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Rapid population growth has resulted in an increased demand for agricultural goods. Pests and diseases are major

obstacles to achieving this productivity outcome. Therefore, it is very important to develop efficient methods for the

automatic detection, identification, and prediction of pests and diseases in agricultural crops. To perform such automation,

Machine Learning (ML) techniques can be used to derive knowledge and relationships from the data that is being worked

on. 
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1. Introduction

Machine learning (ML)-based applications for agriculture are still young, but are already showing promise. For instance,

disease classification from images can be done using popular Convolutional Neural Network (CNN) architectures for

different plants with different diseases ; relationships between weather data and pest occurrence can be retrieved using

Long Short Term Memory (LSTM) networks for forecasting future pest attacks ; insect detection on leaves can be

performed using object segmentation and deep learning techniques .

Data gathering, data pre-processing (i.e., data preparation that includes feature extraction), and ML classification models

are the three basic steps of ML applications, represented in Figure 1. The following sections present and discuss different

approaches used in these three stages.

Figure 1. Simplification of the ML pipeline.

2. Data Acquisition

Data acquisition is the process of gathering data from various sources systems . Previous studies gather their data

various sources to be used for ML techniques. Some of them produce their own images by taking pictures of plants in

greenhouses, such as in the studies from Gutierrez et al.  and Raza et al. . However, image data acquisition using

manual processes, as done by many, generally results in small image data-sets, which can compromise the development

of effective ML-based models. Weather data collection is also proposed in the literature using for instance sensors in

greenhouses, as done by Rustia and Lin . Meteorological data can also be obtained from weather stations of regional

areas, which typically store records for a longer period of time .

Images can be collected using search engines on their own . This approach can get a large number of images, but

ground truth must be checked by domain experts, and data cleaning is frequently used to filter out images that do not

meet the requirements.

Remote sensing images from satellites and drones have the advantage of being able to retrieve image data for large

agricultural areas. Remote sensing data from satellites typically consists of multi-temporal and hyper-spectral imagery

data, which can be used to assess the development of the crops. This task can be performed by monitoring the evolution

of vegetation indices , which provide important information about the development status of the crop fields. Spectral

imagery can be used for computing different vegetation indexes, such as those proposed in , which

are robust to variations on the sun illumination , an important advantage when compared to visible light spectrum

imagery.
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Images retrieved from drones can also be used, but have additional needs: to define the path of the device; to coordinate

the drone position with the camera for image acquisition; and to correct geometric distortions on each acquired image in

order to merge the different acquired images in order to reconstruct a larger image of the whole field .

2.1. Variables Influencing Crop Diseases and Pests

It’s crucial to be able to predict the arrival of diseases and pests in crops, in addition to correctly detecting and identifying

them. Real-time meteorological data obtained by unmanned observation planes, as well as long-term data analysis from

weather stations, have been used to create models capable of anticipating disease occurrence. In , the General

Infection Model, proposed in , was used for assessing the prediction capabilities of the system. It was found that, if

integrated systems such as this are implemented and various input data-sets essential for interrelationship analyses are

collected, accurate plant disease prediction systems can be constructed.

When it comes to forecasting occurrences, it’s crucial to know which variables will have an influence on what is being

forecast. In the work by Henderson et al.  this was done by discovering which weather variables influence the forecast.

On the other hand, Lasso et al.  determined the time period window for each weather variable and crop-related feature

that is the most significant for the appearance of coffee leaf rust disease in coffee crops.

In , Small et al. used weather data, information on potato and tomato crops resistance to late blight (from published

literature and field experiments), and management strategies, to create a web-based decision support system that allows

the dynamic prediction of disease outbreaks, with an emphasis on the late blight disease on tomato and potato crops.

The work proposed by Ghaffari et al.  addresses the very early detection of diseases in tomato crops using

atmospheric data and volatile organic compounds. Plants produce a wide spectrum of volatile organic compounds in

reaction to physical and biotic stress, as well as infection . In , the diseases under study were the powdery mildew

and spider mites.

A model developed by Diepeveen et al. in  can be used in agriculture to understand the influence of location and

temperature on crops. In addition, elements such as soil, humidity, rainfall, and moisture were found to have an influence

on crop yield .

Plant diseases and pest development are greatly influenced by weather and environment conditions . Humidity is a

favorable condition for the development of fungus diseases. The humidity can be caused by the weather or by poor

watering practices that cause a high wetness among the leaves, making tomatoes more susceptible to diseases, e.g., leaf

mold or bacterial spot .

In addition, temperature is a primary driver of insect development, affecting their metabolic rate and population growth .

Plants absorb part of the radiation coming from the sun and reflect the rest. Depending on the health of the plant, the

amount of radiation absorbed and reflected differs. This difference can be used to distinguish between healthy and

diseased plants and to assess the severity of the damage . The concept is illustrated in Figure 2.

Figure 2. Absorbed and reflected radiation for plant’s health estimation (adapted from ).
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Insects are ectothermic, meaning that they cannot regulate their internal temperature and have to rely on environmental

heat sources. Temperature affects the population growth and metabolic rates of insects . Thus, the duration of an

insect’s life cycle is highly influenced by the number of days where the temperature is suitable for its development. Two

temperature thresholds can be define: an upper threshold, in which insect development slows down or stops and a lower

one where there is no insect growth. These thresholds vary according to the specific insect species.

Degree day is a concept concerning the accumulation of heat by insects . One degree day is a period of 24 h in which

the temperature was one degree above a given baseline. Different models for determining the number of degree days

associated to common pest species were proposed in . For instance, tomato crops are susceptible to the greenhouse

white fly (Trialeurodes vaporariorum), whose number of degree days from egg to adult is 380 DGG . Depending on the

temperature of the environment, this development time can be longer or shorter.

Biofix date  is the date to start accumulating degree days associated with a given insect species . This date can be

determined by noticing specific insect species on traps or by detecting eggs on plant leaves. From this date, degree days

can be used to estimate the period at which insects are reaching a given development stage suitable for pesticide

application. Temperature and weather forecasts are nowadays sufficiently accurate to enable the estimation for the time

required for an insect to reach a given development status .

In the context of ML-based applications, related work focused on studying the impact of weather in pest insect

development found a higher correlation between the number of pest catches and temperature, when compared with other

factors .

Some diseases affect the transpiration rate of the plant and, consequently, its temperature . Therefore, plant leaf

temperature can be used for disease detection. ML models can achieve higher accuracy for disease identification when

combining thermal images with visible light images. The benefits are more useful for early detection when the plant has

not yet developed symptoms recognizable by the naked eye.

Humidity

Diseases affecting plants are often caused by fungus or bacterial pathogens. High relative humidity environments favor

the development of these microorganisms. Thus, humidity has to be managed by good watering practices, while avoiding

excessive leaf moisture and soil moisture .

Different studies using regression models and weather data demonstrate the influence of humidity on disease and pest

development . Thus, the collection of humidity records in greenhouses using sensors can be helpful for disease

forecasting.

Leaf Reflectance

Plants absorb solar radiation between 400 to 700 nm (photosynthetically active radiation) which corresponds

approximately to the visible light region. For wavelengths greater than 700 nm (red) in the Near Infra-Red (NIR) region

there is a sharp order-of-magnitude increase in leaf reflectance due to chlorophyll characteristics, a phenomenon known

as red edge  .

Diseased plants with damaged leaves have different leaf spectral reflectance compared to a healthy plant because of the

different chlorophyll concentration and leaf tissue damage. Diseased plants end up absorbing less of the visible light and

more of the NIR light. From this knowledge, disease detection can be done using leaf reflectance information . In

a study concerning late blight infection, a disease that tomatoes are also susceptible to, it was found that spectral

differences in the visible region between healthy and diseased plants are small and more significant differences are

noticeable in the NIR .

Various vegetation indices can be retrieved from remote sensing . A common index is the Normalized Difference

Vegetation Index (NDVI) (Figure 2) for assessing the degree of vegetation of an area by using leaf reflectance

information. NDVI can be computed using satellite data or from modified cameras . It was found that the

combination of NDVI and temperature gives higher accuracy in predicting pests appearances than weather variables

alone . NDVI can also be used as input data for ML models to accurately evaluate disease severity.

Pest development varies depending on the development stage of the plants. NDVI can be used to monitor plant growth

and establish relationships between the crop stage development and pest occurrence.
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2.2. Agriculture Data-Sets

Many data-sets used in the context of agriculture include images of plant diseases or pests with the goal of classifying

them. PlantVillage, PlantDoc, IP102, Flavia and, MalayaKew Leaf are some data-sets that are freely available. Here is a

brief summary of each of these:

PlantVillage  : popular data-set used for plant disease classification. Specifically for tomato, it contains 18,160

images representing leaves affected by bacterial spot, early blight, late blight, leaf mold, septoria leaf spot, spider

mites, two-spotted spider mite, target spot and tomato yellow leaf curl virus. It also includes images of healthy

leaves. Figure 3 depicts two sample images taken from this data-set.

IP102  : data-set for pest classification with more than 75,000 images belonging to 102 categories. Part of the image

set (19,000 images) also includes bounding box annotations. This is a very difficult data-set because of the variety of

insects, their corresponding development stages (egg, larva, pupa, and adult) and image backgrounds. The data-set is

also very imbalanced. Figure 4 presents two examples of images from this data-set.

PlantDoc  : contains pictures representing tomato diseases which were acquired in the fields. Among the considered

diseases are: tomato bacterial spot, tomato early blight, tomato late blight, tomato mold, tomato mosaic virus, tomato

septoria leaf spot, tomato yellow virus and healthy tomatoes.

Flavia  : contains photos of isolated plant leaves over a white background and in the absence of stems. This data-set

covers 33 plant species.

MalayaKew Leaf  : was gathered in England’s Royal Botanic Gardens at Kew. It contains images of leaves from 44

different species. There are situations where leaves from different species are very similar, presenting a greater

challenge for the development of plant identification models.

Figure 3. Examples of tomato leaves affected by diseases taken from the PlantVillage data-set .

Figure 4. Examples of insect images taken from the IP102 data-set .

Tomato Powdery Mildew Disease (TPMD) is a different type of data-set because it is related to meteorological data. It

offers statistics on powdery mildew disease susceptibility depending on a variety of weather-related variables such as

humidity, wind speed, temperature, global radiation, and leaf wetness .

2.3. Field-Collected vs. Laboratory-Collected Data

ML models performance is influenced by the quality and type of input (image or other). Images acquired in a controlled

laboratory environment and images acquired in the field can result in completely different processes and/or results. The

difficulty for disease and pest classification is much higher for images acquired in the field than for images taken in a

controlled environment.
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Under a controlled laboratory environment, images typically contain a single leaf over a neutral artificial background .

The PantVillage data-set is an example of such situation . It is possible to achieve great performance on these data-

sets . However, the creation of these types of data-sets is a time consuming and costly process.

When compared with images acquired in the laboratory, field images have much higher complexity, due to the presence of

multiple leaves in the same image, presence of other plant parts, different shading, and lighting conditions, different

ground textures, different backgrounds, etc. . According to the studies in , training ML models using laboratory

images provides poor outcomes when tested in the field, making them useless for the task. Training on field photographs

and testing on laboratory photographs, on the other hand, produce reasonable outcomes . The addition of field images

in the training data has been shown to boost the results significantly, however testing on images from alternative data

sources is advised .  PlantDoc  demonstrates that cropping the leaves improves the accuracy of CNN architectures

when dealing with in-field photos .

Table 1 shows the performance achieved on a few studies that analysed the impact of image acquisition conditions on the

performance of disease classification models. In each table cell, “L” corresponds to lab images, “F” to field images and “L

+ F” for both types of images. In addition, the data-sets associated to the weights of the pre-trained models that were

used for Transfer Learning are also shown.

Table 1. Performance comparison of field vs. laboratory data.

Study Pretrained Weights Training Testing Performance

-

L F 33.0% acc.

F L 65.0% acc.

L + F L + F 99.0% acc.

ImageNet L F 15.0% acc.

ImageNet + PlantVillage F F 30.0% acc.

ImageNet + PlantVillage F (cropped images) F (cropped images) 70.0% acc.

ImageNet L L 99.0%+ acc.

3. Data Pre-Processing

Pre-processing data before feeding it to the model is common in most ML-based applications. Images are typically pre-

processed using computer vision techniques to remove noise, to enhance the image contrast, to extract the regions of

interest, to extract image features, etc. In general, image pre-processing steps usually lead to better model outcomes. The

most common data pre-processing techniques are covered in the following sub-sections.

3.1. Noise Reduction

Different types of filters, such as Gaussian and median filters, are used to reduce noise to obtain smoother images. These

filters have an effect of blurring and removing non relevant details of an image, at the expense of potentially losing

relevant textures or edges .

Erosion and dilatation are two morphological image operations that can be applied to binary or grey-scaled images.

Erosion removes islands and tiny items, leaving only larger objects. In other words, it shrinks the foreground objects. On

the other hand, dilation increases the visibility of items and fills in tiny gaps, adding pixels to the boundaries of objects in

an image . These operations reduce details and enhance regions of interest. These methods are helpful, for instance,

for pest detection against a neutral background, such as images of traps with captured insects .

Images are usually stored in the RGB format, which is an additive color model of red, green, and blue components. Due to

the high correlation between these color components, it is usually not suitable to perform color segmentation in the RGB

color space. Therefore it is important to bear in mind that there are others color spaces such as HSV or L*a*b*. In HSV

the color components are: hue (pure color), saturation (shade or amount of grey), and value (brightness). In the L*a*b*

color space, L* is the luminance (brightness), a* is the value along the red-green axis, and b* is the value along the blue-

yellow axis. In these color spaces, the brightness of a color is decoupled from its chromaticity, allowing the images to be
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processed with different lighting conditions . This is significant in the context of agricultural images acquired in the

fields, since they can have been shot under various lighting circumstances or at different times of the day.

Histogram equalization is a technique for adjusting contrast. In low contrast images, the range of intensity values is

smaller than in high contrast images. Equalization of the histogram spreads out the intensity levels throughout values in a

wider range. Contrast enhancement is not directly applied in the RGB color space, because it applies to brightness

values. Thus, images have to be converted either to grey-scale or to a color space that contains a brightness component,

such as the HSV or L*a*b* color spaces .

3.2. Image Segmentation

Image segmentation is the process of grouping pixels into regions of interest. In the context of crop disease identification,

these regions of interest can be, for instance, diseased areas on the plant leaves, for assessing the severity of the

infection by the amount of the infected area, or for background removal, since the removal of the background allows

highlighting of the regions of interest for further analysis. An example of background removal is shown in Figure 5.

Figure 5. Example of background removal from the PlantVillage data-set .

Blob detection is a computer vision technique for getting regions of pixels that share common properties. The properties of

these regions, such as color and brightness, differ greatly compared to their surroundings. This technique can be used, for

instance, to detect and count insects in images .

The k-means clustering algorithm is a popular unsupervised ML algorithm that can be used for image segmentation.

Pixels are grouped into clusters which have pixels with similar color and brightness values. This technique is helpful, for

instance, to detect damaged regions on leaves . Fuzzy c-means is a soft clustering technique where a pixel can be

assigned to more than one group. This method was used by Sekulska-Nalewajko and Goclawski  and Zhou et al. 

for plant disease classification.

Region growing is a region-based image segmentation technique used by Pang et al. in  to accurately define the image

regions corresponding to the plant leaf parts affected by disease.

Intensity thresholding is a straightforward and simplified approach for image segmentation. According to the pixel value,

that pixel is classified into a group (e.g., healthy or diseased). When using this technique, images are frequently converted

to grey-scale first and then thresholded using a grey intensity value .  Figure 6  shows an example of an image

converted to grey-scale.

Figure 6. Example of an image converted to grey-scale from the PlantVillage data-set .
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3.3. Feature Extraction

Feature extraction is a common step in the pre-processing of images for shallow ML models. Common image feature

extraction algorithms include the Histogram of oriented Gradient (HoG), Speeded Up Robust Features (SURF) and Scale

Invariant Feature Transform (SIFT) . Different feature extractors obtain different features that can be more or less

suitable for the specific problem at hand. HoG focuses on the structure and shape of the image objects, by detecting

edges on images oriented according to different directions. The distribution of gradients according to these directions are

used as features. SIFT finds scale and rotation invariant local features through the whole image, obtaining a set of image

locations referred to as the image’s key-points. SURF is conceptually similar to SIFT, with the advantage of being much

faster, which can be relevant for the implementation of real-time applications.

The distribution of image colors is represented by a color histogram. Since most diseases have symptoms that impact the

color of the leaves, the histogram can also be used for distinguishing between healthy and unhealthy plants .

Some computer vision algorithms for feature extraction demand that pictures are converted to grey-scale, such as

Haralick texture  or edge detection algorithms , etc. Haralick texture features are computed from a Grey Level Co-

occurrence Matrix (GLCM), a matrix that counts the co-occurrence of neighboring grey-levels in the image. The GLCM

acts as a counter for every combination of grey-level pairs in the image. Diseased and healthy leaves have different

textures since a diseased leaf has a more irregular surface and a healthy leaf has a smoother one. These features allow

differentiation of a healthy leaf from a diseased one.

Local Binary Pattern (LBP)  is another technique used for image texture features extraction robust to variations on

lighting conditions. The LBP technique was used by Tan et al. in  for the extraction of information about diseases on

tomato leaves.

Multi-spectral image data-sets can be exploited to create new data and improve the performance of models. For instance,

in , originally, there were NIR pictures of the fields and from this data the authors created new images from spectral

differences (between green and blue bands, and between NIR and green bands), band ratios and dimension reduction

using principal component analysis. The authors also assess which type of data achieves best performance on the

models.

3.4. Cropping and Resizing Images

Cropping and resizing images is used for decreasing the input image dimensions, to allow greater processing speed or to

fit hardware requirements. It can also be used for creating more data to train the models, for example, from a low number

of high resolution pictures, a much higher number of low resolution images can be retrieved .

3.5. Pre-Processing in Tabular Data

Tabular data consisting of weather records was commonly found in the literature. When gathering data records with

varying dates and locations, these records can be integrated in two ways: cross-year, where models are validated over

the years at the same location, and cross-location, where models are validated across the various locations for the same

year. The average coefficient of determination (r2) was found to be higher for cross-year models for all ML algorithms

tested .

Common procedures in pre-processing are scaling/standardization of data and missing values processing . Most

algorithms require that there are no missing values in data and others, such as neural networks, can benefit from the

normalization of feature values to improve training and reduce the effects of vanishing gradients .

Down sampling is a useful way to process data when there is a high number of records. In , measurements of leaf

reflectance were done, from 760 to 2500 nm with a 1 nm interval. The 1740 wavelengths measurements were

compressed into 174, and afterwards 10 wavelengths were selected using the stepwise method. From the regression

analysis, results showed a coefficient of determination  r2=0.94  for these wavelengths and leaf severity. Experiments

showed that fewer than those 10 wavelengths would worsen performance.

3.6. Pre-Processing in Deep Learning

Deep learning pre-processing does not focus on feature extraction since one of the most essential and beneficial

properties of deep learning is its ability to generate features autonomously. For this reason, pre-processing is focused
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mainly on creating more images through data augmentation and resizing the input images to fit the models input

parameters.

Some studies have compared the manual selection of features with deep learning. When it comes to categorizing insects

in the field, manually selected features were not able to capture all of the relevant information about insect infestations or

to handle the noise of real-world photos. Manually selected features were also not able to capture subtle differences

between different insect species that share similar appearance . For insect detection, deep learning techniques

achieved higher accuracy and took less time to process since they efficiently select regions of interest . In the work done

by Brahimi et al. in , tomato disease classification using deep learning achieves higher accuracy, with values above

98%, but the accuracy of models using feature extractors is not very far behind, reaching values above 94%.

When comparing the use of original color pictures with images converted to grey-scale or background segmentation, deep

learning models performed better in the original color pictures . These findings are also confirmed in , where the

performance of color vs. grey-scale pictures is compared. This supports the idea of deep learning not requiring extensive

pre-processing of images. Nevertheless cropping images achieve better performance on field images classification, by

increasing the region of interest and reducing the varying background .

Data augmentation is a process to artificially expand and increase the diversity of the training data-set. This process

benefits the performance of the models, by introducing variability in the data and allowing a better generalization of the

domain . Some common transformations are rotation, cropping, scaling, and flipping.

Data cleaning is the process of assessing the quality of the data and to either modify or delete it. It is usually applied in

studies that retrieve their data-set images from search engines in an automatic way, removing pictures that do not

correspond to the intended labels or that do not comply with minimum resolution requirements .

Image resizing is usually performed to fit the input parameters of the models. Studies have compared the performance of

the models with different input image sizes, and concluded that with larger images the models achieve higher accuracy

but require more time for each training epoch  and more powerful hardware .

Table 2 shows the pre-processing techniques applied to deep learning classification models analysed herein. The ‘type’

column shows the data pre-processing technique used and the ‘info’ column contains additional details about it.

Table 2. Pre-processing when deep learning techniques were used.

Study Type Info

Greyscale -

Background Segmentation Masks

Resize 256 × 256

Data Augmentation Affine, perspective, rotation

Data Cleaning -

Resize 256 × 256

Resize 52 × 52, 112 × 112, 224 × 224

Data Cleaning -

Resize 224 × 224

Data Augmentation Crop, rotation, Gaussian noise, scale, flip

Resize 600 × 1024, 300 × 300

Resize 256 × 256

Resize 256 × 256

Greyscale -

Resize 60 × 60
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From the table, it is noticeable that all analysed papers employing deep learning-based techniques used image resizing. It

is also worth mentioning that the application of data augmentation was found in 25% of the depicted works, and the same

goes for image color conversion to grey-scale and data cleaning.

4. Machine Learning Models

ML models enable researchers to get insight into data and existing correlations between various factors that influence

occurrence of diseases and pests in crops. After data is processed and features are extracted, models can be used for

classification, regression, among other goals. In classification, a new data sample is assigned a label according to the

relations retrieved during the training process. In regression, a continuous output value is estimated from the input

variables.

The following sub-sections contain a description about the ML models used, published work that have used them and the

achieved performances. In addition, as a consequence of the conducted research, it was decided to include a sub-section

about the use and potential of Transfer Learning (TF) in the research under consideration.

4.1. Support Vector Machine

SVM  is a model that creates a hyper-plane that separates two classes (can also be adapted and applied for multi-

class problems). By maximizing the distance, or margin, between the nearest data points (support vectors) of each class

to the hyper-plane, SVM chooses the optimum hyper-plane to segregate the data. SVM can also perform well in non-

linear data by using the so called kernel trick technique. The SVM kernel is a function that transforms a low dimensional

input space into a higher dimensional space that is linearly separable. For this reason, SVM can be very effective in high

dimensional spaces. SVM can also be used for regression problems . Furthermore SVM can also be used in a

hybrid way as Bhatia et al. did in , by using SVM together with logistic regression algorithm to predict powdery mildew

disease in tomato plant.

A syntheses of agricultural studies using SVM as the ML model can be observed in Table 3. The type of SVM used, as

well as its kernel and result can be observed. Linear, polynomial, and RBF kernels seem to be most commonly used on

SVM-based classification and regression algorithms applied to agriculture contexts.

Table 3. SVM performance.

Study Classification/
Regression

Kernels

Type Results

Classification
Polynomial 90.0% acc.

Radial Basis Function 97.4% acc.

Regression Not specified SVM outperformed

Regression Linear r2 = 0.45

Classification Linear 90.0%+ acc.

Classification

Radial Basis Function 90.5% acc.

Quadratic 92.0% acc.

Linear

91.0% acc.Multi-Layer Perceptron

Polynomial

Classification Not specified 94.6% acc., 93.1% f1

SVM can achieve better performance than other ML techniques such as ANNs and conventional regression approaches in

forecasting plant diseases .

4.2. Random Forest

Random Forest (RF) is a widely known ensemble built from decision trees trained on different subsets of the training data.

Also, when deciding which variable to split on a node, RF considers a random set of variables and not the whole set of
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features. During classification, each tree votes and the class most agreed upon is returned. As each tree is trained on a

subset of data and of features, the computation is fast. A high number of trees and the diversity of each of them makes

them robust to noise and outliers. Some studies that have employed Random Forest (RF) are shown in Table 4.

Table 4. Performance of Random Forests.

Study Classification/Regression Number of Trees Performance

Regression 100 r2 = 0.75

Regression 200 r2 = 0.75

Classification - 70.0% acc.

Classification - 95.5% acc., 94.2% f1

RFs can achieve greater accuracy with less number of samples when compared to other ML techniques .

4.3. Artificial Neural Networks

Artificial Neural Networks (ANN) are models inspired by biological brains. ANN consists of neurons distributed in input,

hidden, and output layers and can have multiple hidden layers and multiple units in each layer. With more hidden layers,

an ANN is able to learn complex relations from the hierarchical combination of multiple features, and thus create high-

order features,  Figure 7  shows an illustration of an ANN. Deep learning is associated with ANNs that contain a large

amount of layers.

Figure 7. ANN example.

Learning occurs by a process called optimization, which is an iterative method for minimizing an error function, typically

based the Gradient Descent algorithm. Instead of calculating the gradient from the entire data-set, the optimization

process typically uses chunks of data records called batches. After the network processes the input, the output is

compared to the expected output and the error is computed. The error is then propagated back through the network, one

layer at a time, and the weights are updated according to the amount they contributed to the error. This updating process

is called back-propagation. After all records in the data-set are processed once, a training epoch is completed. Training

the network can require several epochs until desired results are achieved.

CNNs are a type of a deep learning network that commonly are applied on image classification tasks. In this type of

network, the use of the so-called convolutional layers enables an hierarchical extraction of features, where simpler

features such as edges are extracted in the first layers and more specific and complex features are extracted in deeper

layers. The dimensionality of the input is decreased by the use of pooling layers. Fully connected neural networks are

usually placed on top after the convolutional and pooling layers and act as classifiers using these high-level features.
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Recurrent Neural Networks (RNN) are also a type of deep learning network, usually applied to time series data. RNNs

extract features automatically from data and can capture temporal relationships. Because of the architecture of these

networks, the gradients calculated to update the weights can become unstable, becoming too high (Exploding Gradient)

or too low (Vanishing Gradient).

The recurrent layers can be structured in a wide variety of ways to produce distinct RNNs . The LSTM cell was

proposed by Hochreiter and Schmidhuber in . Here, the remembering capacity for the standard recurrent cell was

improved in order to deal with undesirable dependencies on the long-term.

Recently, Xiao et al. suggested in  that LSTM networks have specific advantages in processing time-dependent

problems. LSTM networks can be used, for example, to retrieve relationships between meteorological data and pest

occurrence in order to forecast future pest attacks.

In the context of agriculture, obtaining a large amount of annotated data for the training of ML-based algorithms can be a

rather difficult task. Few-shot learning approaches have been trying to mitigate this problem by managing to learn with

fewer data. The methods typically associated with this technique can be organized according to four groups : data

augmentation, metric learning, external memory, and parameter optimization. Yang et al. present a survey on the

developments, application, and challenges of this approach.

When using ANN models, authors might use one of two methods. They either create their own model designs or adopt

well-known architectures that have been shown to perform well in previous studies, particularly CNN architectures for

image classification.

User-Defined Network Architectures

This sub-section presents studies where the authors defined their own neural network architectures.

In , Duarte-Carvajalino et al. built and compared the outcome of two different neural networks models. The first model

was a Multi-Layer Perceptron (MLP) with 2 hidden layers, each having half the number of nodes of the previous layer. The

authors used a learning rate of 0.01, the Adamax optimizer, batch normalization and dropout with probability of 0.2 in all

layers, and ReLU as activation function. The other model was a CNN trained using the same hyperparameters used on

the MLP. The CNN consists of two convolutional layers using 20 filter kernels of size 3 × 3, followed by a max pooling

layer of size 2 × 2. The succeeding network layers are another two convolutional layers using 40 filter kernels of size 5 × 5

followed by a max pooling layer. After flattening, a dense layer is added before the output is computed. It was concluded

that the CNN achieved better results than the MLP.

In , an LSTM network was used for processing time series data, i.e., winter and autumn data. The LSTM network

consisted of two fully connected layers with five hidden units each. The results showed that the LSTM network achieved

the best performance with 92% accuracy when compared to RF, SVM, and K-Nearest Neighbors (KNN). The Apriori

algorithm  was applied for interpretability.

Disease prediction for different regions was also studied with the use of an ANN in . In this case, the back-propagation

neural network  and the generalized regression neural network  models were used.

A model suggested by Patil and Kumar in  attempted to identify the link between weather variables and the emergence

of 4 types of rice diseases. In this work, the authors used an ANN to perform the detection, identification and prediction of

the appearance of diseases in rice crops. The meteorological data-set referred to data between 1989 and 2019. The ANN

consisted of 8 neurons in the input layer, 15 in the 2 hidden layers, and 5 in the output layer.

In , Sharma et al. performed a prediction of the potato late blight disease based on meteorological data only, using an

ANN. In this case, data from 2011 and 2015 was used. Several tests with different network activation functions and data-

set splits were done. It was concluded that the larger the data-set, the better was the performed prediction.

In addition, other algorithms relying on meteorological data and ANNs for performing predictions have been proposed. In

, Dahikar and Rode present an ANN for predicting which crop will grow best in a certain area. The predictions were

based on weather and soil data. Refs.  proposed ANN-based models for predicting crop yield.

Convolutional Neural Network Architectures

Image classification has achieved great results, with various model architectures being developed over the last 10 years.

Most of these deep learning models were proposed in the context of the “Large Scale Visual Recognition Challenge”
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(ILSVRC). These models include well-known architectures such as AlexNet, GoogleNet, VGG, and ResNet, which have

been widely used for image classification in different application domains.

Table 5  summarizes a set of studies that used pre-existing CNN architectures, depicting the architecture used in their

work and the corresponding results.

Table 5. Performance of CNN architectures.

Study Architecture Results

GoogleNet 99.3%

AlexNet 99.3%

CaffeNet 96.3%

VGG16 98.0% validation, 81.0% in new apple orchard

GoogleNet 43.5% acc., 32.7% f1

FPN 54.9% mAP 0.5

ResNet 49.4% acc., 40.1% f1

VGGNet 48.2% acc., 38.7% f1

AlexNet 41.8% acc., 34.1% f1

GoogleNet 98.7% acc., 97.1% f1

AlexNet 99.2% acc., 98.5% f1

AlexNet 99.4% acc.

VGG16 99.5% acc.

VGG16 60.4% acc., 60.0% f1

InceptionResNet V2 70.5% acc., 70.0% f1

Inception V3 62.1% acc., 61.0% f1

LeNet 98.6% acc., 98.6% f1

As can be observed from Table 5, several CNN architectures developed over the last decade have been successfully

used, showing great potential for agriculture applications. From these, the use of older CNN architectures such as AlexNet

(2012), VGG16 (2014), and GoogleNet (2014) were found on 44%, 33%, and 33% of the analysed papers, respectively. 

4.4. Transfer Learning

TF makes use of already existing knowledge for some related task or domain in order and apply it to the problem under

study. Models previously trained for image classification on large data-sets are usually used and adapted to the data-set

under study. A common approach is to substitute the last network layers (i.e., the dense layers) of a pre-trained network,

adapting it for a different classification task. The model is then trained but only the newly inserted layers are trainable—all

network layers remain frozen during the training process. In extension of this approach, fine-tuning, is also commonly

used. Besides training the newly inserted layers, fine-tuning allows the training of additional layers of the base model,

typically the deeper convolutional layers of the network.

TF is usually done when the studied data-set is small, with insufficient samples for training a CNN model from scratch.

Table 6 synthesizes several deep learning-based studies where TF was applied. It presents details addressing: the data-

set used for the base model training, the used TF method and the performance difference between using TF and training

from scratch.

Table 6. TF analysis.
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Study Model Dataset for
Pretrain Method

Performance Difference
Compared to Training

from Scratch

AlexNet, GoogleNet ImageNet All layers trainable ~−2% acc.

CaffeNet ImageNet
Low learning rate for

original layers (0.1), high for
top layer (10)

~−0.50% acc.

AlexNet, GoogleNet, VGGNet,
ResNet ImageNet Fine tune ~−14.0% acc. in best model

(ResNet)

Faster RCNN (ResNet101,
Inception V2, Inception

ResNet V2)
COCO Fine tune No comparison

AlexNet, GoogleNet ImageNet Fine tune ~−2%

VGG16, Inception V3,
Inception ResNet v2

ImageNet and/or
PlantVillage Fine tune ~−31.0% using ImageNet

and PlantVillage

As can be observed from the table, the use of TF leads to lower performance when compared with training the full model

from scratch. Nevertheless, there are many cases where such a difference is small, which means that TF can indeed be a

useful possibility when the data-set is not sufficiently large.
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