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Machine learning (ML) has a well-established reputation for successfully enabling automation through its scalable

predictive power.

machine learning  topic modelling  deep learning

1. Learning Paradigms

Supervised Learning. This refers to methods that are trained using labelled examples. They can be highly

accurate and trustworthy if the inferences made in real use are similar enough to the examples used during

training.

Unsupervised Learning. This refers to methods that are used on unlabelled data. They are relatively less

accurate but can be effective depending on the scenario and problem.

Reinforcement Learning. This refers to methods that reward positive or correct behaviour and punishes

incorrect behaviour.

2. Neural Networks

An artificial neural network (ANN) is generally comprised of an input layer, one or many hidden layers of neurons

and an output layer. An artificial neuron consists of input, weights applied to each input, a bias that is applied to the

sum of the weighted inputs, and an activation function that converts the result to the expected form of the output

(for example, the sigmoid function for a classification value of 0 or 1) .

A neural network with a single hidden layer is typically called a perceptron network, while networks with many

hidden layers are referred to as Deep Neural Networks or Deep Learning and are at the core of many modern and

popular ML methods .

3. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are one of the most popular and successful deep learning architectures.

Although based on Neural Networks, they are mainly used in the field of Computer Vision (CV), for image-based

pattern recognition tasks such as image classification.
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Aside from input and output, the CNN architecture is typically composed of these types of layers: convolutional

layers, pooling layers and fully connected layers. A convolutional layer computes the scalar product between a

small region of the input image or matrix and a set of learnable parameters known as a kernel or filter. These

calculations are the bulk of the CNN’s computational cost. The rectified linear unit (ReLU) activation function is also

applied to the output before the next layer. A pooling layer performs downsampling, by replacing some output with

a statistic derived from close information. This reduces the amount of input for the next layer, therefore reducing

computational load. A fully connected layer is where all neurons are connected as in a standard ANN. This followed

by an activation function helps produce scores in the expected format of the output (i.e., a classification score).

Despite being computationally expensive, CNNs have seen many successful applications in recent years .

4. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) perform particularly well on problems with sequential data such as text or

speech or instrument readings over time. This is because, unlike other deep learning algorithms, they have an

internal memory that is meant to remember important aspects of the input. A feedback loop instead of forward-only

neurons is what enables this memory. The output of some neurons can affect the following input to those neurons

.

However, because of the vanishing and exploding gradient problems caused by the way the neurons affect many

others through memory in RNNs, their ability to learn effectively becomes limited. Hence, the Long Short-Term

Memory (LSTM) and Gated Recurrent Unit (GRU) methods aimed to solve this issue and rose to popularity as well.

They do so by using gates to determine what information to retain .

5. Support Vector Machines

Support Vector Machines (SVMs) are linear models that can be used for both classification and regression

problems. SVMs approximate the best lines or hyperplane for separating classes by maximising the margin

between the line or hyperplane and the closest data points . Although this best-fit separator can be used

for regression, it is more commonly used for classification problems. It is considered to be a traditional ML method

compared to its deep learning counterparts but can achieve good results with relatively lower compute and training

data requirements.

6. Decision Trees and Random Forests

Decision trees are graphs comprised of nodes that branch off based on thresholds. They can be constructed by

recursively evaluating nodes or features to find the best predictive features . By itself, it can be used to make

predictions, but to increase the performance of the method and mitigate overfitting, an aggregated collection of

decision trees called a random forest can be used. Random forests as an ensemble learning method can

[6][7][8]
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accomplish this by training some trees on subsets of the data or features and aggregating the results . The

technique of training trees on different samples or subsets of data is called bootstrap aggregating or “bagging” .

They generally outperform decision trees but, depending on the data and problem, may not achieve an accuracy

as high as gradient-boosted trees. Boosting is a technique where the random forest is an ensemble of weak

learners or shallow decision trees that perform slightly better than guessing . The intuition here is that weak

learners are too simple to overfit and therefore their aggregated model is less likely to overfit. Gradient boosting

builds on top of this by introducing gradient descent to minimize the loss in training . An example of a popular

and practical library implementation of gradient boosting is XGBoost .

Much like the aforementioned SVMs, algorithms based on decision trees are considered to be more traditional than

deep learning methods and work especially well in situations with low compute and limited training data.

7. Autoencoders

Autoencoders are ANNs that follow the encoder–decoder architecture. They aim to learn efficient encodings of data

in an unsupervised way. The encoder is responsible for learning how to produce these lower dimension

representations from the input, while the decoder reconstructs the encodings to their original dimensions .

Autoencoders are commonly associated with dimensionality reduction, as a deep learning approach to the problem

traditionally handled by methods such as Principal Component Analysis (PCA) . Reconstruction by the decoder

can be useful for evaluating the quality of encodings, generating new data or detecting anomalies if performance

significantly differs from normal cases. So, generally, some common applications of autoencoders include anomaly

detection, especially in cyber-security, facial recognition and image processing such as compression, denoising or

feature detection .

8. Reinforcement Learning

Unlike the previously described supervised and unsupervised learning methods, Reinforcement Learning (RL)

trains models by rewarding and punishing behaviour . The intuition behind this is to let models explore and

discover optimal behaviours instead of trying explicitly to train that behaviour with many samples. In RL, the model

is defined as an agent that can choose actions from a predefined set of possible choices. The agent receives a

sequence of observations from its environment as the basis or input for deciding on actions. Depending on the

action chosen the agent is rewarded or punished for it to learn the desired behaviour.

This training is accomplished through defining concepts such as a policy, reward function and value function. A

policy is a function that defines the agent’s behaviour, it maps the current observable state to an action and can be

either deterministic or stochastic. A Value function estimates the expected return or reward of a certain state given

a policy function. This allows the agent to assess different policies in a particular situation. The reward function

returns a score based on the agent’s action in the environment’s state (i.e., a state–action pair).
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Deep RL is attained when deep neural networks are used to approximate any of the prior mentioned functions .

Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C) and Deep Q Networks (DQN) are some

examples of popular Deep RL algorithms. RL also sees successful practical use areas such as games, robotic

control, finance, recommender systems and load allocation in telecommunications or energy grids .

9. Nearest Neighbour

The Nearest Neighbour (NN) method is a simple algorithm that finds a defined number of samples closest to the

new input point . It is often used as a method for classifying new points based on the closest stored points,

where closeness as a metric of similarity can be defined but is usually standard euclidean distance. Computation of

the nearest neighbours can be conducted by brute force, or by methods devised to address brute force’s

shortcomings such as K-D tree or Ball Tree . Despite being such a simple method, NN has shown to be

effective even for complex problems.

10. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are unsupervised models concerned with recognizing patterns in input

data to produce new output samples that would pass as believable members of the original set. The GAN

architecture consists of a generator, a DL model for producing new samples, and a discriminator, a DL model for

discerning fake samples from real ones. The discriminator receives feedback based on the known labels of which

samples are real and the generator receives feedback based on how well the discriminator discerns its output.

Thus, the networks are trained in tandem . Despite being the most recent of the discussed methods (first

described in 2014), its adoption in real cases is growing rapidly given the high potential usefulness of generating

data points to support meaningful problems with limited data availability. Direct applications aside from training data

synthesis also include, among others, image processing such as restoration or superresolution, image-to-image

translation, generating music and drug discovery .
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