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The safety of flight operations depends on the cognitive abilities of pilots. The process of identifying mental states

typically involves four steps: collecting data, cleaning it, selecting relevant features, and making predictions. The

first step involves capturing signals from the brain and converting them into digital form. Then, to ensure accurate

analysis, any extraneous noise or artifacts present in the data are removed through preprocessing. Next, specific

characteristics of the data are selected and extracted in preparation for classification. These extracted features are

then used by a classifier to make predictions about which class the data belongs to. As this process specifically

relates to electrocardiogram (ECG) data, the following provides a summary of previous research on the three

stages of mental state detection: preprocessing, feature extraction, and classification.

pilot mental state  detection  machine learning  EEG preprocessing

1. Introduction

The evolution of the aviation industry is heavily dependent on maintaining the highest standards of safety.

Advances in aircraft design, endurance, and safety have led to a decrease in the number of aircraft accidents

worldwide since the 1960s . However, operator reliability remains a crucial factor in maintaining flight safety, as

flight crews are responsible for a wide range of tasks, including receiving instructions from air traffic control,

interpreting onboard instrument data, making course corrections, briefing cabin crew and passengers, and

responding to unexpected events. Operating an airplane requires a high level of mental acuity, and these

responsibilities can compromise flight safety . According to data analyzed by the International Air Transport

Association (IATA), there were 45 plane crashes caused by pilots losing control of the aircraft, resulting in 1645

fatalities between 2012 and 2021 . Furthermore, the Commercial Aviation Safety Team (CAST) investigated 18

aircraft accidents in which pilots lost control and found that deficiencies in flight crew attention were involved in 16

of the 18 incidents . As a result, CAST recommended that the aviation community, which includes government,

business, and academic institutions, conduct research to detect and assess attention-related pilot performance

deficiencies (APPD), specifically focusing on channelized attention (CA), diverted attention (DA), and

startle/surprise (SS) mental states. CA is a state where pilots engage in a puzzle-based video game called Tetris

while remaining focused entirely on the game without paying attention to other tasks. DA is a state in which pilots

solve math problems that periodically appear while performing display monitoring tasks. Pilots who are in the SS

mental state experience unexpected inversions of the primary flight display in the simulator.
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To achieve this goal, researchers from both academia and industry have investigated a variety of approaches

based on physiological signals and machine learning (ML) methods. In terms of physiological signals, quantitative

sensors, both singular and multiple, have been employed to capture biological signals from the human body in both

field studies and near-realistic laboratory environments. The electroencephalography (EEG) sensor is widely

regarded as the most crucial physiological signal for analyzing mental states due to its ability to detect transient

alterations in brain activity that may be indicative of pilots’ attention deficits. It seems to provide the most accurate

data for distinguishing mental states. It is also preferable to other methods of brain monitoring since it is safe,

adaptable, non-invasive, and an utterly passive recording technique. Despite its advantages, EEG is notorious for

picking up artefacts from environmental factors and physiological phenomena, such as muscle activity, ocular

movements, line noise, and heartbeats, which compromise the quality of the signals. Therefore, isolating the neural

signal relative to the cognitive processes that reflect brain activity from the recorded artefacts is crucial.

The presence of artefacts in EEG data can negatively impact the performance of ML models used to detect

different mental states of pilots. To address this issue, researchers have employed various signal processing and

feature extraction techniques. One approach is to record and combine EEG with non-brain physiological signals,

such as functional near-infrared spectroscopy, electrocardiogram (ECG), galvanic skin response (GSR), and

respiration (RP), simultaneously. However, the fusion of features derived from EEG and non-brain physiological

signals may not always improve the performance of ML models . Another approach is to utilize traditional

preprocessing techniques to handle contaminated EEG data. Visual inspection and rejection, filtering, and

Independent Component Analysis (ICA) are examples of such conventional denoising procedures. These methods,

while effective, have several downsides, including the need for manual implementation, being slow and inefficient

for longer recording sessions, and being difficult for beginners to execute . These drawbacks highlight the

importance of developing an automated preprocessing method.

Features or essential information embedded in the EEG signal are usually extracted after preprocessing, as they

are crucial for classification tasks . Both temporal and spatial features can be extracted from the EEG

signals. For pilot mental state classification, temporal features in the time, frequency, and time–frequency domains

are commonly extracted . One such method that originates in the frequency domain is the power spectrum

density (PSD). The presence or absence of shifts in the power spectra of individual EEG bands is an important

indication of different mental states. In brain–computer interface (BCI) applications, spatial features are commonly

extracted. They represent the active area of the brain. For pilot mental state classification, they are rarely used as

input.

2. Multimodal Approach for Pilot Mental State Detection

The process of identifying mental states typically involves four steps: collecting data, cleaning it, selecting relevant

features, and making predictions. The first step involves capturing signals from the brain and converting them into

digital form. Then, to ensure accurate analysis, any extraneous noise or artifacts present in the data are removed

through preprocessing. Next, specific characteristics of the data are selected and extracted in preparation for

classification. These extracted features are then used by a classifier to make predictions about which class the
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data belongs to. As this process specifically relates to EEG data, the following provides a summary of previous

research on the three stages of mental state detection: preprocessing, feature extraction, and classification.

2.1. Signals Preprocessing

An assortment of neuronal activity, physiological artefacts, and non-physiological noise can be found in raw EEG

data. As their presence may hinder the performance of ML models , identifying and removing artefacts is a

crucial preprocessing step before their use . Although most research preprocessed their EEG data, there were a

few exceptions . To increase the signal-to-noise ratio (SNR), it is necessary to undertake a preprocessing

procedure to eliminate extraneous noise and artefacts.

For the pilot’s mental states classification, conventional preprocessing techniques, including filtering 

 and ICA , were employed on the EEG recordings. For example, Roza et al.  used a band-pass

filter with a center frequency of 12–30 Hz to isolate the beta rhythm. Han et al.  used band-pass filtering at 0.1–

50 Hz to remove the high frequency prior to removing eyes-related artefacts using the ICA algorithm. Similarly,

Alreshidi et al.  used previously released pilot EEG data to analyze the influence of three preprocessing

procedures on the efficiency of two ML models. The results demonstrated no discernible changes in the

performance accuracies of the models when the data were filtered or when ICA was applied for eye-related artefact

detection after data filtration. It has been established in the literature that typical preprocessing procedures for EEG

data analysis necessitate knowledge and experience on the part of the analyst. Furthermore, they are only

applicable when applied manually, requiring inspection, identification, and removal of faulty channels and

contaminated data segments.

The past few years have seen the development of a number of partially or completely automated EEG

preprocessing procedures that provide ways to clean EEG data. The Autoreject algorithm is an example of an

automated preprocessing procedure that can be employed in EEG analysis pipelines . It is a novel approach for

automatically identifying and repairing erroneous segments in EEG data from single trials. It uses advanced

statistical learning techniques, such as Bayesian hyperparameter optimization and cross-validation, to select

amplitude thresholds to use for rejecting or repairing bad segments in EEG data. The Autoreject technique was

used by Bonassi et al.  to automatically repair or reject contaminated epochs in EEG data. Pousson et al. 

preprocessed the EEG data that were recorded from pianists doing musical tasks using the Autoreject method.

There was a total of 10% erroneous epochs that were uncovered by the method and subsequently omitted from the

investigation. Previous research has established that Autoreject has a significant role in the automatic purification

of EEG data.

2.2. Feature Extraction

EEG is a set of stochastic signals that conceals extremely intricate data. Because of its high nonlinearity, its

features are prone to sudden fluctuations. Human mental states, however, transition gradually from one state to the

next . Feature extraction aims to extract relevant features from data to map EEG segments to mental states.
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Various features, such as statistical  and power spectral density features ,

have been extracted from pilots’ EEG recordings in earlier research in order to classify pilots’ mental states. For

example, Wu et al.  used the power spectrum curve area representation of the decomposed delta, theta, alpha,

and beta brain waves obtained using wavelet packet transform as features to perform the classification. Roza et al.

 derived 15 distinct features from EEG and other physiological signals. The wavelet coefficients and several

statistical features were extracted from the EEG signals. Furthermore, Binias et al.  extracted logarithmic band-

power features using common spatial pattern (CSP) spatial filtering, which is widely used in BCI applications, from

pilots’ EEG recordings.

There has been a recent uptick in the use of Riemannian geometry-based feature extraction and classification

algorithms for BCIs. The first implementation of these techniques in BCI applications was published in . The

authors employed the Riemannian mean covariance matrix distance as a feature for classification purposes.

Additionally, they showed how the covariance matrices can be represented as vectors in the tangent space of the

Riemannian manifold. Majidov and Whangbo  computed the covariance matrices obtained by using CSP spatial

filtering and mapped them onto the tangent space of the Riemannian manifold. Singh et al.  used the data from

the EEG electrodes to create spatial filters that reduce the dimensionality prior to employing Riemannian distance

as a pattern recognition metric for classification. In addition, classifiers based on Riemannian geometry were used

by Appriou et al.  in the proposed BioPyC toolbox. One such classifier is the tangent space classifier.

2.3. Mental State Classification

After EEG signals have had their features extracted, they must be classified using either a binary or multiclass ML

approach. Because of the increased efficiency with which neural data may be analyzed and the need to decode

brain activity, ML, and particularly Deep Learning (DL), algorithms have found widespread use in the field of

computational neuroscience. Supervised ML algorithms, for instance, must first be trained using example data. The

model and its learnt properties are then used to make predictions about the class label of new data that have not

yet been seen.

For the detection of various pilot mental states, previous studies implemented various ML 

 and DL  algorithms. For instance, Han et al.  proposed a detection system based

on multimodal physiological signals and a multimodal deep learning (MDL) network, consisting of convolutional

neural network (CNN) and long short-term memory (LSTM) algorithms, to detect pilot’s mental states, namely

distraction, workload, fatigue, and normal. Roza et al.  proposed an emotion recognition system based on

multimodal physiological signals and artificial neural network (ANN). The system was developed to detect five

emotional states, namely happy, sad, angry, surprised, and scared. To identify the various states of mental fatigue,

Wu et al.  presented a deep contractive autoencoder network; up to 91.67 percent of cases of the fatigued

mental status of pilots could be correctly identified. In a flight simulator experiment, Johnson et al.  investigated

probe-independent methods for categorization of three layers of task-complexity. The investigation was carried out

using six classification algorithms, namely naïve bayes, decision trees, quadratic discriminant analysis, linear

discriminant analysis (LDA), k-nearest neighbors (KNN), and support vector machine (SVM). Dehais et al. 
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devised a scenario in which twenty-two pilots using a six-dry-electrode EEG system performed a low-load and

high-load traffic pattern, as well as a passive auditory oddball. Zhang and Wang  proposed a concatenated

structure of deep recurrent and 3D CNN to learn spatial–spectral–temporal EEG features for cross-task mental

workload assessment. The findings reveal that the proposed approach achieved an average accuracy of 88.9%.

Distinguishing between stages of brain activity related to idle but concentrated anticipation of visual cues and

reactions to them using LDA, KNN, SVM, RF, and ANN algorithms was the focus of the research of Binias et al. .

Detecting and assessing APPD was also addressed in previous studies. For example, Harrivel et al.  employed

RF, extreme gradient boosting, and deep neural network classifiers to predict CA, DA, and low workload states. As

a preliminary study, through the use of different sensing modalities in high-fidelity flight simulators, the authors

classified three types of mental states. Harrivel et al.  employed RF, gradient boosting, and two SVM classifiers

to identify CA and SS states in further studies. The authors stressed the need for addressing the data quality

issues. Terwilliger et al.  aggregated three mental states classes, namely CA, DA, and SS, into one class called

event. To distinguish the event class from the NE mental state class, the authors presented a convolutional

autoencoder approach. In previous research, people examined the effects of two preprocessing procedures on

SVM and ANN using EEG data from a pilot exposed to CA, DA, SS, and NE states . Although the models

demonstrated the viability of combining data from two scenarios, the curse of dimensionality prevented them from

accurately predicting the DA and SS states.

In the field of aviation, several studies have been conducted to evaluate the efficacy of EEG data in predicting

mental states of pilots. Some of these studies have employed a binary classification approach to detect different

mental states, while others have utilized EEG data in combination with other physiological data to improve

performance.

Another notable limitation of previous studies is the limited sample size, with many only incorporating EEG data

from fewer than 10 participants. This raises questions regarding the generalizability of their results, as the findings

may only be applicable to a small subset of the population. While incorporating additional signals can sometimes

improve model performance, it can also introduce additional noise and complexity to the system, making it more

challenging to interpret the results.

Additionally, some studies have not disclosed the necessary information to make their work easily reproducible,

while others have failed to make their datasets publicly available. This makes it challenging for other researchers to

verify or build upon their findings.

Furthermore, some studies have not performed proper preprocessing techniques on their EEG data, such as

advanced filtering and artefact removal, potentially compromising the validity of their results. The noise can

interfere with the extraction of meaningful features and patterns in the EEG signal, leading to a decrease in the

accuracy and reliability of the resulting model. To minimize the impact of noise on the performance of ML

techniques, it is important to preprocess the EEG signal and remove as much noise as possible before training the

model.
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Regarding extracting meaningful features for the machine learning models, researchers have hardly ventured

beyond statistical and PSD features.

To the best of our knowledge, current research did not attempt to combine multiple approaches from different areas

to predict the pilot’s mental states, which makes this study the first of its kind in the aviation field. The innovative

nature of this study lies in the development of a novel multimodal approach to detect and classify APPD states

using cleaned EEG data. The EEG signals from 18 pilots were collected from a variety of conditions to form the

heterogeneous EEG data. The approach involves the automatic preprocessing of the EEG signals, feature

extraction and selection methodology based on Riemannian geometry analysis, and a novel APPD system that

classifies the APPD states. The system addresses the issues of corrupted EEG data, imbalanced datasets, and the

curse of dimensionality, and provides meaningful features from the EEG signals, making it a unique contribution to

the field.
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