhydration requires at least ~2–5% reduction in body mass during ultra-events , which seems to be tolerated by ultra-

athletes . Belli et al., (2018) found that athletes who presented with body mass reductions >5% (−5.2 to −10.4%) also

presented with >25% (−27.1 to −44.4%) reduced GFR from 84 km to the completion of the 200 km event. Similarly, a

greater reduction in body mass from 120 km was linked to greater renal dysfunction for ultra-athletes during multi-stage

250 km desert races . Hence, complying with typical hydration guidelines and avoiding a 2% mass loss , can

result in hyperhydration of ultra-athletes , increases the risk of developing symptomatic EAH , and increased levels

of cytokinemia and bacterial endotoxemia and subsequent increased AKI risk . Dehydration is most likely to occur

during the early stages of ultra-events as the first 4 h showed the maximum slope of weight loss . However, an

increased total percentage body mass loss resulted in a higher proportion of subjects meeting RIFLE criteria for AKI

compared to those with less mass loss  and therefore needs further investigation.

5. Exertional Rhabdomyolysis

Exertional rhabdomyolysis (ER) is a pathophysiological condition described by damage to or necrosis of the striated

muscle tissues during strenuous exercise leading muscle cell disintegration enabling the release of myoglobin (Mb) into

the bloodstream and extracellular space . Additionally, sarcoplasmic proteins such as S-CK, serum lactate

dehydrogenase (S-LDH), aspartate transaminase (AST) and electrolytes are released . In extreme cases of muscle

necrosis, ER symptoms can present as weakness, oedema, myalgia, and reddish-brown or tea coloured urine, without

haematuria . Six papers were found discussing exertional rhabdomyolysis in ultra-endurance events resulting in 43

cases. Of these, 30 cases of AKI occurred either alongside or potentially due to exertional rhabdomyolysis (ER).

Serum Mb can potentially result in kidney failure via 3 mechanisms: tubular obstruction, toxic reaction, and decreased

oxygen supply due to vasoconstriction of renal tissues  (Figure 3). Mb is quickly eliminated from the bloodstream, so

S-CK is the preferred marker for ER identification  which shows a peak 24–36 h post-exercise with recovery to baseline

values at 48–72 h post-exercise . In ER, Mb and S-CK, can rise ≥4–5 times and sometimes much greater, above

normal values, while S-LDH and AST generally only double . A recent systematic review recommended that S-CK >

1000 UI/L as an essential criterion for the diagnosis of ER diagnosis .

With an incidence of ~29.9 per 100,000 patient years, ER is relatively uncommon  however the concurrent

complication of AKI which is significantly more common is a concern for ultra-athletes . Hodgson et al. (2017) reported

27 cases of AKI across varying endurance disciplines (six in ultra-endurance athletes), with concurrent rhabdomyolysis in

23 cases (85%). Not surprisingly ER can lead to several other serious conditions, hyperkalaemia, hypernatremia, acidosis

kidney tubule damage and the development of acute and chronic renal injuries . ER due to heat stress and AKI has

been reported, indicating that dehydration, hyperthermia, and eccentric muscle loads can promote and contribute to the

development of ER + AKI . As ultra-endurance events are often held in areas with hot and humid conditions for

example the tropics, these conditions can increase the risk of ER . It has been shown that increasingly prolonged

exercise under these thermally challenging conditions can induce increased severity of both ER and AKI .
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