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Enhancers are distal cis-acting elements that are commonly recognized to regulate gene expression via

cooperation with promoters. Along with regulating gene expression, enhancers can be transcribed and generate a

class of non-coding RNAs called enhancer RNAs (eRNAs).

enhancer RNA (eRNA)  cancer  prognosis  diagnosis

1. Introduction

Enhancers are distal cis-acting elements that are known to regulate gene expression via spatial chromatin loops

formation with target promoters . They are short (50–1500 bp) regulatory elements of accessible DNA that

assist in regulating the cell transcriptional machinery through increasing the transcription of target genes.

Structurally, enhancers are open/accessible chromatin with low levels of DNA methylation, which are bound by

RNA polymerase II (RNApol II), transcription factors (TFs), and cofactors, particularly transcription initiation factors,

such as TBP, TFII, and P300/CBP. Enhancers are flanked by histones with permissive chromatin markers of

histone H3 lysine 27 acetylation (H3K27ac) and histone H3 lysine 4 methylation (H3K4me) . While

promoters are cis-acting elements that recruit transcription in a position- and direction-dependent manner,

enhancers perform freely of their position and orientation regarding their target gene; consequently, these elements

can establish physical communication to interact distant promoters. Rather than contributing to gene expression,

enhancers can be dynamically transcribed, forming a class of non-coding RNAs known as enhancer RNAs

(eRNAs). It was initially anticipated that the product of enhancer transcription is the noisy outcome of the

transcription procedure. Nevertheless, later studies suggest various roles for eRNA as a universal cellular

mechanism involved in directing cell characteristics and function. In this research, researchers demonstrate recent

understanding of eRNA structure along with function.

2. Biogenesis and Function of eRNA

Based on structure and transcription patterns, eRNAs (approximately from 0.1–9 Kb)  can be classified in two

groups of short bidirectional, non-spliced, non-polyadenylated RNAs and long unidirectional, spliced, stable

polyadenylated transcripts (Figure 1). Since eRNAs are mainly non-polyadenylated and unstable, they are

predominantly localized in the nucleus and chromatin-enriched fractions . Transcription of eRNAs

generally occurs prior to mRNA expression from the target gene . The tissue-specific transcription of

enhancers has been shown in various diseases such as cancers. Enhancers typically contain specific DNA

elements that are recognized by tissue-specific TFs. These factors often cooperate in their binding to enhancers
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and frequently synergize to achieve the optimal activation of target genes . Under extracellular stimuli and the

activation of specific signaling pathways, TFs are recruited into the enhancer region, bind to particular DNA

sequences, and stimulate the remodeling of nucleosome and histone modifications (regions enriched by H4K8ac,

H3K27ac, and H3K4me are hallmarks of active enhancers) . H3K27 and H4K8 are acetylated through

CBP histone acetyltransferases, and p300 and chromatin is further opened in the enhancer region and, thus,

RNApol II and BRD4 cofactor are recruited to the enhancer . Integrator, a large complex associated with the

carboxyl-terminal domain (CTD) of RNApol II, has an important role in transcriptional termination at the enhancers.

The depletion of the integrator leads to the reduction in processed eRNAs and accumulation of primary eRNA

transcripts .

Figure 1. Schematic diagram of two distinct classes of eRNAs. The majority of eRNAs are short, bidirectional, non-

polyadenylated, and unstable while others are long unidirectional, polyadenylated, and more stable. The former

has cis-acting action while the latter perform as trans-acting elements.

Super-enhancers (SE) are described as a cluster of enhancers that have dense assemblies of RNApol II, TFs, and

typical enhancer histone modifications (H4K8ac, H3K27ac, and H3K4me) that leads to a greater amount of super-

enhancer RNA (seRNA) production (Figure 2) . The difference between conventional enhancers and SEs is

clearly displayed in the nature of the dependence of the transcription activity ensured by the regulatory element

and the number of TFs and cofactors associated with it . The transcription activity at an SE is typically higher

than at a distinct enhancer. SEs have high potential to activate the transcription of their target genes and play

significant roles in tissue-specific biological processes . Most SE produce unidirectional polyadenylated

seRNAs, which are more stable and have a longer half-life than non-polyadenylated eRNAs . Production of
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different isoforms by alternative splicing and cis and trans actions of seRNAs can orchestrate a precise pattern of

gene expression . As previously mentioned, eRNAs were initially considered as transcriptional noise of

enhancers. Later, by using experimental methods, including global run-on sequencing (GRO-seq), Start-seq, and

CRISPR/Cas9, several investigations have revealed that a subclass of eRNAs contribute to enhancer function,

especially the regulation of gene expression . As most eRNAs are unstable, their recognition is mainly

proceeded via precision nuclear run-on sequencing (PRO-seq), GRO-seq, chromatin immunoprecipitation (ChIP-

seq) , or cap analysis of gene expression (CAGE) sequencing  rather than the common RNA-seq.

Using the CRISPR-Display method, eRNAs were demonstrated to bind to catalytically dead Cas9 (dCas9) for

targeting a particular locus of a genome . In another approach, single-molecule fluorescence in situ hybridization

(smFISH)  and ChIRP-seq  were used as powerful methods for detection of eRNA loci in the genome.

Overexpression and knockdown studies of eRNAs demonstrated that this group of non-coding RNAs have strong

correlation with their target mRNAs . This correlation is largely dependent on the proximity and correct

interactions between the enhancer and promoter. Moreover, chromatin interaction studies revealed that enhancer–

promoter looping structure induces higher expression of eRNAs in comparison with other enhancer regions .

Some studies suggested that eRNAs can act as a cis regulatory element and initiate or stabilize enhancer–

promoter looping through association between TFs, mediators, cohesins, and RNApol II . Moreover, eRNAs

were shown to function in trans for modifying the chromatin structure and directing chromatin accessibility at

protein-coding promoter regions . The interaction of eRNAs with CBP and p300 histone acetyltransferases were

shown to have a prominent impact on the modulation of H3K27 acetylation and methylation as eRNA knockdown

led to decreased levels of H3K27ac and increased levels of H3K27me3 at target-promoter regions .

Upon interaction with enhancers, Polycomb repressive complex 1 and 2 (PRC1 and PRC2) have been shown to

play regulatory roles in Polycomb-mediated gene transcription . Although PRC1 and PRC2 have gene

repression activities, in some cases it has been proposed that Polycomb chromatin domains can affect gene

expression by forming chromatin topologies that support gene induction . PRC2, for instance, composed of the

EZH2 and SUZ12 subunits, which is responsible for establishing and maintaining histone H3K27 methylation

during cell differentiation. The interaction of eRNAs and the EZH2 subunit of the PRC2 complex represses its

methyltransferase activity and consequently leads to reduced H3K27me3 level and increased gene expression 

. Direct interaction of eRNA with RNApol II, TFs, and general cofactors was shown to be required for initiation

and elongation of transcription . NELF and P-TEFb complexes are negative and positive elongation factors,

respectively, which are released and recruited to RNApol II in the elongation phase. eRNA interacts with NELF and

P-TEFb and further promotes the release of paused RNApol II and transition to active elongation by acting as

decoys for these complexes .
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Figure 2. Biogenesis of typical eRNA and seRNA and their corresponding function. Active enhancers are

bidirectionally transcribed to produce eRNAs and seRNAs. Super enhancers are augmented with higher amount of

transcription factors, mediators, and RNApol II compared to enhancers. Therefore, the transcription activity at a

super enhancer is typically higher than at a distinct enhancer. From the functional perspective, super enhancers

have a greater potential to stimulate target gene transcription.

3. Functional Roles of eRNAs in Cancer

Given that enhancers are recognized to influence the maintenance of different types of cells, it is not unexpected

that their malfunction has emerged as a powerful factor behind numerous types of malignancies. Translocation,

duplication, insertion, deletion, or point mutation at enhancer regions, and especially transcription factor binding

elements , are frequently observed in cancers . One interesting possibility is that these types of

mutations make a difference in eRNA expression that eventually drives cancer development. For instance, specific

three-stranded nucleic acid organization of the DNA:RNA hybrid and the related non-template single-stranded

DNA, known as R-loop, can be shaped at enhancer regions with exceeded eRNA expression levels. Particularly, R-

loops are correlated with genomic instability and DNA injury, proposing an association in the initiation and

progression of cancer . Moreover, single-stranded DNA (ssDNA) in R-loops may be an off-target for the action of

the activation-induced cytidine deaminase (AID) enzyme . Intrinsically, this enzyme is responsible for initiating

somatic hypermutation on ssDNA at immunoglobulin (Ig) loci and preferentially alters cytosine to uridine by

deamination . AID off-target positions correlate with extremely transcribed enhancers, which promotes genome

instability and tumorigenesis .

Several studies uncover roles for individual eRNAs in tumorigenesis of many cancer types, including ovarian,

breast, prostate, colorectal, and lung adenocarcinomas, showing that their ectopic expression is strongly linked to

enhancer dysfunction . In tumor cells, eRNAs regulate target genes by both cis- and trans-regulatory
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activities and, hence, play a crucial role in a variety of important signaling cascades . For instance, in

colorectal cancer, it has been stated that the presence of Colon Cancer-associated Transcript 1 (CCAT1) eRNA

was highly correlated with c-Myc overexpression . MYC is accepted as a crucial regulator of cell proliferation

and deregulation of this proto-oncogene associated with the development of many cancer types . In a separate

study, the knockdown of oncogenic CCAT1 eRNA in squamous cell carcinomas suppressed the SE-associated

genes expression required for the propagation and migration of cancer cells . Net1e eRNA, which is located

downstream of NET1 proto-oncogene, is a breast cancer specific eRNA and its knockdown by LNA (locked nucleic

acids) antisense RNA was shown to strongly reduce cell proliferation in the MCF7 breast cancer cell line

. ARIEL in leukemia , HPSE in different cancer types , and P2RY2 in bladder cancer  are other

examples of eRNAs targeted by knockdown approaches that may serve as new therapeutic targets for cancer

treatment. In breast cancer, 17b-oestradiol (E2)-bound estrogen receptor α (ER- α) could raise the expression of

enhancers close to E2-induced coding genes. These differentially expressed eRNAs were demonstrated to elevate

the strength of ER-α activated looping of the enhancer–promoter by direct interaction with cohesin. Targeted

knockdown of eRNA from corresponding enhancers attenuated cohesion attachment to the ER-α enhancer and

consequently reduced enhancer–promoter looping . Wang et al. indicated that WAKMAR2 can be a new

candidate eRNA in modulating the microenvironment of invasive breast cancer cells and its downregulation might

influence the immune-related genes expression in favor of tumor progression. eRNAs are implicated in various

cancer signaling pathways by potentially modifying their target genes, such as immune checkpoints and clinically

actionable genes . By successful delineation of basic eRNA mechanisms, including RNA–RNA, RNA–DNA, and

RNA–protein interactions, these eRNAs can be considered as new therapeutic targets and will pave the way for

eRNA-based cancer diagnostic and therapeutic approaches .

4. Data Resources to Explore eRNA in Cancer

As mentioned before, most eRNAs are unstable and non-polyadenylated with low abundance . Thus, they are not

easily detectable in routine RNA-sequencing methods, which are based on polyadenylated RNAs. Alternative

techniques rely on measuring promising transcripts, such as global run-on sequencing (GRO-Seq) , precision

run-on nuclear sequencing (PRO-Seq) , and cap analysis gene expression (CAGE)  to certify that no eRNA is

missed. These methodologies are instrumental for the detection of formerly undiscovered eRNAs and active

enhancers. For example, the CAGE technique was applied by the FANTOM consortium for profiling the large

amounts of transcriptomes of different types of cells, from which 43,011 enhancer elements were revealed to be

transcribed to eRNAs . Since the number of detected eRNA transcripts are increased exponentially,

comprehensive databases and computational pipelines are highly required to illustrate and consolidate the eRNA

expression profiles in normal and cancerous samples. Currently, two types of eRNA data resources were

generated. While datasets such as Ensemble (https://www.ensembl.org, accessed on 1 January 2002), ENCODE

(https://www.encodeproject.org, accessed on 5 September 2012), FANTOM (http://fantom.gsc.riken.jp/index.html,

accessed on 26 March 2014), and the Roadmap Epigenomics Project (http://www.roadmapepigenomics.org,

accessed on 13 October 2010) include numerous annotated regulatory elements containing enhancers, other

datasets such as The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov, accessed on 26 September
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2013) and Genotype-Tissue Expression (GTEx) (https://gtexportal.org/home, accessed on 29 May 2013) have

multi-omic data including RNA-seq and survival data from patient samples and the Cancer Cell Line Encyclopedia

(CCLE) (https://portals.broadinstitute.org/ccle/about, accessed on 8 May 2019) that apply genomics and

sequencing data in ~1000 cancer cell lines for pan-cancer and tumor-specific analysis of eRNAs. These omics data

can be downloaded via Xena platform. UCSC Xena cancer browser (https://xena.ucsc.edu, accessed on 22 May

2020) allows biologists to correlate between genomic and/or phenotypic variables with visualizations and analyses.

To facilitate research on eRNA, many enhancer pipelines such as SEdb, HACER, RAEdb, HEDD,

DiseaseEnhancer, TiED, SEA, and DENdb  have been generated. GeneHancer  is one of

the most common pipelines, which integrates the enhancer annotations from four altered enhancer resources,

including Ensembl, FANTOM, VISTA, and ENCODE . Human enhancer RNA Atlas (HeRA) is another

data portal that accommodates data from the ENCODE, FANTOM, and GTEx that presents an expression profile

and regulatory network of eRNAs in normal human samples . On the contrary, the eRic (eRNA in cancer)

database (https://hanlab.uth.edu/eRic, accessed on 8 October 2019) can predict eRNA functions in cancer via

collecting eRNA expression profiles, clinical features, target genes, and drug response . By using RNA-seq data

from TCGA and GTEx and using CAGE-defined enhancers annotated by FANTOM, Chen et al. developed The

Cancer eRNA Atlas (TCeA) data portal, which provides a high-resolution map of eRNA loci. In this map, SE

showed discrete loci with sharp eRNA expression peaks. The annotation of SE activities can be used for a broad

range of biomedical investigations, such as immunotherapy response and enhanced explanations of cancer

phenotypes by resolving intratumoral heterogeneity .

5. eRNAs as Prognostic and Diagnostic Biomarker in Cancer

Even though remarkable progress has been made in the field of cancer research, there are still a number of issues

that need to be improved, such as delayed diagnosis and poor prognosis. Non-coding RNAs have gained wide

consideration in recent years because of their specific expression and functional diversity in a variety of cancers

. They play critical roles in various biological pathways and hold great promise in cancer diagnosis and therapy.

Clinical trials have also initiated investigating non-coding RNA-based medications as adjuncts to traditional

chemotherapeutics . Regarding eRNAs, an increasing number of studies have reported that these non-coding

RNAs have amenable prognostic and diagnostic values due to their tumor-specific expression patterns . In

this section, researchers will review the present findings on eRNAs and their potential prognostic and diagnostic

values in cancers. Table 1 summarizes eRNAs and seRNAs as diagnostic and/or prognostic biomarkers in

different cancers.

5.1. Head and Neck Squamous Cell Carcinoma

Head and neck cancer is considered one of the most common malignancies in the world, with ~870,000 new cases

and ~440,000 deaths in 2020  in which the most common histological subtype of head and neck cancer is head

and neck squamous cell carcinoma (HNSCC). Feng et al. showed the role of certified eRNAs as an innovative

biomarker in HNSCC. The group indicated the role of eRNA in 500 HNSCC cases by means of an eRNA

expression matrix annotated from the TCGA database. Functional enrichment analyses were carried out using
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Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Global expression of eRNAs was

increased in tumor tissues compared to normal cases; out 369 differentially expressed eRNAs, 330 were

upregulated and 39 were downregulated. According to the eRNA expression matrix and survival information, 5

eRNAs were identified with a correlation with the prognosis value in HNSCC cases, which represent an innovative

finding in the molecular mechanisms of HNSCC . Gu et al. demonstrated the role of prognosis-

related AP001056.1 eRNA in HNSCC. In this research, an incorporated data analysis methodology was developed

to recognize major eRNAs in HNSCC. To discover the RNA levels and clinical data from the TCGA project, the

interactive web servers, TANRIC (the Atlas of Noncoding RNAs in Cancer) and cBioPortal were applied. From the

obtained 5 significant eRNA candidates, AP001056.1 was the most significant survival-associated eRNA in HNSCC

with immune-related ICOSLG as its target gene. While strong associations

between AP001056.1 and ICOSLG expression were demonstrated in a number of cancers, the most significant

effect on overall survival (OS) was observed in HNSCC .

Table 1. eRNAs and seRNAs as diagnostic and/or prognostic biomarkers.

[93]

[94]

Cancer Type eRNAs/seRNAs Deregulation
in Cancer Target Gene/Pathways

Clinical
Sample/Number
of TCGA Cases

Sample/Model
Information Application Ref.

HNSCC

ENSR00000188847
ENSR00000250663
ENSR00000313345
ENSR00000317887
ENSR00000336429

Up -
500 TCGA

HNSCC
samples

Patient
sample

Prognosis

AP001056.1 Down ICOSLG
426 TCGA

HNSCC
samples

Patient
sample

Prognosis

LUAD

TBX5-AS1 Down TBX5 10 LUAD
samples

Patient
sample

Prognosis/Diagnosis

188 functional
eRNAs

129 Up/59
Down

Cell cycle and immune
system-related pathways

80 LUAD
samples/481
TCGA LUAD

samples

Patient
sample

Prognosis

CRC CCAT1
CCAT2 Up c-Myc 150 CRC

samples
Patient
sample

Prognosis

RP11-569A11.1 Down IFIT2 39 CRC
samples

Patient
sample/cell

line
Diagnosis

PVT1 Down
(epigenetic
regulation
mediated

Myc 698 TCGA CRC
dataset

Patient
sample

Prognosis
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Cancer Type eRNAs/seRNAs Deregulation
in Cancer Target Gene/Pathways

Clinical
Sample/Number
of TCGA Cases

Sample/Model
Information Application Ref.

through
aberrant

methylation
in CRC)

GC

EMX2OS Up EMX2 375 TCGA GC
samples

Patient
sample

Prognosis

FALEC Up ECM1 60 GC samples
Patient

sample/cell
line

Prognosis

HPSE Up
hnRNPU/p300/EGR1/HPSE

axis
90 GC samples

Patient
sample/cell

line
Prognosis

CDK6-AS1

UP (in
patients
below 60

years)

CDK6 407 TCGA GC
samples

Patient
sample

Prognosis

WAKMAR2 Down TNFAIP3 371 TCGA GC
samples

Patient
sample

Prognosis

Breast Cancer

SLIT2 Down
MAPK/c-Fos signaling

pathway

1211 TCGA
breast cancer
and 12 bone
metastases

samples

Patient
sample/cell

line

Prognosis/Bone
metastasis

WAKMAR2 Down

IL27RA
RAC2
FABP7
IGLV1-51
IGHA1
IGHD

1104 TCGA
invasive breast
cancer samples

Patient
sample

Prognosis

HCC

DCP1A Up PRKCD

1580 TCGA
samples

together with
1791 target

genes

Patient
sample

Prognosis

SPRY4-AS1 Up SPRY4 124 TCGA
samples

Patient
sample

Prognosis

AL445524.1 Up CD4-CLTA4 related genes 371 TCGA HCC
tumor samples

and

Patient
sample

Prognosis
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of TCGA Cases
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PARGP1 Up AGAP4 TCGA database
Patient
sample

Prognosis

Bladder Cancer

MARC1 Up − 37 tissues
Patient

sample/cell
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