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Skin tissue engineering aimed to replace chronic tissue injury commonly occurred due to severe burn and chronic

wound in diabetic ulcer patients. The normal skin is unable to be regenerated until the seriously injured tissue is

disrupted and losing its function. 3D-bioprinting has been one of the effective methods for scaffold fabrication and

is proven to replace the conventional method, which reported several drawbacks. In light of this, researchers have

developed a new fabrication approach via 3D-bioprinting by combining biomaterials (bioinks) with cells and

biomolecules followed by a suitable crosslinking approach. This advanced technology has been subcategorised

into three different printing techniques including inject-based, laser-based, and extrusion-based printing. However,

the printable quality of the currently available bioinks demonstrated shortcomings in the physicochemical and

mechanical properties.

3D-bioprinting  natural-based bioinks  wound healing  skin regeneration

3D-printing quality

1. Introduction

Skin injury has become a significant problem that can cause impairments to the patients’ quality of life . A skin

injury can be classified based on two different categories, which are acute and chronic wounds. An acute wound is

usually able to recover within the wound healing time frame. There are several types of chronic wounds including

wound infection, diabetic ulcer, and gangrene . In 2018, Medicare beneficiaries identified 8.2 million patients with

open wounds with or without infections in which this number is estimated to increase in the future . In Malaysia,

diabetic foot ulcers have become a significant concern among healthcare workers because of the prevalence of

diabetes mellitus (DM) patients increases every year. These diabetic patients are prone to have chronic diabetic

foot ulcers that are severe and involving a long-term impact on their lives .

Worldwide, diabetes has become a common disease with increasing cases daily. Based on the data reported by

the National Diabetes Registry (NDR) by our Ministry of Health (MOH) Malaysia, the number of diabetic patients

that have successfully registered by NDR was 1,614,363. This is targeted to increase in the future . Furthermore,

in the United States of America (USA), 6.5 million people are severely affected by chronic wound infections

followed by an increasing number of diabetic patients with diabetic foot ulcers .

The National-Health Morbidity Survey (NHMS) reported that the prevalence of the diabetic burden in Malaysia

increased from 15.2% in 2011 to 17.5% in 2015 . The following statistics indicate that the prevalence of diabetes
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has increased approximately 14% within 5 years. An increasing number of diabetic patients reflects the increasing

demand for wound-dressing supplies.

The Ministry of Health (MOH) Malaysia has a proper wound care guideline to handle wound injury. Wound care

approaches are usually based on wound characteristics and assessments. Any wound exposed to infections will be

prescribed antibiotics to stop the infection. Several types of wound dressing are available for wound treatment

including hydrogel, hydrocolloid, alginates, foams, and films. The goals for each wound dressing are to maintain

the wound’s environment, prevent infections, and minimise skin irritation . Other than wound dressing, tissue

engineering has been widely used and practised clinically to replace injured tissue due to chronic wound and

promotes skin regeneration.

The application of tissue engineering has already been explored a long time ago using several conventional

fabrication techniques. However, for chronic wounds, immediate treatment and tissue replacement are needed to

avoid prolonged exposure to the environment. In skin tissue engineering, a 3D-shaped scaffold that has been

seeded with cells is used to maintain the tissue homeostasis process .

A wound that is exposed to the environment is prone to get wound infections and complications. Therefore, 3D-

bioprinting has been introduced to overcome the drawbacks of the conventional method especially related to

production time. 3D-bioprinting has a high potential to deliver immediate treatment to the patient and plays a

significant role in rapid treatment to promote skin regeneration and wound healing.

2. Factors That Affect Low Printability Quality in 3D-
Bioprinting

The 3D-bioprinting technique is very challenging due to its printing issues that affect the scaffold’s printability

quality. The printability can affect the gross appearance, morphology, and mechanical properties of the scaffold .

Several factors can influence the printability quality of 3D-bioprinting including the type of printing method, type of

bioinks, the viscosity of the hydrogel, shear-thinning property, scaffold porosity, and structural fidelity. All of these

printability factors are summarised in Table 1.

Table 1. The factors that were affected by low printability quality in 3D-bioprinting technique.
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Bioinks Printing
Method

Factors that Affected by Low Printability Quality Strategies to
Improve

Printability
ReferencesViscosity of

Hydrogel

Shear-
Thinning
Property

Scaffold
Porosity

Structural
Fidelity

Hydrogels Extrusion-
based

bioprinting
Lithography-

based
bioprinting

Higher
viscosity of

the hydrogel
will result in
high printing

fidelity.

Shear stress
increases due

to high
viscosity of
hydrogels.

The thickness
of the

hydrogel
layers may

influence the

Cross-linker
efficiency and

structural
stability for

postprinting.

The optimal
temperature of
each hydrogel

must be identified
because it has

influenced
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Bioinks Printing
Method

Factors that Affected by Low Printability Quality Strategies to
Improve

Printability
ReferencesViscosity of

Hydrogel

Shear-
Thinning
Property

Scaffold
Porosity

Structural
Fidelity

size of the
pores.

viscosity of the
hydrogels.

Increase printing
resolution for
shape fidelity.

Hydrogels must be
physically or
chemically

crosslinked to
facilitate the shape

of the 3D-
structure.

Several printing
patterns were
suggested to
enhance pore

structures,
including zigzag
and honeycomb

patterns.

Alginate-
Gelatin

Extrusion
based

bioprinting

High viscosity
of alginate-

gelatin
bioinks

promotes
unstable and

irregular
forms of

hydrogels
during

printing.
The viscosity

of the
alginate-
gelatin

bioinks is
influenced by

the
temperature
of the gelatin
to become

gel and solid.
The higher
viscosity of
gelatin will

result in
higher

Not-Reported Not-Reported Alginate and
gelatin have
low structural

fidelity.
Loss

modulus of
the alginate

will
negatively
affect the

shape fidelity
of the printed

hydrogel.

The concentration
of gelatin must be

higher than
alginate to ensure
right viscosity and
storage modulus.

The optimum
printing

temperature for
alginate-gelatin is
between 20–25

°C.
Alginate known as
low bioadhesivity

bioinks. Therefore,
alginate need to

be used with
gelatin to provide
the ligands for cell
attachments and
mimics the native

ECM.
The covalent
crosslinking

technique should
be used to

enhance the
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Bioinks Printing
Method

Factors that Affected by Low Printability Quality Strategies to
Improve

Printability
ReferencesViscosity of

Hydrogel

Shear-
Thinning
Property

Scaffold
Porosity

Structural
Fidelity

modulus
storage.

Besides, the
higher

viscosity of
alginate will
increase in

loss modulus.

mechanical
properties of

alginate.
The printability

quality of alginate-
gelatin bioinks can
also be supported
by the addition of

an extruder
heating system.

Agarose-
Collagen

Extrusion-
based

bioprinting

Collagen has
low viscosity

and slow
gelation time.
Agarose has
rapid gelation
time and its

viscosity
influenced by

the
temperature.

Not Reported Not Reported

Agarose
supports the
mechanical
strength of

the collagen
bioinks.

Collagen type I
needs to be used
with agarose to

enhance the
viscosity, gelation
time, and support
the mechanical

strength.
The strategies to

improve shear
thinning and

porosity structure
for agarose-

collagen bioinks
are not reported.

Chitosan-
Gelatin

Extrusion-
based

bioprinting

The viscosity
increased as

the
concentration

increases.

Flow rate
increased

according to
the diameter
of the nozzle

Chitosans
have shear

thinning
behavior.

Chitosan-
gelatin

hydrogel has
excellent

mechanical
strength.

Appropriate
concentrations of

the chitosan-
gelatin bioinks
should be used
since they have
influenced the
viscosity of the

hydrogels.
The optimum size

of the nozzle is
necessary to
monitor the

printing of the
hydrogel.

Chitosan must be
combined with
other natural

biomaterials for
better mechanical

stability.
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Bioinks Printing
Method

Factors that Affected by Low Printability Quality Strategies to
Improve

Printability
ReferencesViscosity of

Hydrogel

Shear-
Thinning
Property

Scaffold
Porosity

Structural
Fidelity

Cellulose-
Alginate

Extrusion-
based

bioprinting

A lower
viscosity of
alginate will
disrupt cell

viability.

Not Reported Not Reported Not Reported

The combination
of alginate with
nanofibrilated

cellulose (NFC)
resulting an
excellent 3D

printing.

Silk fibroin-
Gelatin

Extrusion-
based

bioprinting

The viscosity
of silk fibroin
influenced by

the
temperature.

Exposure of
shear force

>100 s
towards silk

fibroin bioinks
during
printing

results in
nozzle

clogging.

Have
interconnected

pore
structures that
enable cellular

migration
activity.

Printed
hydrogels
that are

made up of
silk have high
compatibility

with high
structural
fidelity.

Mix homogeneous
living cells before
printing process to
allow easy mixing

and achieve
optimal viscosity
without affecting

cell viability.
Apply low shear
force (<100 s )
during printing to

reduce shear rate.
The printed

hydrogel can be
deposited in 80–
90% of alcohol to

permit a faster
solidification.

However, this is
not suitable with

cells.
Silk fibroin need to

combine with
gelatin bioinks to
produce putative
cell attachments

motifs.

Gelatin-
Elastin

Extrusion-
based
printing

The viscosity
of the gelatin-

elastin
bioinks

depending on
the adjusted
temperature.

Shear stress
increased

from 0.79 to
1.17 kPa
when the
extrusion
pressure
increased

from 5 kPa to
25 kPa

Not-Reported Construct
with a

complex
architecture
shape of the
scaffold will
improve the

printing
fidelity.

Handle with a
temperature of 8
°C for optimum

viscosity.
The final printing

condition was
selected as 15

kPa pressure and
30 mm s 1 at 8–10

°C, resulting in
1.08 kPa shear

stress.
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3. Conclusions and Future Perspectives

Bioinks Printing
Method

Factors that Affected by Low Printability Quality Strategies to
Improve

Printability
ReferencesViscosity of

Hydrogel

Shear-
Thinning
Property

Scaffold
Porosity

Structural
Fidelity

Used cold water
fish gelatin to
enhance the
printability of

bioinks.
Crosslinking with

visible light is
required to

enhance the
mechanical

strength of the
hydrogel.

Strategies to
enhance porosity

structure for
gelatin-elastin

hydrogels are not
reported.

Alginate-
Honey

Extrusion-
based

bioprinting

The use of
alginate

alone tends
to be high in
viscosity and

therefore
difficult to

print.

High viscosity
of alginate

induces shear
thinning

during the
printing
process.

Alginate
hydrogel has
low porosity

structure.

Low shape
fidelity.

Use honey as
natural

materials/remedies
to reduce the
viscosity of

alginate, improve
the structural
fidelity of the

printed hydrogel,
and increase the

gelation time.
Use up to 5%

concentration of
honey to retain the
porous structure of

the printed
hydrogel.

Strategies to
improve shear

thinning for
alginate-honey
bioinks are not

reported.

Alginate Extrusion-
based

bioprinting

The viscosity
of alginate

bioinks
influenced by
the amount of

Not Reported High porosity
of hydrogel
structure.

Not Reported Choose the right
size of

nozzle/valve for
printing because it
affects cell viability
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In summary, the 3D-bioprinting technique has become an advanced method for treating wound healing and skin

regeneration. There are two types of bioinks that are available to be used for 3D-bioprinting, namely natural-based

and synthetic-based bioinks. Natural-based bioinks have been widely used in the 3D-bioprinting field because it is

non-toxic towards human tissue; having an optimum biodegradation rate; and having a tendency to construct a

bioscaffold with excellent physicochemical and mechanical properties. However, several limitations affected the

printability quality of the natural-based bioinks such as different printing techniques, shear-thinning properties, the

viscosity of the selected bioinks, scaffold porosity structure, and structural fidelity of the bioscaffold. Each bioink

has different limitations and a unique application technique that needs to be applied to enhance the scaffold’s

physical, chemical, and mechanical properties. Therefore, this study has successfully revealed the limitations of the

printability in 3D-bioprinting with strategies to overcome printing limitations. In the future, we recommended the use

of natural-based bioinks with suitable printing techniques in in vitro and in vivo studies, with a variety of printing

temperatures to observe the effect of cellular activity of the cells.
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