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As global energy crises and climate change intensify, offshore wind energy, as a renewable energy source, is given more

attention globally. The wind power generation system is fundamental in harnessing offshore wind energy, where the

control and design significantly influence the power production performance and the production cost.
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1. Introduction

With the rapid increase in global energy consumption, climate change and ecological issues are gaining increasing

attention. In this context, the use of clean and renewable energy is becoming more important. Under the goals of “carbon

peak” and “carbon neutrality”, the new energy industry is expected to undergo high-quality, leapfrog development, with a

significant increase in the proportion of clean power installations like wind power . Compared to onshore wind,

offshore wind features more stable and stronger wind speeds, along with lower turbulence intensity and more stable

dominant directions, which are beneficial in reducing wind-induced fatigue loads on turbines. Consequently, offshore wind

energy is receiving special attention globally, with active development in many countries . The “2023 Global Offshore

Wind Report”  shows that in 2022, the global offshore wind power added an installation capacity of 8.8 GW, ranking

second in annual growth throughout the years, with China contributing 5 GW of the new installations, bringing the total

global offshore wind power installation capacity to 64.3 GW.

Offshore wind power systems, comprising offshore wind turbines and wind farms, are crucial in harnessing and collecting

marine wind energy. The economic utilization of wind energy is difficult, which is greatly influenced by environmental wind

conditions and the wind energy system . Therefore, favorable design and stable operation of offshore wind energy

systems cannot be achieved without the development and application of various technologies such as wind speed and

wind power prediction , turbine control, wind energy system design , condition and structural health monitoring , and

fault diagnosis . Combined with the application of AI technology in these fields, this report focuses on the control and

design technology of offshore wind energy systems. Control technology of offshore wind power systems encompasses the

regulation of individual wind turbines and the wake control of offshore wind farms, and design technology includes turbine

selection, layout optimization, and power collection system design for offshore wind farms. The control of offshore wind

turbines focuses on efficient and reliable management of individual wind turbines, while wake control aims to regulate

wake between turbines, reducing wake loss and maximizing energy output. Turbine selection and layout optimization are

closely linked, with selection focusing on choosing turbine types best suited for specific marine environments and

conditions, and layout optimization determining their optimal placement in the wind farm to maximize energy capture while

minimizing costs and environmental impact. Lastly, optimizing the power collection system is crucial to ensure efficient

and safe energy transfer from the turbines to the grid.

The control technology of offshore wind power systems is designed to improve system performance, enhance

collaborative operation efficiency, and address reliability and robustness challenges in complex marine environments.

Considering the complexity of offshore wind power systems, there are several levels of control issues involved. Therefore,

the control technology of offshore wind power systems can be categorized into WT (wind turbine) level and WF (wind

farm) level based on system hierarchy. With the application of artificial intelligence methods, it can be further divided into

advanced control of wind turbines and wake control of wind farms. Method selection and refinement in these fields are

crucial for the overall efficiency and economic viability of offshore wind farms. Wind turbine control, which determines the

energy capture from the wind, mainly involves controller modeling and solving; the AI method is mainly used to solve the

coupling problem between the WT and the external environment. Wake control in wind farms, on the other hand, focuses

on improving the overall performance through coordinated control of multiple turbines; the AI method is mainly used to

solve the coupling problem among internal individuals in a wind farm.
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2. Advanced Control of Wind Turbines

As depicted in Figure 1, the control problems of wind turbines mainly revolve around maximum power point tracking

(MPPT) and the fatigue load balance. MPPT is a primary and widespread concern, while fatigue load considerations are

typically specific to certain operational scenarios. With the increasing scale of modern wind turbines, there is an

augmentation in system inertia and complexity in application scenarios. This necessitates enhanced performance

requirements for the MPPT of wind turbines and further consideration of the impacts of complex offshore environments on

turbine fatigue load.

Figure 1. Advanced control of wind turbines.

Based on the characteristics of problems, the wind turbine control problems can be divided into two categories: controller

equivalent modeling; parameter solving and optimization. The artificial intelligence methods applied for these problems

include, but are not limited to, fuzzy logic, genetic algorithm, neural network, data-driven approaches, reinforcement

learning, and deep learning.

For the MPPT (maximum power point tracking) problem in wind turbine control, the primary goal is to optimize turbine

performance and enhance the system’s power generation efficiency. Significant research has been conducted using

artificial intelligence methods, often combining one or more techniques. Regarding the fatigue load control issue of wind

turbines, it involves comprehensive optimization of the turbine in conjunction with other indicators. The intelligent methods

for load assessment and optimization are mainly reviewed in this research. Representative literature in this field is

illustrated in Table 1.

Table 1. Representative literature on advanced control of wind turbines.

Ref. Year Objective
Decision

Variable
Framework Method Contribution

2023 MPPT
Rotor

speed
FLC GA

The proposed method is

straightforward to implement,

effectively minimizes steady-state

oscillations, and swiftly adapts to

changes in wind speed.

2018 MPPT Yaw angle MPC MOPSO

The proposed method adjusts control

parameters based on wind direction

changes and desired performance,

resulting in improved power extraction

efficiency.

2021

Maximum wind

energy extraction

and minimum motor

torque fluctuation

Rotor

speed
MPC YYGWO

The proposed algorithm demonstrates

robustness in solving dynamic

optimization problems, with a high

optimization rate and rapid

convergence performance.
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Ref. Year Objective
Decision

Variable
Framework Method Contribution

2023 MPPT
Generator

speed
DSC ANN

The control system, based on neural

network online learning, can adapt to

disturbances in MPPT control.

2023 MPPT
Generator

torque
MPC

DNN

RL

In scenarios with uncertainty and

unexpected actuator failures, the

proposed method exhibits superior

robustness and control performance.

2022 MPPT Pitch angle PID RL

The method enhances the efficiency of

intelligent control strategies, reducing

the power output error of the optimal

hybrid controller by approximately

41%.

2023

Minimum the

asymmetric load of

wind turbines

Individual

pitch angle
PI BO

The strategy introduces an actuator

derating control approach, enhancing

the fault tolerance of derating controls.

Summaries on the application of AI methods in MPPT control of wind turbines are provided, as follows:

Fuzzy Logic is primarily used to address the uncertainties and ambiguities in MPPT (maximum power point tracking).

For instance, some studies have focused on developing fuzzy fractional-order proportional–integral controllers to

enhance the performance of direct-drive permanent-magnet synchronous generator wind turbines. This highlights the

flexibility of fuzzy logic in adapting to rapidly changing wind speed conditions . Further research includes

comparative analyses of different fuzzy logic controllers in semisubmersible platform wind turbines . In addition,

some research also involves comparing the performance differences between fuzzy logic control and the traditional

proportional integral controller , and combining the fuzzy logic method of sliding mode control to improve the

robustness and performance of doubly-fed induction generator systems . Fuzzy logic offers effective solutions to

wind turbine control in complex environments.

Intelligent Algorithms are recognized as powerful optimization tools, they are widely applied in MPPT (maximum

power point tracking) control of wind turbines. Research has shown that control strategies optimized through intelligent

algorithms significantly enhance the performance and efficiency of wind turbine systems . For instance, the

genetic algorithm (GA) has been used to adjust FLC (fuzzy logic control) system parameters for optimizing wind turbine

MPPT strategy , as well as the intelligent control strategies for the offshore wind turbine MPPT zone . Methods

like MOPSO (multiobjective particle swarm optimization) have been utilized to optimize the control parameters of yaw

control systems in horizontal-axis wind turbines, aiming to improve energy capture efficiency . The YYGWO (yin–

yang grey wolf optimizer) algorithm, through nonlinear model predictive control, has been employed for maximizing

wind energy extraction in large wind turbines . These examples highlight the advantages of intelligent optimization

algorithms in parameter optimization and their potential to enhance system stability and adaptability.

Neural Networks are primarily used for model prediction and system behavior simulation in MPPT (maximum power

point tracking) applications. For instance, an unsupervised neural network-based MPPT control strategy for wind

turbines has been proposed, which can adapt to different environmental conditions and optimize turbine actions to

achieve maximum power . Other research includes power prediction models for wind turbines using artificial neural

networks, optimizing yaw angles across wind farms to reduce wake effects and enhance overall efficiency . The

flexibility of neural networks enables them to handle complex nonlinear systems, such as optimizing wind energy

capture under variable speed conditions , and enhancing the performance of wind power systems with neural

network controllers based on transfer function models . These applications demonstrate the capabilities of neural

networks in prediction and optimization, as well as their potential in real-time control and adaptive adjustments.
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Data-driven methods exhibit advantages in handling large volumes of complex data in MPPT control for wind

turbines. These methods rely on historical and real-time data to enhance the accuracy and efficiency of control

strategies . In addition, the extended Kalman filter is used to improve MPPT control of wind turbines with the

permanent magnet synchronous generator , and MPPT control based on wind speed estimation technology is

applied to a double-fed induction generator . These research efforts demonstrate the potential of data-driven

approaches in enhancing the performance and adaptability of wind turbine control systems.

Deep Learning has shown significant capabilities in data processing and feature extraction within the field of MPPT

control for wind turbines. Research leveraging deep learning techniques has been successful in creating power curve

models for wind turbines to predict power output under various conditions . Additionally, deep learning solutions

have been developed for power prediction in multiple wind turbine units within a wind farm . These studies

demonstrate the remarkable role of deep learning in enhancing the accuracy of performance prediction and

optimization of wind turbine systems.

Reinforcement Learning has increasingly demonstrated unique advantages in MPPT control for wind turbines,

especially in managing complex dynamic systems. Research indicates that using reinforcement learning to improve the

pitch control of wind turbine units effectively addresses the nonlinear characteristics and dynamic complexities of wind

power equipment . Additionally, a method combining data-driven and reinforcement learning approaches has been

proposed for the torque and blade pitch control of wind turbines , showcasing the potential of reinforcement learning

in optimizing complex control systems. There are also studies on blade pitch control  and MPPT methods for wind

turbines  using reinforcement learning, highlighting its promising future in adapting to environmental uncertainties

and optimizing complex control strategies.

Moreover, for modern large-scale and floating wind turbines, the integration of artificial intelligence methods with key

structural fatigue load modeling and optimization is particularly important. For instance, a CNN-t-SNE-based neural

network model for structural fatigue analysis of floating wind turbine platforms is developed , enabling automatic

detection of damage in mooring equipment. Further, a control network model based on multiagent theory has been

proposed to assess fatigue loads in offshore wind turbines . Addressing the uneven distribution of fatigue loads, which

increases operational and maintenance costs, the multiobjective adaptive yin–yang pair optimization (M-AYYPO)

algorithm is utilized to propose a comprehensive optimization method for fatigue loads in wind turbines . To optimize

power and load performance, a fault-tolerant control strategy based on Bayesian optimization (BO) is proposed, aimed at

reducing asymmetric loads in offshore wind turbine units and extending their lifespan .

3. Wake Control of Offshore Wind Farms

As illustrated in Figure 2, the wake control issues in offshore wind farms are mainly categorized into three types :

maximization of the overall power of the wind farm, optimization of fatigue load and power balance, and power tracking

that considers wind farm scheduling. Unlike the control of individual wind turbines, wind farm-level control is primarily

achieved through coordinated wake control. Additionally, wind farms need to select suitable wake models based on

different application scenarios. With the advent of floating turbines, the wake effects in wind farms have become more

pronounced, raising higher demands for the efficiency and effectiveness of wake control solutions.

Figure 2. Wake control problem of offshore wind farms.

In addressing the accuracy and efficiency of models in different scenarios, the methods used for solution and optimization

are often related to the complexity of model calculations. Initially, wake control relied mainly on simple mathematical

models, like linear programming based on wake models. With increased computing power, researchers began using more
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complex models, like fluid dynamics models, to simulate wake effects. These models often require solving complex partial

differential equations, leading to the development of numerical optimization algorithms like game theoretic (GT) ,

sequence quadratic program (SQP) , and alternating direction method of multipliers (ADMM) . Additionally, a

hybrid method combining ADMM and SQP are proposed according to the wake coupling degree . However, numerical

optimization algorithms often struggle with nonconvex optimization problems, leading to growing interest in artificial

intelligence algorithms. Representative literature on heuristic intelligent algorithms, deep reinforcement learning, and

surrogate model-assisted algorithms are shown in Table 2. These AI-based methods offer promising alternatives for

optimizing complex wake control scenarios in wind farms.

Table 2. Representative literature on wake control of offshore wind farms.

Ref. Year Objective
Decision

Variable
Method Contribution

2017

Power and

fatigue load

balance

Active power

setting
GA

The proposed method addresses real-time

optimization issues under constraints related to

the active power limitations of wind turbines and

wind farms.

2020 Maximum power
Axial induction

factor
PSO

The proposed approach is highly efficient in

solving problems for medium- and small-scale

wind farms.

2021 Maximum power

Axial induction

factor, yaw

angle

MC-BAS

The proposed approach enhances the capability of

the BAS algorithm to handle high-dimensional

nonlinear problems effectively.

2022

Maximum

power, minimum

fatigue load

Axial induction

factor, yaw

angle

CMC-BSO

This proposed method solves multiobjective

nonconvex optimization problems based on

decentralized communication network topologies.

2023 Maximum power

Axial induction

factor, yaw

angle

IEO

The proposed method combines centralized and

distributed optimization strategies through iterative

updates and cluster processing to improve the

algorithm.

2020 Maximum power Yaw angle
Distributed

RL

Considering the delay in wake propagation and

the time-stepping variation of inflow conditions,

this method achieves an efficiency gain of 8.2%.

2020 Maximum power
Axial induction

factor
KA-DDPG

Combining expert knowledge with a reinforcement

learning framework while ensuring learning safety,

this approach results in a gain of 10%.

2021 Maximum power Yaw angle DDPG

The proposed control scheme demonstrates

strong robustness and utilizes a sparse dataset,

resulting in an efficiency gain of 15%.

2022 Maximum power Yaw angle
CER-

DDPG

It has improved sampling and learning efficiency,

enhancing its applicability in real wind farms, with

a gain of 25%.
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Ref. Year Objective
Decision

Variable
Method Contribution

2022 Maximum power

Thrust

coefficient, yaw

angle

DN-DDPG

The proposed method is able to handle

incompatibilities between different control signals,

ensuring a reliable training process, and achieving

a gain of 33%.

2021 Power tracking Yaw angle Deep RL

Using a model-free approach, it can solve the

optimal behavior in real-time considering different

environmental conditions.

2022 Power tracking

Thrust

coefficient, yaw

angle

PR-DRL
It addresses the short-sightedness issue of

traditional power-tracking methods.

2023 Maximum power

Axial induction

factor, yaw

angle

SA-ISPSO

An intelligent optimization method based on a

surrogate model is proposed, used for the first

time in the power maximization problem of floating

wind farms.

2023 Maximum power

Axial induction

factor, yaw

angle

SAFDR

It proposes a dimensionality reduction-based

surrogate modeling-assisted global optimization

framework, further reducing the time cost of

optimization.

Traditional algorithms provided a fundamental theoretical framework and preliminary solutions for wake control in wind

farms, laying the groundwork for further development. Early BO methods  were widely applied and combined with

wind farm trust regions  and steady-state models  for improvement. However, as wind farms expanded in size, the

complexity of wake control problems increased, necessitating the consideration of more factors. Consequently, intelligent

optimization algorithms like the genetic algorithm (GA)  and particle swarm optimization (PSO) , known for their

adaptability and efficiency, were employed in the field of power optimization research. These algorithms, capable of

handling complex constraints and nonlinear problems, emulate natural group behaviors to find optimal solutions.

Advanced intelligent algorithms have also been developed for specific scenarios, such as Monte Carlo-based beetle

annealing search (MC-BAS) for distributed wind farms  and combined Monte Carlo and beetle swarm optimization

(CMC-BSO), combining Monte Carlo and beetle swarm optimization, to consider load and power optimization .

Moreover, an improved equilibrium optimizer (EO) based on the turbine subset size is proposed to regulate the wake

effect in wind farms . Heuristic intelligent optimization algorithms have significantly improved the efficiency of wake

control optimization in large-scale offshore wind farms.

With advancements in parallel computing and intelligent learning capabilities, deep reinforcement learning (DRL) is

increasingly being applied to wake control in wind farms, exploring hybrid methods. This algorithm learns optimal

strategies through interaction with the environment, making it suitable for dynamic and uncertain conditions. Many wind

farm control methods based on reinforcement learning (RL) use the Q-learning algorithm . Additionally, distributed Q-

learning is developed for optimizing farm-level power production , with strategies to avoid abrupt changes in control

variables. Further research has proposed distributed RL algorithms for increasing power generation through yaw angle

control , and concepts like gradient approximation and incremental comparison in RL for optimal control actions .

Moreover, a knowledge-assisted deep deterministic policy gradient (KA-DDPG) method is introduced , utilizing an

analytical model to initialize the RL agent and early-guide it to accelerate the learning process. Additionally, new wind farm

control frameworks have been developed by combining deep deterministic policy gradient (DDPG) algorithms with reward

regularization modules and composite learning-based control strategies . A compound experiential replay strategy

CER-RL is designed to balance the reward and time difference errors in the learning process . To ensure reliable

training processes, a dual-network-based DDPG method is explored , which is capable of handling incompatible control

signals. In addition to power maximization, RL can also be employed to address field-level power tracking issues.
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Vijayshankar et al.  explored a deep RL framework for wind farm power tracking, which is a model-free approach

capable of real-time optimization considering various environmental conditions. Dong and Zhao  designed the preview-

based robust deep RL (PR-DRL) method, combining data-driven approaches to achieve model-free power tracking for

wind farms. These methods emphasize DRL’s potential in real-time adjustment of wind turbine operational parameters to

adapt to wind speed variations and wake effects, thereby optimizing the performance of the entire wind farm.

Finding global optimal solutions using nonlinear optimization algorithms like SQP can be challenging, and intelligent

optimization algorithms and deep reinforcement learning methods often face the challenge of high time costs and low

efficiency due to evaluating numerous objective functions. To address these issues, surrogate model methods have

gained widespread attention . These methods, combining surrogate models with intelligent optimization algorithms, are

particularly effective for wake control in large and floating wind farms. Focused on developing reliable surrogate models

for yaw-based wind farm control, the relationship between total power gain and surrogate model error or uncertainty is

discussed . Given the complexity of power optimization in floating wind farms, intelligent optimization algorithms face

challenges in their application. A surrogate-model-assisted intelligent optimization method is introduced , which is first

applied to the problem of power maximization in floating wind farms. Additionally, a dimensionality reduction-based

surrogate-model-assisted global optimization framework is proposed , further reducing the computation cost while

improving its effectiveness.

In summary, traditional solving methods initially used for wake control in wind farms, based on mathematical models, are

suitable for deterministic problems but struggle with high computational complexity and large-scale, nonlinear problems.

This leads to the development of intelligent optimization algorithms like the genetic algorithm and particle swarm

optimization, suitable for global searches. Furthermore, deep reinforcement learning, utilizing multilayer neural networks

for data feature learning, is appropriate for complex pattern recognition and has been evolving recently. However, these

methods still face challenges such as becoming trapped in local optima and requiring extensive data and computation

time. Currently, surrogate models, combined with intelligent optimization algorithms, are used to simplify problems and

reduce computational load, achieving better control outcomes.
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