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Recent studies demonstrate that algorithmic music attracted global attention not only because of its amusement but also

its considerable potential in the industry. Thus, the yield increased academic numbers spinning around on topics of

algorithm music generation. The balance between mathematical logic and aesthetic value is important in music

generation.
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1. Introduction

During the past few decades, the field of computer music has precisely addressed challenges surrounding the analysis of

musical concepts . Indeed, only by first understanding this type of information can we provide more advanced

analytical and compositional tools, as well as methods to advance music theory . Currently, literature on music

computing and intelligent creativity  focuses specifically on algorithmic music. We have observed a notable rise in

literature inspired by the field of machine learning because of its attempt to explain the compositional textures and

formation methods within music on a mathematical level . Machine learning methods are well accepted as an

additional motivation for generating music content. Instead of the previous methods, such as grammar-based , rule-

based , and metaheuristic strategy-based  music generation systems, machine learning-based generation methods

can learn musical paradigms from an arbitrary corpus. Thus, the same system can be used for various musical genres.

Driven by the requirement for widespread music content, more massive music datasets have emerged in the genres of

classical , rock , and pop music , for instance. However, a publicly available corpus of traditional folk music seems

to pay little attention to the niche corner. Historically, research investigating factors associated with music composition

from large-scale music datasets has focused on deep learning architectures, stemming from its ability to automatically

learn musical styles from a corpus and generate new content .

Although music possesses its special characteristics that distinguish it from text, it is still classified as sequential data

because of its temporal sequential relationship. Hence, recurrent neural networks (RNN) and its variants are adopted by

most music-generating neural network models that are currently available . Music generation sequence

models were often characterized by the representation and prediction of a number of events. Then, those models can use

the conditions formed by previous events to generate the current event. MelodyRNN  and SampleRNN  are

representatives of this approach, with the shortcoming that the generated music lacks segmental integrity and a musical

recurrent structure. Neural networks have studied this musical repetitive structure, called translation invariance .

Convolutional neural network (CNN) has been influential in the music domain, stemming from its excellence in the image

domain. This regional learning capability is sought to migrate to the translational invariance of the musical context. Some

representative work has emerged  to use deep CNN for music generation, although there have been few

attempts. However, it seems to be more imitative than creative in music, stemming from its over-learning of the local

structure of music. Therefore, inspired by whether it is possible to combine the advantages of both structures, they used

compound architectures in music generation research .

Compound architecture combines at least two architectures of the same type or of different types  and can be divided

into two main categories. Some cases are homogeneous composite architectures that combine various instances of the

same architecture, such as the stacked autoencoder. Most cases are heterogeneous compound architectures that

combine various types of architectures, such as a RNN Encoder-Decoder that combines the RNN and autoencoder. From

an architectural point of view, we can conduct compositing using different methodologies.
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Composition—Combination of two architectures of the same type or of different types. For instance, the bidirectional

LSTM  combines two RNNs to analyze music semantic contexts from temporal forward and inverse; and RNN-RBM

architectures combine RNN architectures and RBM architectures .

Refinement—Refinement and specialization of a model by additional constraints. The sparse autoencoder architecture

is an example of a specialized solution to the note sparse coding problem on top of the autoencoder architecture 

and the variational autoencoder (VAE) .

Nesting—Nesting one model into another structure to form a new model. Examples include stacked autoencoder

architectures  and RNN encoder-decoder architectures, where two RNN models are nested in the encoder and

decoder parts of an autoencoder, so we can also call them autoencoders (RNN, RNN) .

Instantiation—The architectural pattern is instantiated into a given architecture. For a case in point, the Anticipation-

RNN architecture instantiates a conditional reflection architectural pattern onto an RNN and the output of another RNN

as a conditional reflection input, which we can call conditional reflection (RNN, RNN) . The C-RBM architecture is a

convolutional architectural pattern instantiated onto an RBM architecture, which we can note as convolutional (RBM)

.

2. Deep Learning-Based Music Generation

RNN-based music generation. This work  is an RNN architecture with a hierarchy of cyclic layers that generates not

only melodies but also drums and chords. The model  well demonstrates the ability of RNNs to generate multiple

sequences at the same time. However, it requires prior knowledge of the scale and some contours of the melody to be

generated. The results demonstrate that the text-based Long short-term Memory (LSTM) performs better in generating

chords and drums. MelodyRNN  is probably one of the best-known examples of neural networks generating music in

the symbolic domain. It includes three RNN-based variants of the model, two variants aimed at musical structure

learning, lookback RNN and Attention RNN. Sony CSL  proposed DeepBach, which could specifically compose a

polyphonic four-part choral repertoire in the style of J. S. Bach. It is also an RNN-based model that allows the execution

of user-defined constraints, such as rhythms, notes, parts, chords, and allegro. However, this direction remains

challenging for the following reasons. From the outside, the overall musical structure seems to have no hierarchical

features, and parts do not have a unified rhythmic pattern. Musical features are considered extremely simplified in

terms of musical grammar, ignoring key musical features such as note timing, tempo, scale, and interval. Regarding the

connotation of music, the music style is uncontrollable, the aesthetic measurement is invalid, and there is a significant

gap between the sense of hearing and the music created by the musicians.

CNN-based music generation. Some CNN architectures have been identified as an alternative to RNN architectures 

. The paper  is proposed as a representative work for CNN-based generative model building, which enables

speech recognition, speech synthesis, and music generation tasks. WaveNet architecture presents a number of causal

convolutional layers, somewhat similar to recurrent layers. However, it has two limitations: its inefficient computation

reduces the use of real time, and it was created to be mainly oriented to acoustic data. MidiNet  architecture for

symbolic data is inspired by WaveNet. It includes an adjustment mechanism that incorporates historical information

(melody and chords) from previous measurements. The authors discuss two ways to control creativity and constrain

the condition. One method is to insert adjustment data only in the middle convolutional layers of the generator

architecture. The other method is to reduce the value of two control parameters of feature-matching regularization, thus

reducing the distribution of actual and generated data.

Compound architecture-based music generation. Bretan et al.  implemented the encoding of musical input by

developing a deep autoencoder and reconstructed the input by selecting from a library. Subsequently, they established

a deep-structured semantic model DSSM combined with LSTM to perform unitary prediction of monophonic melody.

However, because of the limitations of unitary prediction, the quality of the generated content is sometimes poor.

Bickerman et al.  proposed a music-coding scheme for learning jazz using deep belief networks. The model can

generate flexible chords of different tones. It demonstrates that if the jazz corpus is large enough to generate chords,

there is reason to believe that more complex jazz corpora can be performed. While some interesting pieces of jazz

melodies have been created, the phrases generated by the model are not sufficient to represent all the features of the

jazz corpus. Lyu et al.  combined the capability of LSTM in long-term data training and the advantages of the

Restricted Boltzmann Machine (RBM) in high-dimensional data modeling. The results demonstrate that the model has

a good generalization effect in the generation of chord music, but some high-quality music clips are rare. Chu et al. 

proposed a hierarchical neural network model for generating pop music based on note elements. The lower layer
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handles melody generation, and the upper layer produces chords and drums. Two practical applications of this model

are related to neural dance and neural storytelling at the cognitive level. However, the shortcoming of this model also

lies in the note-based generation mode, which does not include music theory research, thus limiting its musical

creativity and stylistic integrity. Lattner et al.  learn the local structure of music by designing a C-RBM architecture

that utilizes convolutions only in the temporal dimension in order to model time invariance, instead of pitch invariance,

breaking the concept of pitch. Its core idea is to grammatically reduce the structure of music generation before music

generation, such as music mode, rhythm pattern, etc. The disadvantage is that the musical structure is plagiarized.

Huang et al.  proposed a transformer-based model for music generation. The core of the algorithm is to reduce the

intermediate memory requirement to the length of the linear sequence. Finally, it’s possible to generate a combination

of tiny segment steps for a few minutes and use it in JBS Choir. Despite the experimental comparison of Maestro’s two

classic public music datasets, the qualitative evaluation was relatively crude.

3. Traditional Chinese Music Computing

To our knowledge, there are few available MIDI-based datasets of Chinese folk music. Luo et al.  proposed an

algorithm to generate genre-specific Chinese folk songs based on auto-encoder. However, the results could only produce

simpler fragments and did not perform qualitive analysis of the music from a musical genre perspective. Li et al. 

presented a combined approach based on Conditional Random Field (CRF) and RBM for classifying traditional Chinese

folk songs. Such an approach is noteworthy for being the first in-depth qualitative analysis of the classification results from

a music-theoretical perspective. Zheng et al.  reconstructed the speed-update formula and proposed a Chinese folk

music creation model based on the spatial particle swarm algorithm. Huang  collected data from two musical elements

based on Chinese melody, and analyzed the application value of Chinese melody imagery in creating traditional Chinese

folk music. Zhang et al.  conducted music data textualization and cluster analysis on Chinese traditional pentatonic

groups. In summary, our motivation is to produce Chinese pentatonic music with hierarchical structure and local

pentatonic music with multiple musical features and uniform rhythms, as shown in Figure 1 .

Figure 1. The five main scales and four partial scales in traditional Chinese pentatonic music.
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