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In natural language processing (NLP), document classification is an important task that relies on the proper

thematic representation of the documents. Gaussian mixture-based clustering is widespread for capturing rich

thematic semantics but ignores emphasizing potential terms in the corpus. Moreover, the soft clustering approach

causes long-tail noise by putting every word into every cluster, which affects the natural thematic representation of

documents and their proper classification. It is more challenging to capture semantic insights when dealing with

short-length documents where word co-occurrence information is limited.

classification  text mining  natural language processing

1. Introduction

Language modeling with binary one-hot word encoding is higher dimensional and sparse with no semantic

information. As a result, the word analogy is missing; e.g., the distance between word vectors represents only the

difference in alphabetic ordering. However, point vector representation of words in the embedding space like

word2vec  and GloVe  contain semantic information. Representing a dense low-dimensional fixed-length

document vector is much more expensive and complicated. Moreover, it is challenging to infer unseen documents

during the test process. The simplest method to get document embedding is the weighted averaging of word

embeddings in the document . Document Vector through Corruption (Doc2VecC)  is a significant study that

shows how a simple weighted averaging technique combined with a simple noise-eliminating procedure can be

effective. However, Doc2VecC did not cover the underlying themes of the document. Sparse Composite Document

Vector (SCDV)  addresses this limitation by using word embeddings and the Gaussian mixture clustering to

generate the document vector, which also overcomes the shortcomings of the hard-clustering approach . SCDV

shows significant improvement in the downstream natural language processing (NLP) tasks, including document

classification. However, SCDV inherits noisy tails from the Gaussian mixture clustering that is not appropriate for

the document containing multiple sentences . Another vital issue ignored by most document representation

methods is ignoring potential terms in the corpus, which is essential for understanding deep semantic insight of the

documents.

It is hard to encode the richness of semantic insights for short-length documents where word co-occurrence

information is limited . Therefore, many works suggest importing semantic information from external sources 

. However, accessing information from external sources (e.g., Wikipedia) may cause irrelevant noise

corresponding to the current short text corpus.
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Sparse Composite Document Vector with Multi-Sense Embeddings (SCDV-MS)  forces discarding the outliers

from the clustering output to eliminate long-tail noises in the SCDV, which applies a hard threshold that may hinder

the thematic representation of documents. Moreover, representing proper expressive documents depends upon

modeling the underlying semantic topics in the correct form , which requires capturing deep semantics insights

buried in words, expressions, and string patterns . Hence, for the noisy long texts, researchers proposed

Weighted Sparse Document Vector (WSDV) that embodies important words emphasizing capability using

Pomegranate General Mixture model , and a soft threshold-based noise reduction technique.

It is challenging to capture semantics insights in document modeling with sparse short texts. The probability

distribution of words captures better semantics than the point embedding approach (e.g., word2vec)  as it

generalizes deterministic point embeddings of the terms using the mean vector, and the covariance matrix holds

uncertainty of the estimations. Hence, instead of depending on external knowledge sources, researchers proposed

corpus statistics empowered Weighted Compact Document Vector (WCDV), which emphasizes potential terms

while performing probability word distribution using the weighted energy function. In WCDV, researchers employ

the Multimodal word Distributions  that learns distributions of words using the Expected Likelihood Kernel ,

which computes the inner product between distributions of words to get the affinity of word pairs. However, every

word in a document does not hold the same importance; some are used more frequently than others, indicating

their importance in the corpus. It is required to emphasize the frequently used words, especially when word co-

occurrence information is limited (e.g., microblogging, product review, etc.). Therefore, to preserve the word

frequency importance, researchers proposed Weight attained Expected Likelihood Kernel which considers term

frequency-based point weights while measuring the partial log energy between distributions in the Multimodal word

Distributions .

2. Corpus Statistics Empowered Document Classification

Word embeddings models ignore side information (e.g., document labels) while learning embeddings from

enormous document corpora. To improve word representation and text classification accuracy, Linear, Y. et al. 

proposed to use document labels as the global context both in the local neural network model and the global matrix

factorization framework. Obayes, H.K. et al.  combined GloVe and bidirectional long short-term memory

(BiLSTM) recurrent neural network for better sentiment classification, which causes expensive computation and no

guidance for documents containing multiple sentences. Yang, Z. et al.  proposed Hierarchical attention networks

(HAN) for document classification, which maintain a hierarchical structure of word to sentence (building sentence

from words) and sentence to document (aggregating sentences to a document representation). Zhang, Z. et al. 

proved that the TFIDF algorithm with the combination of Naive Bayes has significance in the text classification task

compared to many complex models.

Recently, transformers-based models  became more prevalent in downstream Natural Language Processing

(NLP) tasks (e.g., document classification). Wang, B. andlinebreak Kuo, C-C.J.  proposed SBERTWK for

sentence embedding, which trains on both word and sentence level objectives but no guidance for representing a

document that contains multiple sentences. However, the transformer-based model requires enormous
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computational resources. Sanh, V. et al.  introduced a distilled version of BERT called DistilBERT, which is

smaller, faster, cheaper, and lighter than other transformers-based models.

Mapping sentences to a fixed-length embedding vector using Universal Sentence Encoder (USE) based method

 also got success in the downstream Natural Language Processing (NLP) task. The sentence analysis method

made by combining Universal Language Model Fine-tuning (ULMFiT) with the Support Vector Machine (SVM) 

is capable of performing document classification using a small amount of data but has higher computational

complexity.

Yet, K.S. et al.  proposed document embedding along with their uncertainty called the Bayesian subspace

multinomial model (Bayesian SMM) to capture better semantics. It is a generative log-linear model that learns to

represent documents in the form of the Gaussian distributions and encodes uncertainty in the covariance matrix

but holds only a single mode of words. Therefore, encoded uncertainty might diffuse spontaneously; the mean

vector can be pulled in one direction and represents one particular meaning by leaving others not representing .

Different senses of a word lie in the linear superposition of standard word embeddings  and the Gaussian

mixture model holds multiple modes to represent distinct meanings of words.

For the long texts classification, researchers proposed WCDV, which represents documents with uncertainty

estimations in the distribution of words using Gaussian Mixtures distributions for short-length document

classification. Researchers proposed WSDV using the Pomegranate General Mixture model for the long texts

classification. Both WSDV and WCDV accommodate polysemous terms and train on the labeled documents

corpus for better classification performance.

Noisy topics are outliers prone, thus less coherent and less expressive. Newman, D.  regularized the LDA-

based topic model where only the higher frequency terms allow into the word dependencies sparse covariance

matrix. This model executes two prime steps. Firstly, measuring the point weight of each word in the vocabulary,

and secondly, putting a threshold point to eliminate lower weighted words from the covariance matrix. Mittal, M. et

al.  introduced automated K-means clustering, where they applied a threshold point to decide whether or not to

create a new cluster for the objects. This approach prohibits outlier tendency by accommodating lower probability

objects into a new cluster. Gupta, V. et al.  introduced SCDV-MS, which removes noise by applying a hard

threshold on the fuzzy word cluster assignments, which proved better classification performance and lower space

and time complexity than SCDV .

In contrast, the proposed WSDV contains more natural noise removal techniques using a soft threshold and more

efficient sparse vectorial representation for the long text (e.g., removing first principle components).

To capture better corpus semantics, Sia, S. et al.  introduced weighted data clustering on pre-trained word

embeddings, where they also proved the effectiveness of re-ranking the top words in a cluster for better

representative topics. Similarly, Gebru, I.D. et al.  proposed a Gaussian mixture-based weighted data clustering

method called WD-GMM that demonstrates how the point weight of datum affects the covariance matrix and leads
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to better clustering. Inspired by them, researchers proposed WSDV, which extends the clustering process on the

weighted data for the multi-class document classification performance.

Short texts are sparse due to limited word co-occurrence, which requires special treatment to capture hidden

semantic information . Pretrained word embedding over large external corpora is a common remedy for

dealing short length documents. Zuo, Y. et al.  proposed a word embedding-enhanced Pseudo-document-based

Topic Model (WE-PTM) to leverage pre-trained word embeddings that is essential for alleviating data sparsity.

Instead of incorporating external knowledge sources, Zhang, P. and He, Z.  proposed an ensemble approach by

exploiting both word embeddings and latent topics in sentence-level sentiment analysis for sentence polarity

detection.

Therefore, for semantically enriched short-length document representation, instead of importing information from

external knowledge sources, researchers employ Multimodal word Distributions  to capture uncertainty in the

distribution of word embeddings for the vectorial representation of documents.

The contextual analysis-based model emphasizes potential terms that capture better semantics insights and boost

classification performance . Xu, J. et al.  proposed a convolutional neural network-based model, which

incorporates context-relevant concepts into text representation for uplifting short text classification performance,

but it requires expensive computational capacity.

In WCDV, researchers use the weighted energy function to emphasize potential terms in the short texts corpus.

Weighted Kernel Density Estimation (WKDE)  based on point weights has proved effective. For the semantic

similarity measuring task, constant weighting assumption-based semantic similarity  measure between two

concepts/words holds better performance for the semantic representation of the concept/words but holds the same

weighting relevance. Later, it found that the weight propagation mechanism  for augmenting input with

semantic information achieves desired performance and removes the same weighting curse for concepts/words.

Recently, Liu J. et el.  introduced a weighted kernel mechanism for the weighted k-means multi-view clustering,

where they redefined the objective by assigning weights to the cluster level instead of global weighting for each

view and outperforming the existing objective.
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