

Sex Determination in Dioecious Agricultural Plants

Subjects: **Agriculture, Dairy & Animal Science**

Contributor: Olga V. Razumova , Oleg S. Alexandrov , Karina D. Bone , Gennady I. Karlov , Mikhail G. Divashuk

Unlike in animals, dioecy among flowering plants is a rare phenomenon. The vast majority of angiosperm species have a bisexual flower that combines male (androecium) and female (gynoecium) reproductive organs. However, about a quarter of species have dioecious flowers, which can be located within the same plant (monoecious) or on different plants (dioecious). The development of sequencing techniques, bioinformatics, and molecular biology has led to an increase in interest in the sex determination mechanisms among plants. It is noteworthy that a significant number of dioecious plants have economic value. At the same time, dioeciousness often complicates the growing process. This fact increases the relevance of studies on dioecious crops.

dioeciousness

flowering plants

monoecious plant

dioecious plant

sex chromosomes

1. Introduction

Dioecy is a relatively rare phenomenon in the world of angiosperms. Dioecious species make up about 5–7% of angiosperms [1][2][3]. The active development of bioinformatics methods, reductions in the cost of whole-genome sequencing methods, and the creation of chromosome assemblies in recent years have opened up wide-ranging opportunities for studying the mechanisms of sex determination in plants. Using new technologies, it was confirmed that dioecy arose repeatedly, in different ways, and in evolutionarily distant species [4]. The events associated with the emergence of dioecy have occurred hundreds or even thousands of times. Reverse events (a return to monoecy or hermaphroditism) have also occurred [5][6][7]. Consequently, it is necessary to study the sex determination mechanisms in each individual case of dioecy occurrence. Additionally, data obtained on one species cannot be interpolated to other, even phylogenetically close species. At the same time, species with dioecious flowers are quite often (about in 20% of cases) cultivated as agricultural crops [8]. The dioecy of agricultural crops must be considered in industrial cultivation. On the one hand, dioecy can be beneficial for growers, since all flowers of female plants produce fruit and the plants do not waste resources on "less profitable" male flowers. On the other hand, dioecy can create problems. For example, the sex of plants is often unknown at the juvenile stage of ontogenesis. However, growers need to know the sex of the plants so that the ratio of female to male plants is optimal for efficient pollination when setting up a nursery.

2. Features of the Dioecious Crop Cultivation

2.1. Sex Chromosomes and Sex Determination in Herbaceous Crops

2.1.1. Asparagus

This is one of the first dioecious plants in which sex determination was studied [9]. Asparagus plants are diploid, $2n = 2x = 20$, and their sex chromosomes are homomorphic and do not visually differ from each other [10][11]. The female plants are homogametic and have XX chromosomes (also known as genotype mm) in their karyotype, while the male plants are heterogametic (XY\Mm karyotype). At the same time, the homogametic karyotype YY (MM), the so-called supermale, is viable, has fertile pollen, and is androdioecious in phenotype—that is, it has male and hermaphrodite flowers. The viability of the YY homozygote indicates the early stages of the dioecy evolution path with the young Y chromosome [12]. The mechanism of sex regulation in asparagus is one of the most studied among dioecious plants. A small M locus (835 kb in size) located on homomorphic sex chromosomes is responsible for sex determination in this species [13]. The development of male and female reproductive organs requires the presence of two key genes located on the sex chromosomes. These are the gene that suppresses female function (SOFF) and the gene that promotes the development and functioning of the tapetum (aspTDF1). Transcriptome analysis revealed more than 500 differently expressed genes in male and female plants [14].

Asparagus DNA methylation was studied using whole-genome BS sequencing (bisulfite sequencing) [15]. A difference was found in the DNA methylation contained in male and female flowers. However, no difference in methylation was found in the genes responsible for the formation of flowers.

2.1.2. Sorrel

The *Rumex* genus is one of the model groups for studying sex determination in plants [16]. Therefore, sex determination and sex chromosomes are widely studied in a number of *Rumex* species. Among these species, there are various systems for determining sex and sex chromosomes (completely hermaphroditic species, monoecious species with XY chromosomes and an active Y chromosome, and species with X:A balance sex determination, including multichromosomal species with the XY1Y2 system). Species such as *R. acetosa*, *R. acetosella*, *R. hastatalus*, and *R. suffruticosus* are dioecious and widely studied. The *R. acetosa* karyotype consists of 12 autosomes and sex chromosomes (XX in female plants and the XY1Y2 multichromosomal system in male plants) [17][18][19][20]. The sex chromosomes are the largest in the karyotype. Two Y chromosomes contain 26% of the total DNA. Sorrel Y chromosomes are heterochromatic and rich in repetitive DNA sequences [21]. In 1999, a group of tandem repeats specific to male sex chromosomes were isolated and called RAYSI (*Rumex acetosa* Y-chromosome-specific I) [22]. After that, a number of satellite DNA repeats specific for sorrel Y chromosomes were described. The repeat sequences of RAYSII and RAYSIII are AT-rich and show about 60% homology with RAYSI [17]. Repeat satDNA RAE180 is localized on two Y chromosomes and is also present on a pair of autosomes. [23].

2.1.3. Spinacia

Currently, the spinach genome has been sequenced, including by PacBio and Hi-C scaffolding. The sex determination region (SDR) was determined; it is located on chromosome 1 or 4 (according to other sources) [24]. It has been shown that the size of the SDR is 24.1 Mb on the Y chromosome and 13 Mb on the X chromosome. At

the same time, the SDR on the Y chromosome contains inversions (14.1 Mb) and duplications (10 Mb) that are specific for male plants [25].

Studies have shown differences in morphological traits between male, female, and monoecious spinach plants. Vitale et al. (1985) showed that male and female plants significantly differ in height and the biomass of roots and the vegetative part while monoecious (cosexual) plants differ in the studied traits between both male and female plants [26]. Another study revealed differences in the response of spinach plants of different sexes (for example, in yield) when fertilized with selenium. Female plants were more productive and contained fewer heavy metals than male plants when selenate was applied. In addition, the contents of vitamin C, chlorophyll and carotenes increased in female plants [27].

2.1.4. Hemp

Hemp is one of the few annual agricultural herbaceous plants that are dioecious in nature. In addition, male and female cannabis plants differ in habit. The dioecy of hemp seriously affects its agricultural practices. Male and female plants differ in ripening time. Female plants are leafier, have more lignified cell walls due to the better (compared with male plants) accumulation of lignin, bloom later, and stay green for longer [28]. These features lead to different levels of fiber quality when growing hemp as a textile crop. Cultivation technology requires expensive and time-consuming manual weeding. When growing hemp for oil, more female plants and fewer male pollinating plants are required. When growing female cannabis plants for medicinal purposes, pollination should not be allowed, since unpollinated flowers are characterized by a higher THC content. In this case, the presence of male plants in the population is undesirable. In this regard, the cultivation of monoecious varieties is more cost-effective [29]. The nature of hemp's monoecy is not yet fully understood. A number of studies have shown that monoecious varieties are female in their genetic nature and have an XX karyotype [30] and a genome size similar to female plants [31]. Male plants have 18 autosomes and XY chromosomes in their karyotype. At the same time, sex is determined according to the balance mechanism.

To recognize the sex of plants at any stage of cultivation, molecular genetic markers have been developed in hemp [32][33][34]. However, due to the annual nature of the culture, it seems more promising to create monoecious varieties. However, the ratio of male to female flowers in monoecious plants, as well as the sex of cannabis plants in general, is a very unstable trait. There have been cases of the appearance of flowers of the opposite sex in dioecious plants, as well as sex changes under the influence of environmental factors [35][36][37][38]. In this regard, a detailed understanding of the mechanisms of the occurrence of dioecy in hemp, as well as the potential opportunity to influence this trait, is of undoubted agronomic importance.

2.1.5. Betel

Betel rarely blooms, but there have been reports of economically significant differences in the varieties of male and female plants [39]. There is very little information about the chromosome numbers and the level of ploidy of this species. The main number of chromosomes of this species is $x = 13$; however, polyploid rows are reported in this culture. Apparently, plants with a high level of ploidy are mainly grown. It was shown that female plants are

tetraploid and have 52 ($2n = 4x = 52$) chromosomes in their karyotype, while male plants are triploid and have 39 chromosomes ($2n = 3x = 39$) [40]. Sex markers have been created for betel plants, mainly to accompany the breeding process, which is currently not very developed due to the complexity in the biology of the culture [39][41][42].

2.1.6. Yams

Yams (*Dioscorea rotundata*) are one of the most important crops in a number of countries, primarily in the African continent, where Nigeria, Ghana, Côte d'Ivoire, and Benin are considered leaders in the production of yams [43]. The plant is grown for the production of tubers, which are then used for food. Normally, *D. rotundata* is a dioecious species; however, cases of monoecious occurrence have been observed. Despite the huge role of this crop in African countries, the selection of this species is difficult, largely due to its dioecious nature and problems with flowering (it is predominantly a vegetatively propagated crop) [44][45]. In addition, a change in the sex of plants under the influence of the environment is repeatedly observed during the growing season, which also complicates the breeding process of this crop [46]. The identification of sex chromosomes in yams is also difficult [47]. However, using modern sequencing techniques, the ZZ/ZW sex determination system has been demonstrated [47]. In 2020, the first yam genome obtained as long reads using the Oxford Nanopore Technologies technique was presented [48].

2.2. Sex Chromosomes and Sex Determination of Perennial Tree Crops Grown for Fruits

Most dioecious species are perennial tree crops [49]. One of the differences between perennial tree crops and annual and perennial herbaceous crops is a long juvenile period—the reproductive stage often only occurs by the age of 5–8. This feature causes difficulties in growing such plants, since most perennial tree crops are cultivated for the fruits and seeds that appear from the ovary located on the female plants. Revealing the mechanisms of sex determination and the early diagnosis of the sex of such crops are critical tasks for production and breeding. The accumulation of repetitive DNA sequences in sex chromosomes may contribute to the development of sex-associated molecular markers, which is especially important for agricultural plants with a long juvenile period. In cultures such as papaya (*Carica papaya* L.), lychee (*Litchi chinensis* Sonn.), rambutan (*Nephelium lappaceum* L.), and longan (*Euphoria longan* Steud.), the sex determination system is complex. There are not only dioecious plants but also hermaphroditic, gynodioecious, and monoecious plants in the population.

2.2.1. Papaya

The papaya sex chromosomes were the second to be fully sequenced after the human sex chromosomes [50]. They are evolutionarily young and outwardly practically homomorphic [51][52]. One of the features of papaya is the presence of hermaphroditic plants—in fact, it is a trioecious species, not a dioecious species. There are two types of Y chromosomes in this species. The first type is represented by the Y chromosome, which is found in male plants. The second type is represented by the Yh chromosome, which causes the hermaphroditism of flowers. At the same time, the YY, YYh, and YhYh genotypes are lethal [53][54]. The non-recombining region on the Y chromosome of papaya was formed as a result of two inversions of retrotransposons and is 8.1 Mb, while the size

of the analogous region of the X chromosome is 3.5 Mb. All genes in non-recombining regions have been annotated [55]. Wild papaya is generally dioecious but cultivated as a rule of the gynodioecy cultivar [56]. It has been shown that evolutionarily hermaphroditic plants have been fixed for about 4000 years during domestication [57]. In addition to differences in the ease of cultivation (when growing hermaphroditic plants, male pollinating plants that do not produce fruits are not needed) between female and hermaphroditic plants, there is dimorphism in the shape of the fruits. Fruits from hermaphrodite flowers are more elongated and commercial producers prefer them, rejecting the more rounded fruits of female plants [58]. However, plants can change the sex of their flowers during the growing process. Hermaphroditic flowers can stop the development of carpels, turning into functionally male flowers under the influence of environmental factors such as drought or high temperatures [58][59][60].

2.2.2. *Vitis*

It has been shown that the emergence of hermaphroditic forms occurred about 6000–8000 years ago at the time of the domestication of wild grapes [5][61][62]. Like papaya, grapes have three sex-determining loci—Y (M) is male, X (F) is female, and Yh (H) is hermaphroditic. Unlike papaya, the HH, HM, or MM genotypes are viable in grapes. Three sex-linked grape genes (*VviPLATZ*, *VviFSEX*, and *APRT3*) have been described, and the expression of each differs in hermaphroditic plants [62].

2.2.3. *Diospyros*

It is an autopolyploid species with $2n = 90$ or 135 chromosomes ($2n = 6x$; $2n = 9x$; $x = 15$) [63]. Despite the presence of at least one Y chromosome in the karyotype, this species is usually monoecious or has completely female plants, with rare male flowers [64]. Recent studies have shown that in the dioecious diploid species *D. lotus* L. (a close relative of *D. kaki*), the *OGI* gene located on the Y chromosome is responsible for sex formation. It encodes a small RNA that targets the autosomal *MeG1* gene, regulating anther fertility in a dose-dependent manner. In polyploid species (*D. kaki*, in particular), there is an insertion of a retroelement, named Kali, in the promoter region of the *OGI* gene that prevents the synthesis of small RNA and promotes the development of monoecy.

2.2.4. *Pistachio*

Pistachio (*Pistacia vera* L.) is an economically significant crop for Turkey, Iran, the USA, and a number of other countries [43]. It is a dioecious plant species, where females are needed in production but male plants are needed for pollination. There are also monoecious cultivars [65][66]. From the point of view of the evolution of sex and sex chromosomes, this crop is interesting regarding the ZZ/ZW ($2n = 30$) system of sex chromosomes [67]—that is, the heterogametic sex of the pistachio is female, like birds or some insect species. This system of sex chromosomes is rare in plants. A recent study on sequencing and assembling the genomes of the male and female plants showed that the pistachio W sex chromosome arose from three successive inversions [68].

2.2.5. *Hippophae*

he sea buckthorn karyotype consists of 24 chromosomes (22 autosomes and a pair of X/Y sex chromosomes) [69]. In the genome (about 2.6 pg in size), researchers have observed a uniquely large number of satellites that may turn out to be good cytogenetic markers [69][70][71]. The development of molecular markers to determine the sex of sea buckthorn in the early stages of cultivation has been quite successful, but the experiments have shown the unstable operation of these markers, which may be due to sea buckthorn's polymorphism [72][73][74]. Morphologically, male and female plants can only be distinguished by their generative buds after flowering age has been reached. At the same time, mainly female plants are needed in agricultural production. Additionally, breeding is carried out independently for male pollinating plants and female plants [75]. These facts demonstrate the need for a deeper study of the genetic determination of the sex in sea buckthorn.

2.2.6. *Humulus*

Humulus lupulus L. is a dioecious woody vine of the Cannabaceae family that is of great importance in brewing. Hops are grown for the female buds, which contain substances that create the characteristic taste, aroma and bitterness of beer. Due to the popularity of this drink, hops are cultivated on every continent except Antarctica. The hop karyotype consists of 18 autosomes and a pair of sex chromosomes (XX/XY). The Y chromosome is the smallest in the karyotype, which may indicate its degeneration and evolutionary antiquity [76][77][78]. In commercial cultivation, the female varieties are vegetatively propagated. A very important task is to prevent the pollination of inflorescences, since setting seeds spoils the taste of beer [79]. Hop is a wind-pollinated crop with light pollen, so just one male plant in the area can cause a lot of economic damage [80]. To prevent pollination, all male plants in a nursery and nearby wild populations must be eradicated. As a part of this procedure, molecular genetic markers are used to identify sex in the early stages of ontogenesis [81][82][83]. In hop production, seedless triploid varieties are also cultivated. They are more productive and have a high growth rate [84][85].

2.2.7. Date Palm

The date palm ($2n = 2x = 32$) is one of the oldest dioecious crops. As with other crops grown for fruit, its production primarily requires female date palm plants. Males are required in smaller numbers for pollination (a ratio of 1:20 is used, i.e., one male plant pollinates 20 females). At the same time, the date palm blooms in the 5–6th year of cultivation—that is, it is not possible to morphologically detect the sex of a tree before this age. Many molecular markers have been developed to identify the sex of the date palm in the early stages of ontogenesis. The genetic mechanisms of sex determination in the date palm have been recently identified [86][87][88][89][90]. An association of two genes, presumably associated with sex, was found on chromosome 12 [91].

2.2.8. *Myristica*

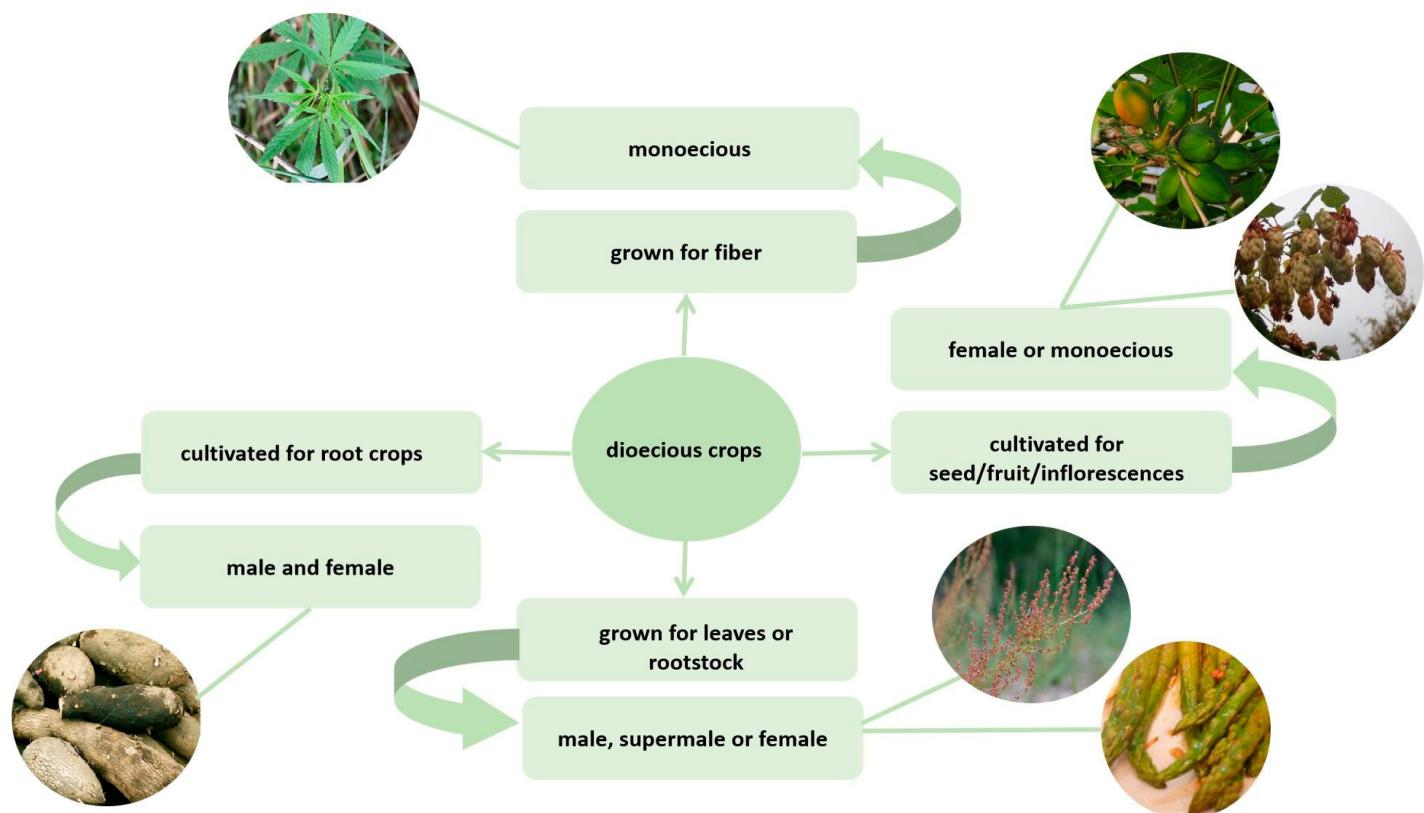
Nutmeg (*Myristica fragrans* Houtt., $2n = 38$ of 44, according to different communications [92]) is a tropical evergreen tree grown in Asia and Africa for its fruits. It is widely used around the world as a spice [93]. The world production of nutmeg is estimated at 139,000 tons [43]. In agricultural production, female plants are needed more. Attempts to create molecular markers have been made to identify sex in the early stages of vegetation [94][95][96]. However, sex chromosomes in *M. fragrans* have not been found.

2.2.9. *Actinidia*

Morphologically, the flowers look bisexual, but female plants form flowers with sterile pollen while male plants have an underdeveloped and non-functioning pistil [97]. However, some species sometimes have bisexual flowers. Hermaphroditic flowers have been observed in *A. arguta*, *A. chinensis*, *A. deliciosa*, and *A. eriantha* Benth. [98]. Kiwifruit has only been cultivated for just over 100 years, but it has achieved great popularity around the world, and its production is about 4 million tons per year [43]. Polyploidy is widespread in species of the *Actinidia* genus [99]. Chromosomal numbers range from $2n = 58$ to $2n = 174$ ($x = 29$) [100]. Polyploidy does not appear to affect sex in kiwifruit. Male plants have at least one Y chromosome in the karyotype, and female plants have XX [101][102]. The sex chromosomes are small and homomorphic, with a small SDR [103][104]. The mechanism of sex determination has been widely studied. This mechanism is based on two genes (the Shy Girl gene (SyGI), the dominant suppressor of carpel development, and the Friendly Boy gene (FrBy), expressed in tapetum cells) [105]. Currently, the kiwifruit genome is actively being studied, and genetic maps and molecular markers are being created to aid the breeding of this crop [106][107][108][109]. However, hermaphroditism can be determined by additional genetic factors, which creates difficulties for sex determination based on molecular markers [109].

2.2.10. *Ilex*

In this species, sexual dimorphism has been repeatedly shown in the intensity of photosynthesis, leaf area, and higher mortality of female plants. Thus, male plants have a larger leaf area than female plants, and the intensity of photosynthesis is higher in female plants, while the leaves of male plants make the taste of the drink less bitter [110][111][112][113]. Like *Actinidia*, *I. paraguariensis* is functionally dioecious, with morphologically hermaphroditic flowers, and one of the sexes is sterile or abortive [114]. From a genetic point of view, this species is poorly studied. Heteromorphic sex chromosomes have not been identified. Molecular markers for marker-associated selection and sex detection have been developed [115][116][117].


2.2.11. Chinese Bayberry

Chinese bayberry (*Morella rubra* Lour.) is widely cultivated in China for fruits. It is the only edible species of the Myricaceae family [118]. The chromosome number is $2n = 16$, and the heterogametic sex is presumably female (ZW chromosome system) [119]. A comparison of the sequenced genomes of male and female plants revealed a small region (59 kb) on chromosome 8 that is specific to female plants [120]. The differential expression of some genes, presumably associated with the development of sex in this species, was also shown [121].

3. Conclusions

According to **Figure 1**, dioeciousness has a greater or lesser effect on crop cultivation. It is most noticeable on fruit trees. Gardeners strive to grow as many female plants as possible due to the fact that females produce the target product. However, male plants are necessary for pollination and cannot be completely abandoned. However, the maximum effective sex ratio differs depending on the plant and the type of pollination (insect pollination or wind pollination). For example, sea buckthorn shows the best yield in a planting pattern where one mixed row of male

and female plants falls between two rows of female plants (in a mixed row, male plants comprise one in five plants) [122]. The role of the pollinator in the formation of economically valuable traits cannot be directly assessed. In addition to dioecy, a long juvenile period also affects the breeding of tree crops. Half of the population during seed propagation comprises male plants. This fact leads to the loss of labor, time, and other resources that are spent on growing males before flowering. Therefore, sex detection using molecular markers is often used in the cultivation of perennial fruit crops. Additionally, the use of monoecious and parthenocarpic forms may be relevant in such cases. At the same time, male plants are only used in the breeding of some other plants, such as hops. The pollination of industrial plantings is unacceptable. The spatial isolation of hop plantings and the early complete culling of male plants is necessary. In plants in which the vegetative part is used, the role of dioecy is not so obvious and it seems that plants of any sex can be used. However, the different maturation times of male and female plants, as in hemp, or the different yields of male and female plants, as in asparagus, can shift the interest of producers to monoecious forms or plants of a specific sex. Thus, researchers should consider the final purpose of the cultivated crop, as well as its biological characteristics in general, not only focusing on the genes for the formation of pistils or stamens. Humans have a significant impact on the entire environment, and dioecious cultures are no exception.

Figure 1. The use of dioecious plants depending on its sex.

References

1. Renner, S.S. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. *Am. J. Bot.* 2014, 101, 1588–1596.
2. Bachtrog, D.; Mank, J.E.; Peichel, C.L.; Kirkpatrick, M.; Otto, S.P.; Ashman, T.-L.; Hahn, M.W.; Kitano, J.; Mayrose, I.; Ming, R.; et al. Sex Determination: Why So Many Ways of Doing It? *PLoS Biol.* 2014, 12, e1001899.
3. Vyskot, B.; Hobza, R. The genomics of plant sex chromosomes. *Plant Sci.* 2015, 236, 126–135.
4. Montalvão, A.P.L.; Kersten, B.; Fladung, M.; Müller, N.A. The Diversity and Dynamics of Sex Determination in Dioecious Plants. *Front. Plant Sci.* 2021, 11, 580488.
5. Picq, S.; Santoni, S.; Lacombe, T.; Latreille, M.; Weber, A.; Ardisson, M.; Ivorra, S.; Maghradze, D.; Arroyo-Garcia, R.; Chatelet, P.; et al. A small XY chromosomal region explains sex determination in wild dioecious *V. vinifera* and the reversal to hermaphroditism in domesticated grapevines. *BMC Plant Biol.* 2014, 14, 229.
6. Schaefer, H.; Renner, S.S. A three-genome phylogeny of *Momordica* (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia. *Mol. Phylogenetics Evol.* 2010, 54, 553–560.
7. Weiblen, G.D. Phylogenetic relationships of functionally dioecious *FICUS* (Moraceae) based on ribosomal DNA sequences and morphology. *Am. J. Bot.* 2000, 87, 1342–1357.
8. Testolin, R.; Pilkington, S.M.; Akagi, T. Editorial: Dioecy in Fruit Crops: The Gender Rise and Decline and Its Agronomic Impact. *Front. Plant Sci.* 2021, 12, 719588.
9. Flory, W.S. Genetic and cytological investigations on *Asparagus officinalis* L. *Genetics* 1932, 17, 432–467.
10. Deng, C.-L.; Qin, R.-Y.; Wang, N.-N.; Cao, Y.; Gao, J.; Gao, W.-J.; Lu, L.-D. Karyotype of asparagus by physical mapping of 45S and 5S rDNA by FISH. *J. Genet.* 2012, 91, 209–212.
11. Löptien, H. Giemsa-Banden auf Mitosechromosomen des Spargels (*Asparagus officinalis* L.) und des Spinats (*Spinacia oleracea* L.). *Z Pflanz.* 1976, 76, 225–230.
12. Ming, R.; Bendahmane, A.; Renner, S.S. Sex Chromosomes in Land Plants. *Annu. Rev. Plant Biol.* 2011, 62, 485–514.
13. Harkess, A.; Zhou, J.; Xu, C.; Bowers, J.E.; Van der Hulst, R.; Ayyampalayam, S.; Mercati, F.; Riccardi, P.; McKain, M.R.; Kakrana, A.; et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. *Nat. Commun.* 2017, 8, 1–10.
14. Harkess, A.; Mercati, F.; Shan, H.; Sunseri, F.; Falavigna, A.; Leebens-Mack, J. Sex-biased gene expression in dioecious garden asparagus (*Asparagus officinalis*). *New Phytol.* 2015, 207, 883–892.

15. Li, S.-F.; Lv, C.-C.; Lan, L.-N.; Jiang, K.-L.; Zhang, Y.-L.; Li, N.; Deng, C.-L.; Gao, W.-J. DNA methylation is involved in sexual differentiation and sex chromosome evolution in the dioecious plant garden asparagus. *Hortic. Res.* 2021, 8, 198.
16. Cuñado, N.; Navajas-Pérez, R.; de la Herrán, R.; Rejón, C.R.; Rejón, M.R.; Santos, J.L.; Garrido-Ramos, M.A. The evolution of sex chromosomes in the genus *Rumex* (Polygonaceae): Identification of a new species with heteromorphic sex chromosomes. *Chromosom. Res.* 2007, 15, 825–833.
17. Mariotti, B.; Manzano, S.; Kejnovský, E.; Vyskot, B.; Jamilena, M. Accumulation of Y-specific satellite DNAs during the evolution of *Rumex acetosa* sex chromosomes. *Mol. Genet. Genom.* 2008, 281, 249–259.
18. Rejón, C.R.; Jamilena, M.; Ramos, M.G.; Parker, J.S. Cytogenetic and molecular analysis of the multiple sex chromosome system of *Rumex acetosa*. *Heredity* 1994, 72, 209–215.
19. Takenaka, Y. On the Special Autosomes with Reference to the Sex-determination of *Rumex acetosa* L. *Cytologia* 1937, 2, 995–1002.
20. Kihara, H.; Ono, T. The sex-chromosomes of *rumex acetosa*. *Mol. Genet. Genom.* 1925, 39, 1–7.
21. Wilby, A.S.; Parker, J.S. Recurrent patterns of chromosome variation in a species group. *Heredity* 1988, 61, 55–62.
22. Shibata, F.; Hizume, M.; Kuroki, Y. Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant *Rumex acetosa*. *Chromosoma* 1999, 108, 266–270.
23. Shibata, F.; Hizume, M.; Kuroki, Y. Molecular cytogenetic analysis of supernumerary heterochromatic segments in *Rumex acetosa*. *Genome* 2000, 43, 391–397.
24. She, H.; Xu, Z.; Zhang, H.; Li, G.; Wu, J.; Wang, X.; Li, Y.; Liu, Z.; Qian, W. Identification of a male-specific region (MSR) in *Spinacia oleracea*. *Hortic. Plant J.* 2021, 7, 341–346.
25. She, H.; Liu, Z.; Xu, Z.; Zhang, H.; Cheng, F.; Wang, X.; Qian, W. The female (XX) and male (YY) genomes provide insights into the sex determination mechanism in spinach. *bioRxiv* 2020.
26. Vitale, J.J.; Freeman, D.C. Secondary sex characteristics in *Spinacia oleracea* L.: Quantitative evidence for the existence of at least three sexual morphs. *Am. J. Bot.* 1985, 72, 1061–1066.
27. Golubkina, N.A.; Kosheleva, O.V.; Krivenkov, L.V.; Dobrutskaya, H.G.; Nadezhkin, S.; Caruso, G. Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (*Spinacia oleracea* L.) as affected by selenium form. *Sci. Hortic.* 2017, 225, 350–358.
28. Faux, A.-M.; Draye, X.; Lambert, R.; D'Andrimont, R.; Raulier, P.; Bertin, P. The relationship of stem and seed yields to flowering phenology and sex expression in monoecious hemp (*Cannabis sativa* L.). *Eur. J. Agron.* 2013, 47, 11–22.

29. Baldini, M.; Ferfua, C.; Piani, B.; Sepulcri, A.; Dorigo, G.; Zuliani, F.; Danuso, F.; Cattivello, C. The Performance and Potentiality of Monoecious Hemp (*Cannabis sativa L.*) Cultivars as a Multipurpose Crop. *Agronomy* 2018, 8, 162.

30. Razumova, O.V.; Alexandrov, O.S.; Divashuk, M.G.; Sukhorada, T.I.; Karlov, G.I. Molecular cytogenetic analysis of monoecious hemp (*Cannabis sativa L.*) cultivars reveals its karyotype variations and sex chromosomes constitution. *Protoplasma* 2015, 253, 895–901.

31. Faux, A.-M.; Berhin, A.; Dauguet, N.; Bertin, P. Sex chromosomes and quantitative sex expression in monoecious hemp (*Cannabis sativa L.*). *Euphytica* 2013, 196, 183–197.

32. Mandolino, G.; Carboni, A.; Forapani, S.; Faeti, V.; Ranalli, P. Identification of DNA markers linked to the male sex in dioecious hemp (*Cannabis sativa L.*). *Theor. Appl. Genet.* 1999, 98, 86–92.

33. Törjék, O.; Buchnera, N.; Kiss, E.; Homoki, H.; Finta-Korpelová, Z.; Bócsa, I.; Nagy, I.; Heszky, L.E. Novel male-specific molecular markers (MADC5, MADC6) in hemp. *Euphytica* 2002, 127, 209–218.

34. Mandolino, G.; Ranalli, P. The Applications of Molecular Markers in Genetics and Breeding of Hemp. *J. Ind. Hemp* 2002, 7, 7–23.

35. Moliterni, V.M.; Cattivelli, L.; Ranalli, P.; Mandolino, G. The sexual differentiation of *Cannabis sativa L.*: A morphological and molecular study. *Euphytica* 2004, 140, 95–106.

36. Faux, A.-M.; Draye, X.; Flamand, M.-C.; Occre, A.; Bertin, P. Identification of QTLs for sex expression in dioecious and monoecious hemp (*Cannabis sativa L.*). *Euphytica* 2016, 209, 357–376.

37. Heslop-Harrison, J.; Heslop-Harrison, Y. Studies on Flowering-Plant Growth and Organogenesis: III. Leaf Shape Changes Associated with Flowering and Sex Differentiation in *Cannabis Sativa*. In Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science; Royal Irish Academy: Dublin, Ireland, 1957; Volume 59, pp. 257–283.

38. Adal, A.M.; Doshi, K.; Holbrook, L.; Mahmoud, S.S. Comparative RNA-Seq analysis reveals genes associated with masculinization in female *Cannabis sativa*. *Planta* 2021, 253, 1–17.

39. Samantaray, S.; Phurailatpam, A.; Bishoyi, A.K.; Geetha, K.A.; Maiti, S. Identification of sex-specific DNA markers in betel vine (*Piper betle L.*). *Genet. Resour. Crop. Evol.* 2011, 59, 645–653.

40. Phurailatpam, A.K.; Geetha, K.A.; Maiti, S. Ploidy distinction in male and female plants of betelvine (*Piper betle L.*): A study by flow cytometry. *Genet. Resour. Crop. Evol.* 2018, 65, 1565–1570.

41. Das, S.; Parida, R.; Sandeep, I.S.; Nayak, S.; Mohanty, S. Biotechnological intervention in betelvine (*Piper betle L.*): A review on recent advances and future prospects. *Asian Pac. J. Trop.*

Med. 2016, 9, 938–946.

42. Sheeja, T.E.; Bindu, K.H.; Anto, P.; Dhanya, K.; Siju, S.; Kumar, T.V. A SCAR marker based method for sex determination in dioecious betel vine (*Piper betle*). *Ind. J. Agric. Sci.* 2013, 83, 1409–1410.

43. Food and Agriculture Organization of the United Nations. Available online: <https://www.fao.org/faostat/en/#data/QCL/visualize> (accessed on 25 October 2022).

44. Denadi, N.; Gandonou, C.; Missihoun, A.A.; Zoundjihékpon, J.; Quinet, M. Plant Sex Prediction Using Genetic Markers in Cultivated Yams (*Dioscorea rotundata* Poir.) in Benin. *Agronomy* 2020, 10, 1521.

45. Terauchi, R.; Kahl, G. Sex determination in *Dioscorea tokoro*, a wild yam species. In *Sex Determination in Plants*; Ainsworth, C.C., Ed.; BIOS Scientific Publishers: Oxford, UK, 1999; pp. 163–171.

46. Martin, F.W. Sex Ratio and Sex Determination in *Dioscorea*. *J. Hered.* 1966, 57, 95–99.

47. Tamiru, M.; Natsume, S.; Takagi, H.; White, B.; Yaegashi, H.; Shimizu, M.; Yoshida, K.; Uemura, A.; Oikawa, K.; Abe, A.; et al. Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. *BMC Biol.* 2017, 15, 1–20.

48. Sugihara, Y.; Darkwa, K.; Yaegashi, H.; Natsume, S.; Shimizu, M.; Abe, A.; Hirabuchi, A.; Ito, K.; Oikawa, K.; Tamiru-Oli, M.; et al. Genome analyses reveal the hybrid origin of the staple crop white Guinea yam (*Dioscorea rotundata*). *Proc. Natl. Acad. Sci. USA* 2020, 117, 31987–31992.

49. Renner, S.S.; Feil, J.P. Pollinators of tropical dioecious angiosperms. *Am. J. Bot.* 1993, 80, 1100–1107.

50. Liao, Z.; Yu, Q.; Ming, R. Development of male-specific markers and identification of sex reversal mutants in papaya. *Euphytica* 2017, 213, 1–12.

51. Charlesworth, D. Young sex chromosomes in plants and animals. *New Phytol.* 2019, 224, 1095–1107.

52. Yu, Q.; Hou, S.; Hobza, R.; Feltus, F.A.; Wang, X.; Jin, W.; Ming, R. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. *Mol. Genet. Genom.* 2007, 278, 177–185.

53. Ming, R.; Yu, Q.; Moore, P.H. Sex determination in papaya. *Semin. Cell Dev. Biol.* 2007, 18, 401–408.

54. Urasaki, N.; Tarora, K.; Shudo, A.; Ueno, H.; Tamaki, M.; Miyagi, N.; Adaniya, S.; Matsumura, H. Digital Transcriptome Analysis of Putative Sex-Determination Genes in Papaya (*Carica papaya*). *PLoS ONE* 2012, 7, e40904.

55. Wang, J.; Na, J.-K.; Yu, Q.; Gschwend, A.R.; Han, J.; Zeng, F.; Aryal, R.; VanBuren, R.; Murray, J.E.; Zhang, W.; et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. *Proc. Natl. Acad. Sci. USA* 2012, 109, 13710–13715.

56. Zhou, P.; Zhang, X.; Ma, X.; Yue, J.; Liao, Z.; Ming, R. Methylation related genes affect sex differentiation in dioecious and gynodioecious papaya. *Hortic. Res.* 2022, 9, uhab065.

57. VanBuren, R.; Zeng, F.; Chen, C.; Zhang, J.; Wai, C.M.; Han, J.; Aryal, R.; Gschwend, A.R.; Wang, J.; Na, J.-K.; et al. Origin and domestication of papaya Yh chromosome. *Genome Res.* 2015, 25, 524–533.

58. Lin, H.; Liao, Z.; Zhang, L.; Yu, Q. Transcriptome analysis of the male-to-hermaphrodite sex reversal induced by low temperature in papaya. *Tree Genet. Genomes* 2016, 12, 1–14.

59. Ramos, H.C.C.; Pereira, M.G.; Da Silva, F.F.; Viana, A.P.; Ferreguetti, G.A. Seasonal and genetic influences on sex expression in a backcrossed segregating papaya population. *Crop. Breed. Appl. Biotechnol.* 2011, 11, 97–105.

60. Martelletto, L.A.P.; Ribeiro, R.D.L.D.; Sudo-Martelletto, M.; Vasconcellos, M.A.D.S.; Pereira, M.B. Expressão da esterilidade feminina e da carpeloidia em mamoeiro sob diferentes ambientes de cultivo protegido. *Rev. Bras. Frutic.* 2011, 33, 1185–1193.

61. This, P.; Lacombe, T.; Thomas, M.R. Historical origins and genetic diversity of wine grapes. *Trends Genet.* 2006, 22, 511–519.

62. Badouin, H.; Velt, A.; Gindraud, F.; Flutre, T.; Dumas, V.; Vautrin, S.; Marande, W.; Corbi, J.; Sallet, E.; Ganofsky, J.; et al. The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. *Genome Biol.* 2020, 21, 1–24.

63. Tamura, M.; Tao, R.; Yonemori, K.; Utsunomiya, N.; Sugiura, A. Ploidy Level and Genome Size of Several *Diospyros* Species. *J. Jpn. Soc. Hortic. Sci.* 1998, 67, 306–312.

64. Akagi, T.; Kajita, K.; Kibe, T.; Morimura, H.; Tsujimoto, T.; Nishiyama, S.; Kawai, T.; Yamane, H.; Tao, R. Development of molecular markers associated with sexuality in *Diospyros lotus* L. and their application in *D. kaki* Thunb. *J. Jpn. Soc. Hortic. Sci.* 2013, 83, 214–221.

65. Kafkas, S.; Açı̄ar, İ.; Gözel, H. A project on developing monoecious pistachio (*Pistacia vera* L.) populations and determination of sex mechanism in *Pistacia*. *Options Méditerr* 2003, 63, 57–60.

66. Sheikhi, A.; Arab, M.M.; Brown, P.J.; Ferguson, L.; Akbari, M. Pistachio (*Pistacia* spp.) Breeding. In Advances in Plant Breeding Strategies: Nut and Beverage Crops; Springer: Cham, Switzerland, 2019; pp. 353–400.

67. Sola-Campoy, P.J.; Robles, F.; Schwarzacher, T.; Rejón, C.R.; De La Herrán, R.; Navajas-Pérez, R. The Molecular Cytogenetic Characterization of Pistachio (*Pistacia vera* L.) Suggests the Arrest

of Recombination in the Largest Heteropycnotic Pair HC1. *PLoS ONE* 2015, 10, e0143861.

68. Kafkas, S.; Ma, X.; Zhang, X.; Topçu, H.; Navajas-Pérez, R.; Wai, C.M.; Tang, H.; Xu, X.; Khodaeiaminjan, M.; Güney, M.; et al. Pistachio genomes provide insights into nut tree domestication and ZW sex chromosome evolution. *Plant Commun.* 2022, in press.

69. Puterova, J.; Razumova, O.; Martinek, T.; Alexandrov, O.; Divashuk, M.; Kubat, Z.; Hobza, R.; Karlov, G.; Kejnovsky, E. Satellite DNA and Transposable Elements in Seabuckthorn (*Hippophae rhamnoides*), a Dioecious Plant with Small Y and Large X Chromosomes. *Genome Biol. Evol.* 2017, 9, 197–212.

70. Yu, L.; Diao, S.; Zhang, G.; Yu, J.; Zhang, T.; Luo, H.; Duan, A.; Wang, J.; He, C.; Zhang, J. Genome sequence and population genomics provide insights into chromosomal evolution and phytochemical innovation of *Hippophae rhamnoides*. *Plant Biotechnol. J.* 2022, 20, 1257–1273.

71. Luo, X.; Liu, J.; He, Z. Oligo-FISH Can Identify Chromosomes and Distinguish *Hippophaë rhamnoides* L. *Taxa. Genes* 2022, 13, 195.

72. Sharma, A.; Zinta, G.; Rana, S.; Shirko, P. Molecular identification of sex in *Hippophae rhamnoides* L. using isozyme and RAPD markers. *For. Stud. China* 2010, 12, 62–66.

73. Persson, H.A.; Nybom, H. Genetic Sex Determination and RAPD Marker Segregation in the Dioecious Species Sea Buckthorn (*Hippophae Rhamnoides* L.). *Hereditas* 2004, 129, 45–51.

74. Zhou, W.; Wang, Y.; Zhang, G.; Luan, G.; Chen, S.; Meng, J.; Wang, H.; Hu, N.; Suo, Y. Molecular Sex Identification in Dioecious *Hippophae rhamnoides* L. via RAPD and SCAR Markers. *Molecules* 2018, 23, 1048.

75. Stobdan, T.; Mishra, G.P.; Yadav, A.; Chaurasia, O.P. Methods in Seabuckthorn Breeding. In *The Seabuckthorn Genome*; Springer: Cham, Switzerland, 2022; pp. 331–344.

76. Divashuk, M.; Alexandrov, O.; Kroupin, P.; Karlov, G. Molecular Cytogenetic Mapping of *Humulus lupulus* Sex Chromosomes. *Cytogenet. Genome Res.* 2011, 134, 213–219.

77. Karlov, G.; Danilova, T.; Horlemann, C.; Weber, G. Molecular cytogenetics in hop (*Humulus lupulus* L.) and identification of sex chromosomes by DAPI-banding. *Euphytica* 2003, 132, 185–190.

78. Neve, R.A. Sex Chromosomes in the Hop *Humulus lupulus*. *Nature* 1958, 181, 1084–1085.

79. Neve R., A. Hops; Chapman and Hall: London, UK, 1991.

80. Čerenak, A.; Kolenc, Z.; Sehur, P.; Whittock, S.P.; Koutoulis, A.; Beatson, R.; Buck, E.; Javornik, B.; Škof, S.; Jakše, J. New Male Specific Markers for Hop and Application in Breeding Program. *Sci. Rep.* 2019, 9, 14223.

81. Danilova, T.V.; Karlov, G.I. Application of inter simple sequence repeat (ISSR) polymorphism for detection of sex-specific molecular markers in hop (*Humulus lupulus L.*). *Euphytica* 2006, 151, 15–21.
82. Polley, A.; Ganal, M.W.; Seigner, E. Identification of sex in hop (*Humulus lupulus*) using molecular markers. *Genome* 1997, 40, 357–361.
83. Jakše, J.; Štajner, N.; Kozjak, P.; Čerenak, A.; Javornik, B. Trinucleotide microsatellite repeat is tightly linked to male sex in hop (*Humulus lupulus L.*). *Mol. Breed.* 2007, 21, 139–148.
84. Haunold, A. Cytology, Sex Expression, and Growth of a Tetraploid × Diploid Cross in Hop (*Humulus lupulus L.*) 1. *Crop. Sci.* 1971, 11, 868–871.
85. Beatson, R.A.; Ferguson, A.R.; Weir, I.E.; Graham, L.T.; Ansell, K.A.; Ding, H. Flow cytometric identification of sexually derived polyploids in hop (*Humulus lupulus L.*) and their use in hop breeding. *Euphytica* 2003, 134, 189–194.
86. Younis, R.A.; Ismail, O.M.; Soliman, S.S. Identification of sex-specific DNA markers for date palm (*Phoenix dactylifera L.*) using RAPD and ISSR techniques. *Res. J. Agric. Biol. Sci.* 2008, 4, 278–284.
87. Jaskani, M.J.; Awan, F.S.; Ahmad, S.; Khan, I.A. Maryam Development of molecular method for sex identification in date palm (*Phoenix dactylifera L.*) plantlets using novel sex-linked microsatellite markers. *3 Biotech* 2016, 6, 1–7.
88. Intha, N.; Chaiprasart, P. Sex determination in date palm (*Phoenix dactylifera L.*) by PCR based marker analysis. *Sci. Hortic.* 2018, 236, 251–255.
89. Elmeer, K.; Mattat, I. Marker-assisted sex differentiation in date palm using simple sequence repeats. *3 Biotech* 2012, 2, 241–247.
90. Dhawan, C.; Kharb, P.; Sharma, R.; Uppal, S.; Aggarwal, R.K. Development of male-specific SCAR marker in date palm (*Phoenix dactylifera L.*). *Tree Genet. Genomes* 2013, 9, 1143–1150.
91. Torres, M.F.; Mathew, L.S.; Ahmed, I.; Al-Azwani, I.K.; Krueger, R.; Rivera-Nuñez, D.; Mohamoud, Y.A.; Clark, A.G.; Suhre, K.; Malek, J.A. Genus-wide sequencing supports a two-locus model for sex-determination in *Phoenix*. *Nat. Commun.* 2018, 9, 1–9.
92. Nair, R.R. Chromosome number analysis in different sex types and open-pollinated seedlings of nutmeg (*Myristica fragrans* Houtt.). *J. Plant. Crops* 2019, 47, 197–201.
93. Olajide, O.A.; Ajayi, F.F.; Ekhelar, A.I.; Awe, S.O.; Makinde, J.M.; Alada, A.A. Biological effects of *Myristica fragrans* (nutmeg) extract. *Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv.* 1999, 13, 344–345.
94. Shaanker, U. Identification of sex-specific DNA markers in the dioecious tree, nutmeg (*Myristica fragrans* Houtt.). *Noticiario de Recursos Fitogenéticos* 2000.

95. Mintah, F.D. Sex Determination in Nutmeg Seedlings Using Scar Primers. *J. Hortic. Plant Res.* 2018, 3, 40–47.

96. Nikam, D.P.; Ingale, P.C.; Gokhale, N.B.; Lajurkar, V.G. Sex Determination in Nutmeg (*Myristica fragrance* Hott.) by using RAPD Markers. *Indian Hortic. J.* 2016, 6, 148–149.

97. Mcneilage, M.A. Gender variation in *Actinidia deliciosa*, the kiwifruit. *Sex. Plant Reprod.* 1991, 4, 267–273.

98. Ferguson, A.R. Kiwifruit: The wild and the cultivated plants. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2013; Volume 68, pp. 15–32.

99. Ferguson, A.R.; Huang, H. Genetic resources of kiwifruit: Domestication and breeding. *Hortic. Rev.* 2007, 33, 1–121.

100. Yan, G.; Yao, J.; Ferguson, A.R.; Mcneilage, M.A.; Seal, A.G.; Murray, B.G. New reports of chromosome numbers in *Actinidia* (Actinidiaceae). *N. Z. J. Bot.* 1997, 35, 181–186.

101. Gill, G.P.; Harvey, C.F.; Gardner, R.C.; Fraser, L.G. Development of sex-linked PCR markers for gender identification in *Actinidia*. *Theor. Appl. Genet.* 1998, 97, 439–445.

102. Seal, A.G.; Ferguson, A.R.; De Silva, H.N.; Zhang, J.-L. The effect of 2n gametes on sex ratios in *Actinidia*. *Sex. Plant Reprod.* 2012, 25, 197–203.

103. Fraser, L.G.; Tsang, G.K.; Datson, P.M.; De Silva, H.N.; Harvey, C.F.; Gill, G.P.; Crowhurst, R.N.; Mcneilage, M.A. A gene-rich linkage map in the dioecious species *Actinidia chinensis* (kiwifruit) reveals putative X/Y sex-determining chromosomes. *BMC Genom.* 2009, 10, 102.

104. He, Z.-C.; Li, J.Q.; Cai, Q.; Wang, Q. The cytology of *Actinidia*, *Saurauia* and *Clematoclethra* (Actinidiaceae). *Bot. J. Linn. Soc.* 2005, 147, 369–374.

105. Akagi, T.; Henry, I.M.; Ohtani, H.; Morimoto, T.; Beppu, K.; Kataoka, I.; Tao, R. A Y-Encoded Suppressor of Feminization Arose via Lineage-Specific Duplication of a Cytokinin Response Regulator in Kiwifruit. *Plant Cell* 2018, 30, 780–795.

106. Zhang, Q.; Liu, C.; Liu, Y.; VanBuren, R.; Yao, X.; Zhong, C.; Huang, H. High-density interspecific genetic maps of kiwifruit and the identification of sex-specific markers. *DNA Res.* 2015, 22, 367–375.

107. Shirkot, P.; Sharma, D.R.; Mohapatra, T. Molecular identification of sex in *Actinidia deliciosa* var. *deliciosa* by RAPD markers. *Sci. Hortic.* 2002, 94, 33–39.

108. Hale, I.; Melo, A.; Gustafson, H. Sex-linked molecular markers for two cold-hardy kiwifruit species, *Actinidia arguta* and *A. kolomikta*. *Eur. J. Hortic. Sci.* 2018, 83, 236–246.

109. Chłosta, I.; Kwolek, D.; Sliwinska, E.; Góralski, G.; Popielarska-Konieczna, M. Sex-Linked Molecular Markers Identify Female Lines in Endosperm-Derived Kiwifruit Callus and in

Regenerants. *Plants* 2021, 10, 526.

110. Rakocevic, M.; Medrado, M.; Martim, S.; Assad, E. Sexual dimorphism and seasonal changes of leaf gas exchange in the dioecious tree *Ilex paraguariensis* grown in two contrasted cultivation types. *Ann. Appl. Biol.* 2009, 154, 291–301.

111. Gaiad, S.; Rakocevic, M.; Reissmann, C.B. N sources affect growth, nutrient content, and net photosynthesis in maté (*Ilex paraguariensis* St. Hil.). *Braz. Arch. Biol. Technol.* 2006, 49, 689–697.

112. Rakocevic, M.; Costes, E.; Assad, E. Structural and physiological sexual dimorphism estimated from three-dimensional virtual trees of yerba-mate (*Ilex paraguariensis*) is modified by cultivation environment. *Ann. Appl. Biol.* 2011, 159, 178–191.

113. Rakocevic, M.; Medrado, M.J.S. Quality of yerba-mate leaves originating from male and female plants. *Pesqui. Florest. Bras.* 2007, 54, 71–83.

114. Gottlieb, A.M.; Poggio, L. Genomic screening in dioecious “yerba mate” tree (*Ilex paraguariensis* A. St. Hill., Aquifoliaceae) through representational difference analysis. *Genetica* 2010, 138, 567–578.

115. Golan-Goldhirsch, A.; Jones, R.; Rowland, L. AFLP markers for sex determination in an *ilex* species. *Acta Hortic.* 2001, 546, 591–595.

116. Gauer, L.; Cavalli-Molina, S. Genetic variation in natural populations of maté (*Ilex paraguariensis* A. St.-Hil., Aquifoliaceae) using RAPD markers. *Heredity* 2000, 84, 647–656.

117. Torimaru, T.; Tani, N.; Tsumura, Y.; Hiraoka, K.; Tomaru, N. Development and polymorphism of simple sequence repeat DNA markers for the evergreen shrub *Ilex leucoclada* M. *Mol. Ecol. Notes* 2004, 4, 531–533.

118. Chen, K.; Xu, C. Red bayberry: Botany and horticulture. In *Horticultural Reviews*; John Wiley & Sons Inc.: Oxford, UK, 2010; pp. 83–114.

119. Stokes, J. Cytological Studies in the Myricaceae. *Bot. Gaz.* 1937, 99, 387–399.

120. Wang, Y.; Jia, H.-M.; Shen, Y.-T.; Zhao, H.-B.; Yang, Q.-S.; Zhu, C.-Q.; Sun, D.-L.; Wang, G.-Y.; Zhou, C.-C.; Jiao, Y.; et al. Construction of an anchoring SSR marker genetic linkage map and detection of a sex-linked region in two dioecious populations of red bayberry. *Hortic. Res.* 2020, 7, 1–9.

121. Jia, H.; Zhao, L.; Wang, Y.; Wu, H.; Zhao, H.; Zhu, Y.; Jiao, Y.; Wang, G.; Zhou, C.; Huang, C.; et al. Comparative Transcriptome Analysis Reveals Sex-Biased Expression of Hormone-Related Genes at an Early Stage of Sex Differentiation in Red Bayberry (*Morella rubra*). *Horticulturae* 2022, 8, 183.

122. Li, T.S.; Schroeder, W. Sea Buckthorn (*Hippophae rhamnoides* L.): A Multipurpose Plant.
Horttechnology 1996, 6, 370–380.

Retrieved from <https://encyclopedia.pub/entry/history/show/95209>