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The interconnectivity of advanced biological systems is essential for their proper functioning. In modern

connectomics, biological entities such as proteins, genes, RNA, DNA, and metabolites are often represented as

nodes, while the physical, biochemical, or functional interactions between them are represented as edges. Among

these entities, metabolites are particularly significant as they exhibit a closer relationship to an organism’s

phenotype compared to genes or proteins. Moreover, the metabolome has the ability to amplify small proteomic

and transcriptomic changes, even those from minor genomic changes. Metabolic networks, which consist of

complex systems comprising hundreds of metabolites and their interactions, play a critical role in biological

research by mediating energy conversion and chemical reactions within cells. 

metabolic connectome  network models  disease diagnosis  drug discovery

1. Introduction

Biological networks are widely used as graphical representations to describe and analyze biological systems. In

these networks, graphs are used to represent biological entities, such as proteins, genes, RNA, DNA, and

metabolites, as nodes. The edges of the network correspond to the physical, biochemical, or functional interactions

between these entities . Through analysis of these biological networks, the interrelationships between different

biological entities can be revealed, including protein–protein, protein–DNA, protein–metabolite, and other

associations. This allows the networks to capture the basic characteristics of biological systems and reveal the

information patterns within them .

In order to deeply understand and quantify the characteristics and behaviors of biological networks, researchers

utilize a series of evaluation indicators (Figure 1). Indicators such as node degree, clustering coefficient, average

shortest path length, and centrality are widely used to measure the degree of node connection, community

structure, global connectivity, and node importance in networks . Small-world properties describe the global

structure of networks . Additionally, modularity identifies functional modules and subnetworks, providing

comprehensive evaluation for deeper understanding of biological system structure and function .
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Figure 1. Network properties. In this example, node ‘a’ has a degree of 3. Node ‘b’ has a clustering coefficient of 1,

and node ‘c’ has a clustering coefficient of 0. The average shortest path length between nodes ‘d’ and ‘e’ is two

steps, passing through one intermediate node. Node ‘f’ contributes significantly to the centrality because it has a

relatively large number of edges connecting it to other nodes. The small-world properties are measured by

calculating the clustering coefficient and the average shortest path length. Each module in the modularity is

represented by a different color.

Currently, biological networks are classified based on different features and purposes. For example, protein–

protein interaction networks describe protein interactions , gene regulatory networks reveal complex gene

expression regulation mechanisms , and metabolic networks graphically represent metabolic processes .

Brain networks describe neuron and synapse interactions , while social networks represent social relationships

between individuals . Among these, metabolic networks have high plasticity and complexity as the basis of life

activities and information transmission within organisms. They are complex network structures composed of

interactions among multiple biological entities . Metabolic networks are crucial in biological research to

understand the complexity of biological systems and reveal interactions and regulatory relationships among

different entities.

2. Construction Methods of Metabolic Networks

Metabolic networks can be represented by various types of relationships, including statistical correlations, causal

relationships, biochemical reactions, and chemical structural similarities . Statistical correlations and causal

relationships are used to describe the relationships between molecules , while biochemical reactions and

chemical structural similarities describe the interactions between molecules . By constructing networks using

these different relationship types, algorithms from network theory can be applied to metabolic networks to gain a
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more comprehensive understanding of metabolic processes . The codes for constructing metabolic networks are

provided in Table 1.

Table 1. Codes for metabolic networks.

2.1. Correlation-Based Metabolic Network

Correlation-based metabolic networks are widely used in metabolic research. These networks use the correlations

among metabolites to establish connectivity relationships, simplifying multidimensional data while preserving most

interpretive information (Figure 2) . This method reveals coordinated behaviors between biological components

and allows an analysis of network properties to better understand metabolite interactions and identify key

metabolites in pathways . Furthermore, correlation-based networks can also be applied to study metabolic

disease pathogenesis and discover new treatments .
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Figure 2. Creating metabolic network based on correlation analysis. Correlation-based metabolic networks use

correlations among metabolites to establish connectivity relationships and simplify multidimensional data. R:

correlation value; P: p-value; M: metabolite.

In a correlation network, the correlation value ranges from −1 to 1, with 1 representing a positive correlation, −1

representing a negative correlation, and 0 representing no linear correlation. The closer the correlation coefficient

is to −1 or 1, the stronger the correlation, while values closer to 0 indicate a weak or no linear relationship. If the

correlation value of two metabolites reaches a set threshold, a connection is established between them .

Methods to calculate metabolite correlations include Pearson correlation, Spearman rank correlation, distance

correlation, and Gaussian graphical models . Pearson correlation measures linear relationships, while

Spearman rank and distance correlations assess monotonic relationships . The Pearson correlation

coefficients are obtained by calculating the covariance between variables divided by their standard deviations. The

Spearman rank correlation coefficient sorts the values of the variables, then calculates the rank difference after

sorting, and obtains it by dividing the covariance of the rank difference by the standard deviation. The distance

correlation is obtained by calculating the distance covariance among variables divided by their respective standard

deviations. 

However, due to the stringent metabolic control and extended reaction sequences present in metabolic networks,

the use of Pearson correlation and Spearman rank correlation often results in highly interconnected and dense

networks, complicating network analysis and interpretation . Gaussian graphical models calculate partial instead

of total correlations, correcting indirect effects to better reveal correlations in complex metabolism .

Importantly, observed correlations may be due to common influencing factors and do not necessarily represent

direct causal relationships.

2.2. Causal-Based Metabolic Network

Causal relationship-based metabolic networks are complex biological networks that help us to understand the

operating mechanisms of biological systems by revealing the interactions and effects between metabolites. Causal

networks are graph models representing causal relationships, comprising variables and the causal relationships

between them. The objective in constructing a causal network is to infer causal relationships between variables

from observational data to better understand and predict system behavior . The network consists of nodes,

representing variables like genes, metabolites, and biological processes, and edges, representing causal

relationships between variables that can be direct or indirect. A key feature of causal networks is discoverability,

making them suitable for processing large-scale data with a limited understanding of interconnectivity .

Statistical methods using causal inference and discovery techniques are widely used in constructing causal

networks to detect causal relationships between variables . The causal inference model is a statistical

framework used to infer causal relationships through observational data. This model applies statistical and causal

inference principles, analyzing correlation, causal direction, and mechanisms to infer causal relationships .
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In addition, structural equation modeling (SEM) and dynamic causal modeling (DCM) are also methods for causal

inference (Figure 3) . SEM is a multivariate statistical model that infers causal relationships among

variables by modeling the relationship between observed variables and latent constructs, based on the covariance

or correlation coefficient matrix . Variables are manifest or latent. Manifest variables are directly measurable,

while latent are indirect . SEM can analyze direct and indirect effects among multiple variables, as well as

relationships between variables and latent constructs .

Figure 3. Structural equation model (SEM) and dynamic causal model (DCM). Among them, 𝑥 represents the

independent variable, 𝑦 represents the dependent variables, and 𝑧(𝑡) represents the concentration of metabolites at

time t.

2.3. Pathway-Based Metabolic Network

Pathway-based metabolic networks describe the interactions between biochemical reactions. These enzymatic

reactions form the foundation of metabolic reactions within organisms, facilitating the synthesis, decomposition,

and transformation of metabolites. Metabolites, including proteins, nucleic acids, sugars, lipids, and more, are

chemical substances present within an organism. The complex metabolic network is formed by the biochemical

reactions between these metabolites, interacting to maintain normal life functions (Figure 4) . To better

understand and utilize metabolic networks, it is necessary to select appropriate databases for data, prune networks

for analysis, use algorithms to identify pathways, and develop computational methods to optimize pathways.
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Figure 4. The metabolic network linking metabolic pathways and metabolites. Among them, blue represents

negative correlation, and red represents positive correlation.

In designing metabolic pathways, database representation methods are used to describe the relationships between

chemical reactions and metabolites. The two common methods are graph and stoichiometric matrix

representations. Graph representations show topological connectivity using nodes for metabolites and edges for

reactions. This visual representation intuitively displays topological and pathway structure, aiding understanding

and analyzing pathway composition and function. Common graph-based databases include KEGG  and

MetaCyc . Stoichiometric matrices numerically describe quantitative stoichiometries between reactions and

metabolites in rows and columns. This provides comprehensive quantitative information about their design,

including reaction directionality, rates, and metabolite proportions. Common matrix-based databases include BiGG

 and ModelSEED .

Network pruning is a commonly used technique to simplify complex metabolic networks during pathway design.

This technique reduces complexity by removing irrelevant reactions or metabolites, thereby improving

computational efficiency and design accuracy . The goal is to remove components that do not significantly

impact overall pathway performance, reducing computational and optimization complexity.
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Chemical structural similarity is a method of comparing and matching chemical molecules based on their structural

characteristics. By comparing the structural features among compounds, the degree of similarity between them can

be measured . Metabolites with high similarity are often linked together, indicating that they may participate in

similar metabolic reactions or pathways. The chemical and structural similarities among metabolites can then be

converted into edges in the network to construct a metabolic network that reflects these similarity relationships

(Figure 5) . This network can reveal collections of metabolites with similar chemical structures, elucidating their

functions and interactions in metabolic pathways.

Figure 5. Chemical similarity networks. The reference compounds are identified from the bioactivity database

using 2D similarity fingerprints of the query ligands. Then, the identified compounds are further clustered into

chemical similarity subnetworks based on representative chemotypes. Among them, the colored nodes represent

query ligands, and the gray nodes represent reference compounds.

Chemical structure descriptors play a key role in constructing metabolic networks. Chemical structure descriptors

are numerical representation methods used to describe the structural characteristics of compounds . Commonly

used chemical structure descriptors include 2D and 3D chemical fingerprints . Two-dimensional chemical

fingerprints are feature vectors generated based on the 2D structural information of compounds, incorporating

characteristics of compound connectivity, atomic type, and ring structure. These can be used to calculate the

similarity among compounds and screen chemical libraries . The Tanimoto index calculates shared features

between 2D fingerprints to quantify similarity on a 0 to 1 scale, where values nearer 1 indicate higher similarity 

.

Three-dimensional chemical fingerprints are feature vectors generated based on the three-dimensional structural

information of compounds, taking into account conformations, shape, charge distribution, and other 3D

characteristics By calculating the 3D chemical fingerprint similarities among compounds, their structural similarity

can be evaluated . Euclidean distance evaluates the differences between 3D fingerprint vectors and is used to

assess structural similarity, where less distance means more similarity .
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3. Application of Metabolic Network

Metabolites are more closely related to an organism’s phenotype than genes and proteins. Moreover, the

metabolome serves to amplify potentially immeasurably small changes in the proteome and transcriptome, even

those derived from minor changes in the genome. The health and disease states of the body can be more

meaningfully characterized by the metabolic state of the human cells, tissues, organs, and the organism as a whole

. Abnormal metabolism either causes or results from complex diseases like hypertension, diabetes, cancer, and

heart disease. Thus, adequately understanding human metabolism and metabolic interactions is a necessary step

towards efficiently treating and diagnosing these complex diseases. However, metabolism involves countless

individual reactions that are highly interconnected through shared metabolites . Developing and applying

metabolic networks plays a significant role in medical research, especially in elucidating disease pathogenesis,

prediction, diagnosis, and drug discovery.

A metabolic network is a complex system of hundreds of metabolites and their interactions involved in energy

conversion and chemical reactions within cells . Exploring the function and structure of metabolic networks can

provide insight into metabolic abnormalities and signaling transduction disorders in disease, and further revealing

the strong link between disease and metabolism . Systems biology and computational biology approaches are

used to construct and model metabolic networks in analyzing them . This elucidates pathway and interaction

complexity, regulatory mechanisms between metabolites, and the rapid spread of single-node perturbations across

the tightly regulated, simultaneous network .

3.1. Metabolic Networks in Disease Mechanisms

Firstly, a strategy to compare metabolic networks in disease states and normal states followed by identifying

changes in disease-related metabolic pathways is an essential way for discovering and confirming disease-specific

metabolic abnormalities. These changes may include the depletion or accumulation of metabolites, alterations in

enzyme activity, and the remodeling of metabolic pathways. Gaining a deeper understanding of these

abnormalities can shed light on the pathogenesis of the disease.

Metabolic networks represent cellular metabolism through lists of reactions occurring in cells . These reactions

have been associated with particular cellular compartments and further grouped into pathways. Certain metabolic

pathways may play crucial roles in particular diseases or physiological states, and regulating metabolic pathways is

essential for maintaining normal physiological states . Metabolic networks integrate metabolomics and pathway

databases. Network topology and metabolite flow analysis identify pathways and regulation implicated in

pathogenesis, such as abnormal glycolytic pathways in tumor cells . 

Moreover, metabolites can be passed between compartments (e.g., mitochondria or cytoplasm) through transport

reactions, thereby acting as signaling molecules involved in regulating pathological and physiological processes in

cells . The close interaction between metabolic networks and signal transduction networks can help reveal how

metabolic abnormalities affect signal transduction and further understand the pathogenesis of diseases .
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Metabolic network analysis also provides a considerable tool for personalized medicine. By integrating clinical,

genomic, and network data, one can predict drug responses and guide individualized treatment. This improves

effectiveness and reduces side effects. Type 2 diabetes mellitus (T2DM) is recognized as one of the main threats

to human health in the 21st century, emerging as a complex metabolic disease .

The establishment and simulation of a metabolic network model can be beneficial to understand the pathogenesis

of diseases. Multi-omics data integration has built dynamic models simulating pathway and metabolite changes in

disease . These models may predict disease progression, assess therapeutic efficacy, and further inform drug

development. 

3.2. Metabolic Networks in Disease Prediction and Diagnosis

Metabolic networks have great potential in disease prediction and diagnosis. Metabolic network analysis can

identify changes in metabolite concentrations, metabolic pathways, or metabolic enzymes that are associated with

specific diseases. Biomarkers refer to biochemical indicators, which can signify possible changes in the function or

structure of cells, tissues, organs, and systems. They are discriminant features related to the onset and

progression of disease . Metabolites have long been used as biomarkers in blood or urine to diagnose disease.

Metabolic biomarkers refer to metabolites or combinations of metabolites associated with a particular disease. By

comparing the metabolic profiles of diseased and healthy groups, metabolite pairs that change during disease

onset and progression can be identified. These can elucidate pathogenesis and serve as early diagnosis

biomarkers or for evaluating treatment efficacy .

Chang et al.  constructed sex-specific and apolipoprotein E (APOE)-specific metabolic networks. They proposed

patient-specific biomarkers predictive of disease state and significantly associated with cognitive function. Based

on computational network modeling, they integrated cognitive assessments and metabolomic profiling to confirm

targeted precision therapeutics for Alzheimer’s disease (AD) patient subgroups. Recently, a bi-random walks

method predicted disease–metabolite associations by executing the algorithm on reconstructed networks .

Furthermore, metabolic network analysis can predict disease progression. By analyzing dynamic changes in

metabolic network models, researchers can simulate disease progression and predict the progression rate and

possible outcomes . This elucidates disease occurrence mechanisms and provides important guidance for

disease treatment and intervention.

Metabolic network analysis plays an important role in cancer research. Tumors reprogram biochemical pathways to

promote unregulated cell growth and survival . Metabolic network facilitates the discovery of specific metabolic

dependencies that arise in cancers . The complex interrelationships between oncogenes, gene expression, and

metabolism offer the potential to discover novel biomarkers and drug targets with therapeutic and prognostic value.

3.3. Drug Discovery and Disease Treatment
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In addition, metabolic network analysis has become an invaluable tool for drug discovery and development.

Studying metabolic networks allows researchers to predict a drug’s mechanism of action and metabolic fate .

Advances in systems biology enable the prediction of functional effects of system perturbations using large-scale

network models. The topological features of metabolic networks confer flexibility and robustness to complex

biosystems. And in general, they may explain why many drug candidates are ineffective and why unexpected

severe side effects happen . Understanding these network properties is essential for rational drug design to

improve efficacy and reduce adverse effects. Metabolic network models have been applied to simulate drug

treatment and predict side effects.

Another advantage of metabolic network analysis is the ability to narrow down putative drug targets for in vitro

validation, reducing reliance on expensive and time-consuming experimental approaches . By analyzing crucial

nodes and regulatory pathways in metabolic networks, key molecules in disease processes can be identified as

potential therapeutic targets or lead compounds. These may include important metabolic regulators, bottleneck

enzymes, and transporters, or disease-associated metabolites. Recent years, modeling cancer metabolism has

been widely used in metabolic networks . Tissue-specific and generic models have allowed prediction of drug

targets in cancers . Comparing healthy metabolic networks and cancer networks reveal cancer-specific

features which could be potential pan-cancer targets . 

4. Conclusions

In summary, further advancement in metabolic network analysis will require a multifaceted research effort. As

technology continues to progress and in-depth studies elucidate the complexities of metabolic systems, metabolic

network models can be expected to improve dramatically. Ongoing refinements in areas such as individualized

network construction, the integration of diverse omics data, and the elucidation of shared network dysregulation

among diseases will ultimately enhance the utility of metabolic networks across a wide range of biomedical

applications. The future is promising for metabolic network analysis to fulfill its potential in accelerating disease

prediction, diagnosis, prognosis, and precise treatment.
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