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Machine learning (ML) has a well-established reputation for successfully enabling automation through its scalable

predictive power.
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1. Learning Paradigms

Supervised Learning. This refers to methods that are trained using labelled examples. They can be highly accurate and

trustworthy if the inferences made in real use are similar enough to the examples used during training.

Unsupervised Learning. This refers to methods that are used on unlabelled data. They are relatively less accurate but

can be effective depending on the scenario and problem.

Reinforcement Learning. This refers to methods that reward positive or correct behaviour and punishes incorrect

behaviour.

2. Neural Networks

An artificial neural network (ANN) is generally comprised of an input layer, one or many hidden layers of neurons and an

output layer. An artificial neuron consists of input, weights applied to each input, a bias that is applied to the sum of the

weighted inputs, and an activation function that converts the result to the expected form of the output (for example, the

sigmoid function for a classification value of 0 or 1) .

A neural network with a single hidden layer is typically called a perceptron network, while networks with many hidden

layers are referred to as Deep Neural Networks or Deep Learning and are at the core of many modern and popular ML

methods .

3. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are one of the most popular and successful deep learning architectures. Although

based on Neural Networks, they are mainly used in the field of Computer Vision (CV), for image-based pattern recognition

tasks such as image classification.

Aside from input and output, the CNN architecture is typically composed of these types of layers: convolutional layers,

pooling layers and fully connected layers. A convolutional layer computes the scalar product between a small region of the

input image or matrix and a set of learnable parameters known as a kernel or filter. These calculations are the bulk of the

CNN’s computational cost. The rectified linear unit (ReLU) activation function is also applied to the output before the next

layer. A pooling layer performs downsampling, by replacing some output with a statistic derived from close information.

This reduces the amount of input for the next layer, therefore reducing computational load. A fully connected layer is

where all neurons are connected as in a standard ANN. This followed by an activation function helps produce scores in

the expected format of the output (i.e., a classification score). Despite being computationally expensive, CNNs have seen

many successful applications in recent years .

4. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) perform particularly well on problems with sequential data such as text or speech or

instrument readings over time. This is because, unlike other deep learning algorithms, they have an internal memory that

is meant to remember important aspects of the input. A feedback loop instead of forward-only neurons is what enables

this memory. The output of some neurons can affect the following input to those neurons .
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However, because of the vanishing and exploding gradient problems caused by the way the neurons affect many others

through memory in RNNs, their ability to learn effectively becomes limited. Hence, the Long Short-Term Memory (LSTM)

and Gated Recurrent Unit (GRU) methods aimed to solve this issue and rose to popularity as well. They do so by using

gates to determine what information to retain .

5. Support Vector Machines

Support Vector Machines (SVMs) are linear models that can be used for both classification and regression problems.

SVMs approximate the best lines or hyperplane for separating classes by maximising the margin between the line or

hyperplane and the closest data points . Although this best-fit separator can be used for regression, it is more

commonly used for classification problems. It is considered to be a traditional ML method compared to its deep learning

counterparts but can achieve good results with relatively lower compute and training data requirements.

6. Decision Trees and Random Forests

Decision trees are graphs comprised of nodes that branch off based on thresholds. They can be constructed by

recursively evaluating nodes or features to find the best predictive features . By itself, it can be used to make

predictions, but to increase the performance of the method and mitigate overfitting, an aggregated collection of decision

trees called a random forest can be used. Random forests as an ensemble learning method can accomplish this by

training some trees on subsets of the data or features and aggregating the results . The technique of training trees

on different samples or subsets of data is called bootstrap aggregating or “bagging” .

They generally outperform decision trees but, depending on the data and problem, may not achieve an accuracy as high

as gradient-boosted trees. Boosting is a technique where the random forest is an ensemble of weak learners or shallow

decision trees that perform slightly better than guessing . The intuition here is that weak learners are too simple to

overfit and therefore their aggregated model is less likely to overfit. Gradient boosting builds on top of this by introducing

gradient descent to minimize the loss in training . An example of a popular and practical library implementation of

gradient boosting is XGBoost .

Much like the aforementioned SVMs, algorithms based on decision trees are considered to be more traditional than deep

learning methods and work especially well in situations with low compute and limited training data.

7. Autoencoders

Autoencoders are ANNs that follow the encoder–decoder architecture. They aim to learn efficient encodings of data in an

unsupervised way. The encoder is responsible for learning how to produce these lower dimension representations from

the input, while the decoder reconstructs the encodings to their original dimensions . Autoencoders are commonly

associated with dimensionality reduction, as a deep learning approach to the problem traditionally handled by methods

such as Principal Component Analysis (PCA) . Reconstruction by the decoder can be useful for evaluating the quality

of encodings, generating new data or detecting anomalies if performance significantly differs from normal cases. So,

generally, some common applications of autoencoders include anomaly detection, especially in cyber-security, facial

recognition and image processing such as compression, denoising or feature detection .

8. Reinforcement Learning

Unlike the previously described supervised and unsupervised learning methods, Reinforcement Learning (RL) trains

models by rewarding and punishing behaviour . The intuition behind this is to let models explore and discover

optimal behaviours instead of trying explicitly to train that behaviour with many samples. In RL, the model is defined as an

agent that can choose actions from a predefined set of possible choices. The agent receives a sequence of observations

from its environment as the basis or input for deciding on actions. Depending on the action chosen the agent is rewarded

or punished for it to learn the desired behaviour.

This training is accomplished through defining concepts such as a policy, reward function and value function. A policy is a

function that defines the agent’s behaviour, it maps the current observable state to an action and can be either

deterministic or stochastic. A Value function estimates the expected return or reward of a certain state given a policy

function. This allows the agent to assess different policies in a particular situation. The reward function returns a score

based on the agent’s action in the environment’s state (i.e., a state–action pair).
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Deep RL is attained when deep neural networks are used to approximate any of the prior mentioned functions .

Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C) and Deep Q Networks (DQN) are some examples of

popular Deep RL algorithms. RL also sees successful practical use areas such as games, robotic control, finance,

recommender systems and load allocation in telecommunications or energy grids .

9. Nearest Neighbour

The Nearest Neighbour (NN) method is a simple algorithm that finds a defined number of samples closest to the new

input point . It is often used as a method for classifying new points based on the closest stored points, where

closeness as a metric of similarity can be defined but is usually standard euclidean distance. Computation of the nearest

neighbours can be conducted by brute force, or by methods devised to address brute force’s shortcomings such as K-D

tree or Ball Tree . Despite being such a simple method, NN has shown to be effective even for complex problems.

10. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are unsupervised models concerned with recognizing patterns in input data to

produce new output samples that would pass as believable members of the original set. The GAN architecture consists of

a generator, a DL model for producing new samples, and a discriminator, a DL model for discerning fake samples from

real ones. The discriminator receives feedback based on the known labels of which samples are real and the generator

receives feedback based on how well the discriminator discerns its output. Thus, the networks are trained in tandem .

Despite being the most recent of the discussed methods (first described in 2014), its adoption in real cases is growing

rapidly given the high potential usefulness of generating data points to support meaningful problems with limited data

availability. Direct applications aside from training data synthesis also include, among others, image processing such as

restoration or superresolution, image-to-image translation, generating music and drug discovery .
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