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Stereo cameras allow mobile robots to perceive depth in their surroundings by capturing two separate images from

slightly different perspectives. This is necessary for tasks such as obstacle avoidance, navigation, and spatial

mapping.

mobile robots  depth estimation  stereo camera

1. Introduction

Mobile robots have witnessed a surge in popularity and find versatile applications in numerous fields . One

compelling use case for mobile robots is their deployment in hazardous environments, such as automated

agriculture and the handling of dangerous materials, where they can replace human workers . However, to

ensure optimal performance, it is imperative for mobile robots to swiftly and accurately gauge the geometric

attributes of their surroundings, specifically the depth information. Depth estimation plays a pivotal role in enabling

mobile robots to excel in various tasks. It empowers these robots with the capability to perform obstacle detection

, construct detailed environmental maps , and facilitate object recognition . One of the potential solutions for

depth estimation is stereo matching . Stereo matching is a computer vision technique that simulates human

vision by analyzing a pair of 2D images captured from slightly different viewpoints to reconstruct 3D scenes. The

primary objective of stereo matching is to establish correspondences between pixels in these input 2D images and,

subsequently, to compute the corresponding depth values for each pixel. This process is executed by identifying

the disparity, which denotes the horizontal displacement between correspondences in the 2D images . The

accurate calculation of this disparity is instrumental in calculating the depth information, thereby empowering

mobile robots to navigate, interact with, and operate effectively in their surroundings.

In order to accurately determine the disparity, recent studies have applied deep learning methods and achieved

promising results . Particularly, these works first used a convolutional neural network (CNN) to extract features

from 2D images, then concatenate them and store the disparity values between them to construct a 4D cost

volume (ℎ𝑒𝑖𝑔ℎ𝑡×𝑤𝑖𝑑𝑡ℎ×𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦×𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). Then, the 4D cost volume is input in a 3D CNN model for regularization

into a 3D cost volume (ℎ𝑒𝑖𝑔ℎ𝑡×𝑤𝑖𝑑𝑡ℎ×𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦). Finally, the predicted disparity is regressed from the cost volume via

a softmax operation (𝜎) .

For example, GC-Net  proposes to learn the context of cost volume through an encoder–decoder 3D CNN

architecture. PSMNet  utilizes a feature extractor with a spatial pyramid pooling module and regularizes the cost
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volume using a 3D CNN based on stacked hourglass architecture. GA-Net  incorporates a 3D CNN with

semiglobal matching for cost filtering. These approaches have demonstrated cutting-edge performance in stereo

matching. Despite the high accuracy, when applying these methods to mobile robots, which often have low

computational power, the computational cost is also a critical challenge.

As reported in , PSMNet  could only run at approximately 0.16 frames per second (fps) on an NVIDIA Jetson

TX2 module. Similarly, although it has been proposed specifically for mobile robots, StereoNet  could only

provide fewer than 2 fps on the same device. Such performances are far from the requirement for real-time

applications in mobile robots, which is often a minimum of 30 fps .

Recently, the authors of  proposed attention-aware feature aggregation (AAFS) to obtain a better tradeoff

between computational time and accuracy for real-time stereo matching on edge devices. The authors reported

that AAFS could run at a maximum frame rate of 33 fps on low-budget devices, such as an NVIDIA Jetson TX2

module. However, the accuracy of AAFS is still limited due to the fact that it cannot efficiently exploit the contextual

information of stereo images. The reason is that AAFS attempts to not increase the number of feature maps in its

cascaded 3D CNN to limit the computational cost. In this case, leveraging the idea of a deep convolutional

encoder–decoder, which is intended for dense prediction tasks, is a potential solution. Deep encoder–decoder

tasks could reduce the computational cost by compressing the input data, then decoding the compressed data

back to the input data dimension . For example, a stacked hourglass based on a deep encoder–decoder

consists of hourglass blocks that apply two-stride 3D convolutions to reduce the cost volume size by a factor of four

. This allows for an increase in feature dimensions with little impact on computational resources. Then, 3D

transposed convolutions are applied to decode the volume to the original dimension.

2. Hourglass 3D CNN for Stereo Disparity Estimation for
Mobile Robots

Zbontar et al. originally introduced a CNN-based stereo-matching technique  whereby the similarity metric of tiny

patch pairings was learned using a convolutional neural network. GCNet  was one of the first methods

incorporating 4D cost volume, using the soft argmin operation in the disparity regression steps to obtain the best

matching disparity. PSMNet  introduced a spatial pyramid pooling module and 3D stacked hourglass networks

and yielded promising results. The authors of  proposed GwcNet, which is a modified 3D stacked hourglass

architecture, and a combined 3D cost volume based on group-wise correlation. GA-Net  includes a semiglobal

aggregation layer and a local guided aggregation layer to replace several 3D convolution layers. To replace the 3D

architecture, AANet  includes an intrascale and cross-scale cost aggregation algorithm, which can reduce

inference time and maintain equivalent accuracy. On the other hand, DeepPruner , a coarse-to-fine approach,

includes a differentiable PathMatch-based module to estimate the pruned search range of each pixel. Although 4D

cost volume-based methods have achieved promising results, they operate at high computational cost and do not

accommodate real-time operation on low-budget devices.

[11]

[12] [10]

[13]

[14]

[12]

[15]

[16]

[17]

[9]

[10]

[18]

[11]

[19]

[20]



Stereo Disparity Estimation for Mobile Robots | Encyclopedia.pub

https://encyclopedia.pub/entry/50285 3/5

Therefore, some recent studies have focused on lightweight stereo networks based on 4D cost volumes to achieve

real-time performance while maintaining competitive accuracy. These methods typically construct and aggregate

3D cost volume at low resolution to significantly reduce computational cost. For instance, StereoNet  is an edge-

preserving refinement network that utilizes the left images as guidance to recover high-frequency details. Gu et al.

 proposed a cascade cost volume, which consists of two stages. Cost volume at the early stage is built on a low-

resolution feature map. Then, the later stage used the estimated disparity maps from the earlier stage to construct

new cost volumes to apply better semantic features. This leads to a remarkable improvement in GPU memory

consumption and computation time. AAFS  constructs a 4D cost volume by adopting a distance metric (height ×

width × disparity × 1). A disparity map is then computed at the lowest resolution, and disparity residuals are

computed in later stages. However, its 3D CNN cannot exploit the contextual information for cost volume

regularization, resulting in a limitation in estimation accuracy.
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