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The significant progress made in the field of cancer prognosis using whole slide images (WSIs) is encouraging, indicating

a promising future for cancer diagnosis and management. The ability to accurately predict survival rates and recurrence

risk using deep learning methods has significant implications for clinical practice and patient care. As more sophisticated

models and techniques are developed, the potential to revolutionize the field of oncology is immense.
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1. Introduction

The advancement of deep learning has incited a paradigm shift across a myriad of disciplines , notably within the

medical sciences . In the field of oncology, deep learning methods have showcased unparalleled capacities to

extrapolate pertinent information from complex, high-dimensional data, thereby facilitating precise and timely diagnosis ,

treatment planning , and prognosis prediction . In this context, whole slide images (WSIs) of cancerous tissues have

surfaced as a crucial resource for prognosis prediction, attributing to their detailed and rich content that aptly depicts the

disease’s multifaceted nature .

Deep learning has ascended as a potent computational paradigm by virtue of its capacity to model intricate hierarchical

patterns in data . It employs multilayered artificial neural networks to autonomously learn hierarchical

representations from raw input data, thus considerably reducing the need for manual feature extraction. These

representations, often termed as features, empower the model to distinguish and differentiate complex patterns in the

data, rendering deep learning an apt tool for a multitude of tasks, encompassing image classification, natural language

processing , and prognosis prediction , among others .

WSIs are digital slides derived from high-resolution scans of physical pathology slides, capturing detailed visual

information about tissue structure and cellular morphology . The high-resolution and multiscale nature of these

images permit the representation of both the spatial context and the local texture within the tissue. This abundance of

information makes WSIs a profoundly rich data source for deep learning models, enabling them to extract and learn

complex patterns that may correlate with a patient’s prognosis. However, the substantial size and complexity of these

images also pose unique computational and methodological challenges that necessitate skilled handling for effective

utilization.

The convergence of deep learning and WSIs represents an exciting avenue in cancer prognosis . The dynamic

interaction between the pattern discernment capabilities of deep learning algorithms and the voluminous, multiscale

information inherent in WSIs facilitates an intricate depiction of the disease, potentially paving the way towards improved

prognosis predictions. Despite its substantial potential, this intersection presents an array of challenges, not least of which

include the necessity for substantial volumes of labeled data, the computational demands associated with processing

high-resolution images, and the interpretability of deep learning models. It is imperative to address these challenges to

successfully translate this technology into clinical practice, thereby offering a pathway towards more individualized and

efficacious cancer treatment.

The complexity of cancers is closely entwined with the elaborate structural variations observable at the tissue level ,

and WSIs embody a rich source of information that captures this complexity across various scales. With the onset of

digital pathology and increased accessibility of whole slide scanners, there has been a considerable surge in the

availability of WSIs, thus providing a propitious environment for the application of advanced deep learning methodologies.

Consequently, deep learning has been progressively incorporated into the pathology workflow, enhancing the human

capacity for microscopic image analysis, furnishing prognostic predictions, and thereby offering a tangible route towards

personalized cancer treatment.
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2. Deep Learning with Whole Slide Images in Cancer Prognosis

In the domain of cancer prognosis, significant strides have been made through the application of deep learning

methodologies to WSIs. This approach has enabled researchers to develop predictive models for a wide range of cancer

types. It is imperative to note that the interpretation of this rich and complex data has necessitated a myriad of

sophisticated techniques, many of which have been adeptly crafted to fit the peculiarities of specific cancer types (Table
1).

Table 1. Used deep learning methods, strengths, and limitations of the studies.

Ref. Deep Learning Methods Expected Strengths Expected Limitations

Multihead Attention (Attention
Mechanisms)

Comprehensive WSI analysis outperforms
existing approaches and contributes to
prognosis prediction.

Not specified

General Deep Learning
(including MLP)

Potential biomarkers discovered provide
enhanced prognostic performance.

Interpretability and generalizability
limitations may hinder clinical
acceptance.

ResNet
Cost-effective tumor mutation burden
measurement and prognostic biomarkers
outperform original TMB signature.

Not specified

Deep Multimagnification
Network

Highly correlated necrosis ratio estimation and
outcome prediction.

Dependence on manual review of
necrosis ratio from multiple slides.

Federated Learning Privacy-preserving multicentric studies with
interpretable ML model.

Biases from small-scale study and
time-consuming expert
annotations.

CNN Potential for multimodal data use in clinical
applications with high diagnostic accuracy. Not specified

ResNet, Attention
Mechanisms

Risk stratification facilitated in ovarian cancer
through deep learning framework.

Moderate mean value of C-index;
uneven prediction strength across
subgroups.

Multiple-Instance Learning
(MIL), GAT, Attention
Mechanisms

Novel MIL fusion model enables accurate
prognostic risk prediction.

Not specified, potential challenges
with image segmentation and
representation.

ResNet-50
MPIS integration with clinicopathological
variables improves LUAD prognostic
stratification.

Transferability of MPIS to all cancer
types uncertain.

Weakly Supervised Deep
Learning

Accurate bladder cancer diagnosis and
personalized treatment decisions. Not specified

General Deep Learning
(including MLP)

The proposed model improves survival
prediction in bladder cancer by assessing TILs. Not specified

CNN, Attention Mechanisms High-performance prognosis prediction in
Epithelial ovarian cancer using AI mechanisms. Not specified

General Deep Learning
(including MLP)

High-accuracy colorectal cancer prognosis
using a weakly supervised deep learning
network.

Not specified

General Deep Learning
(including MLP)

Deep learning-based immune index correlates
strongly with colorectal cancer survival rates. Not specified

General Deep Learning
(including MLP)

Multimodality prognostic model provides high-
performance survival prediction in
hepatocellular carcinoma.

Not specified

General Deep Learning
(including MLP)

Depiction of tumor microenvironment
immunophenotypes offers insights into
biological pathways in bladder cancer.

Not specified

Sparse Representation
Learning

The proposed model improves risk
stratification in breast cancer with integrated
biomarkers.

Effectiveness tied to biomarker
extraction quality; untested outside
of breast cancer.

CNN with Autoencoder Deep learning-based pathological risk score
predicts cervical cancer prognosis.

Prediction performance tied to
dataset quality; clinical application
untested.
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Ref. Deep Learning Methods Expected Strengths Expected Limitations

Autoencoder with
Regularization

CMS discovery allows personalized diagnosis
in lower-grade gliomas.

Limitations with validating
subtypes for other cancer types
and accounting for inter-tumor
heterogeneity.

ResNet The proposed model identifies morphological
features associated with metastasis in cSCC.

Performance tied to data quality
and diversity; untested outside of
cSCC.

Deep Learning with
Multiresolution

Deep learning method for breast cancer
survival integrates image data, improving
model performance.

Needs more validation;
performance varies with data
quality.

Variational Autoencoder
(VAE), Generative Adversarial
Network (GAN)

Improved prognostic signature for stratifying
outcomes in stage III CRC.

Limited generalizability to other
cancer types or stages.

Spatial Pyramid Network Automated CRC risk stratification approach
related to gland formation.

Model may require further
refinement despite better
discrimination.

ResNet-34 TIL infiltrates assessment in breast cancer
WSIs acts as significant biomarkers.

Dependence on TIL infiltrates;
performance in TIL absence
unclear.

General Deep Learning
(including MLP)

Prognostic utility for CRC PFS prediction
based on automatic TIL quantification.

Performance tied to TIL
quantification; unclear
performance in TIL absence.

General Deep Learning
(including MLP)

End-to-end multimodal fusion improves
survival outcome prediction.

Performance tied to availability of
paired WSI, genotype, and
transcriptome data.

CNN
The proposed model for CLR and TIL
quantification improves survival prediction in
CRC.

Needs further validation on larger
cohorts for generalizability and
clinical deployment.

ResNet-34 The proposed model achieves high accuracy
for prognosis in OCCC.

Single-institution data may limit
model generalizability.

General Deep Learning
(including MLP)

The proposed model reduces interoperator
variation in survival prediction from WSIs.

Efficiency compromised by WSI
size and pattern heterogeneity.

CNN Stroma-immune score using deep learning
improves survival prediction in CRC.

Larger validation cohorts needed
for reliable assessment of model’s
prognostic value.

ResNet-18 Improved prognosis and IDH mutation status
prediction in lower-grade gliomas.

Small sample size may limit
robustness and generalizability.

CNN
The proposed model utilizes multiscale
pathology images for prognosis prediction in
lung adenocarcinoma.

Not specified

EfficientUnet, ResNet Efficient analysis of immune checkpoints and
prognosis of NSCLC. Not specified

CNN Accurate RCC subtype diagnosis and
prediction of survival outcomes.

Interrater variability and limitations
in capturing all biological signals.

Weakly Supervised Deep
Learning

Prognostic indicators from HCC pathological
images improve risk stratification.

Efficiency and labor-saving
limitations; needs further validation
for patient treatment.

Ensemble Learning Prediction of MIBC prognosis significantly
higher than TNM staging system.

Further validation and clinical
deployment needed.

CNN
Efficient assessment of TILs in triple negative
breast cancer provides valuable prognostic
information.

Optimal prognostic information
yielding method unclear; lack of
objective TIL assessment methods.

CNN High accuracy in predicting metastasis risk in
pancreatic neuroendocrine tumors. Not specified

General Deep Learning
(including MLP)

Accurate mucus proportion quantification in
colorectal cancer suitable for clinical
application.

Not specified
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Ref. Deep Learning Methods Expected Strengths Expected Limitations

General Deep Learning
(including MLP)

Integrative analysis of histopathological
images and genomic data improves
understanding of disease progression.

Might not identify all potential
regulatory regions in the human
genome.

General Deep Learning
(including MLP)

Two deep learning algorithms aid risk
stratification for hepatocellular carcinoma
patients.

Not specified

Convolutional Neural
Networks (CNN)

Prognostic model predicts treatment failure in
nasopharyngeal carcinoma better than existing
clinical models.

Not specified

General Deep Learning
(including MLP)

The models developed can spatially
characterize tumor heterogeneity. Showed a
significant statistical link between
heterogeneity and survival.

Lack of automated methods for
characterizing tumor heterogeneity.

CNN, Transfer Learning
Automated deep learning method for TSR
quantification in colorectal cancer reduces
pathologist workload.

Not specified

CNN CNN-based system distinguishes tissue types
with high accuracy in gastric diseases. Not specified

Transfer Learning
Deep transfer learning quantifies
histopathological patterns across a range of
cancer types.

Not specified

CNN
High-resolution TIL map generation on WSIs
strongly associates with immune response
pathways and genes.

Not specified

CNN
Exceptional accuracy in brain cancer survival
rate classification based on histopathological
images.

Challenges in generalizability on
unseen samples and practical
clinical application.

General Deep Learning
(including MLP)

Deep learning classifier identifies breast
cancer molecular subtypes and heterogeneity.

Potential inaccuracies due to
intratumoral heterogeneity.

General Deep Learning
(including MLP)

Two-step deep learning approach accurately
detects lung cancer metastases.

Presence of false positives in
model predictions.

General Deep Learning
(including MLP)

TILAb score predicts disease-free survival in
OSCC patients better than manual TIL score.

Accuracy tied to quality and clarity
of WSIs.

Convolutional Neural
Networks (CNN)

High accuracy distinguishing renal cell
carcinoma subtypes and predicting patient
survival.

Class imbalance issues in medical
datasets.

Multimodal Neural Network
Model combining clinical, mRNA, microRNA
data, and WSIs predicts survival for 20 cancer
types.

Not specified; potential complexity
in interpreting multiple data
modalities.

General Deep Learning
(including MLP)

Automated approach determines TSR as an
independent prognosticator in rectal cancer.

Applicable only in user-provided
stroma hot-spots; performance tied
to input image quality.

General Deep Learning
(including MLP)

Deep learning algorithm for cell identification
in colon cancer images improves performance.

Patch selection for analysis may
impact results.

CNN
Quantification of tumor buds in bladder cancer
adds prognostic value to traditional TNM
staging.

Not specified

CNN
Recurrence-related histological score allows
for clinical decision making in HCC recurrence
prediction.

Prediction accuracy varies;
potential bias towards trained data
and diseases.

CNN
Automatic evaluation of the tumor
microenvironment in WSIs aids in predicting
disease progression.

Varied strength of predictors;
potential bias towards specific
cancer types.

Among the various prognostic models developed, several investigations have focused on specific cancer types. In brain

cancer, Shirazi et al.  presented a deep convolutional neural network (CNN) called DeepSurvNet for survival

predictions based on histopathological images. Deep learning models for survival prediction have also been developed for

hepatocellular carcinoma (HCC). For instance, Saillard et al.  introduced SCHMOWDER and CHOWDER, while Hou et
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al.  proposed a multimodality prognostic model. Other studies, like those by Liu et al.  and Yokomizo et al. ,

focused on the prognosis of epithelial ovarian cancer (EOC) and ovarian clear-cell carcinoma (OCCC), respectively.

Attention to the tumor microenvironment (TME) is a common theme among several studies. Jiang et al.  and Jiao et al.

 utilized CNNs to assess the TME in bladder cancer and colon adenocarcinoma, respectively. Liang et al. 

introduced PathFinder, a deep learning framework that underscored the prognostic significance of the necrotic spatial

distribution in liver cancer.

Deep learning with WSIs has also been applied to quantify immune infiltration and cell distribution, with Yang et al. 

introducing a deep learning-based metric called the Deep-immune score. In the domain of breast cancer, Fassler et al. 

utilized machine learning and computer vision algorithms to characterize tumor-infiltrating lymphocytes (TILs), while Lu et

al.  designed a deep learning-based pipeline to generate high-resolution TIL maps.

Exploring multimodal features in WSIs for prognostic predictions has also attracted research attention. Chen et al. 

proposed pathomic fusion, an end-to-end multimodal fusion strategy for predicting survival outcomes in cancer patients.

Cheerla and Gevaert  also developed a multimodal neural network-based model for pancancer prognosis prediction. 

The potential of weakly supervised learning models has also been explored, with Shao et al.  proposing BDOCOX, a

weakly supervised deep ordinal Cox model for survival prediction from WSIs. In similar vein, Zheng et al.  developed

weakly supervised deep learning models for diagnosing bladder cancer and predicting overall survival rates. 

3. Conclusions

It is evident that the application of deep learning techniques on WSIs has brought remarkable advancements in the field of

cancer prognosis. These novel methodologies have not only enabled the processing of large amounts of complex

histopathological data, but they have also facilitated the development of sophisticated predictive models, enhancing the

accuracy and reliability of cancer prognosis.
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