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Musculoskeletal benefits of vitamin D include calcium homeostasis, bone mineralization, etc., through its hormonal

actions. This requires serum 25(OH)D less than 20 ng/mL. In contrast, many other tissues require above 30 or 40 ng/mL

steady-state concentrations. To reduce infections, autoimmune diseases, cancer, and all-cause mortality require a

minimum level of 50 ng/mL. Vitamin D is an economical and widely available (generic) nutrient obtained over the counter

without a prescription. At the recommended doses, vitamin D does not cause any adverse effects. Disease prevention and

minimizing complications and premature deaths can be achieved by maintaining serum 25(OH)D concentrations between

50 and 80 ng/mL. This costs less than 0.01% of the cost of one day of hospitalization.
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1. Introduction

Most people know the musculoskeletal benefits of vitamin D. This includes calcium homeostasis—intestinal absorption

and phosphate and mineral conservation, skeletal calcification, and its effects on the muscular system . The bone

formation, resorption, and mineralization involved the hormonal form of calcitriol with parathyroid hormone (PTH) : the

latter is a crucial hormone influencing renal tubular calcium and phosphate handling .

In renal tubular, parathyroid, fat, and musculoskeletal cells, an in-built active system transports steroidal molecules,

especially vitamin D and 25(OH)D—megalin-cubilin endocytotic system . Because of this energy-dependent system,

these cells can internalize such molecules against a concentration gradient . Consequently, even when the serum

25(OH)D and vitamin D concentrations are between 12 and 20 ng/mL, renal tubular cells continue to extract these

molecules from the circulation. This is why, despite such low levels (i.e., by definition, vitamin D deficiency), kidneys can

generate the hormonal calcitriol and maintain most of the above-mentioned musculoskeletal functions of vitamin D, such

as preventing rickets in children and osteomalacia in adults.

Most steroid hormones enter cells via diffusion and endocytosis via the membrane-based, megalin-cubilin system, as in

the kidney and parathyroid gland, muscle, and fat cells . In addition, this mechanism of active cellular entry is essential

for generating the hormonal form of calcitriol in renal tubules and parathyroid glands—for vitamin D’s endocrine functions

. However, unlike the cells mentioned above, other peripheral target cells, like immune cells, do not have an active

vitamin D megalin-cubilin transportation system . Thus, in addition to some endocytosis, these cells mainly depend on a

concentration-dependent gradient for diffusions of vitamin D and 25(OH)D (mostly bound to VDBP) into them .

2. Extra-Skeletal Benefits of Vitamin D

The biological activity of calcitriol in most extra-musculoskeletal tissues is activated following the generation of calcitriol

within peripheral target cells—not via the circulatory hormonal form. In addition to genomic functions in these cells, it acts

as a local cytokine and signaling molecule. The genomic functions include controlling the proliferation and maturity of

cells, preventing cancer cell growth, brain development, respiratory and reproductive functions, and mitochondrial energy

generation . Vitamin D maintains a robust immune system, which helps to overcome infections, including

COVID-19 , and prevents autoimmunity . Calcitriol’s primary life-saving extra-skeletal role is keeping a

person healthy .

Extra Musculoskeletal Benefits of Vitamin D—Dissemination of Information

Large emerging data sets support multiple physiological vitamin D functions occurring via calcitriol. These data suggest

vitamin D should considered for preventative and adjunct therapy for many disorders, including sepsis and COVID-19

infection . With a handful of exceptions , vitamin D is almost never included in clinical protocols or
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guidelines. No leading health authorities or governments advised their fellow citizens to keep them healthy by providing

proper advice on micronutrients, especially vitamin D . What they have provided is grossly outdated .

In addition, recommendations from medical and scientific societies are confusing, contradictory , and out-of-date 

. Despite this negative publicity, public awareness of vitamin D and its beneficial effects on the immune system has

improved since the COVID-19 pandemic. This is primarily due to relentless positive work by individuals and small groups

of scientists, although the negative publicity by big pharma. In contrast, clinical guidelines from the Front-Line COVID-19

Critical Care Alliance  and affirmative Substack articles provided reliable data to the public .

3. Mechanisms and Clinical Relevance

Sufficient calcitriol synthesis within immune cells prevents chronic diseases, autoimmunity, inflammation, and infections

. These physiological actions manifest by several mechanisms, including suppressing inflammatory cytokines and

increasing anti-inflammatory cytokines and anti-oxidative compounds . Chronic diseases are associated with chronic

inflammation, which maintains and gradually worsens the disease process . In addition, calcitriol enhances the

production and release of antimicrobial peptides, cathelicidin, and beta-defensin via its autocrine and paracrine actions.

These antimicrobial peptides stimulate white blood cells, macrophages, and natural killer cells and direct the circulating

viruses to macrophages to destroy them .

3.1. Mechanisms of Action of Calcitriol

Vitamin D signaling plays a crucial role in intrinsic defense against intracellular microorganisms via generating

antimicrobial proteins like cathelicidin . In addition, calcitriol stabilizes tight junctions of epithelial cells of the respiratory

tract and cardiovascular system, protecting them from fluid leakage and viral dissemination into soft tissues . Figure
1 illustrates the generation of calcitriol and its broader actions. Notably, it demonstrates the critical difference between the

actions of the hormonal form vs. the non-hormonal form of calcitriol (the bottom half).

Figure 1. Vitamin D is expected to be generated predominantly following exposure to ultraviolet-B (UCB) rays. The

amounts of vitamin D obtained via diet are small supplements. Therefore, those not exposed to sufficient UVB exposure

depend on vitamin D supplements for their health. The figure illustrated the main differences between the circulatory

hormonal form of calcitriol (generated in renal tubular cells) vs. the intracellularly generated calcitriol in peripheral target

cells (as in immune cells).

3.2. Importance of Circulatory Vitamin D and 25(OH)D for Target Cell Generation of Calcitriol

The past few decades have focused on cholecalciferol (D ) in preventing musculoskeletal disorders . However, in the

past 15 years, several fundamental advances were made in researchers in understanding the biology and physiology of

calcifediol and calcitriol. These delineate how and when to use them properly as therapies. Yet, as described above, the

doses recommended are grossly inadequate, and no attempts were made to update them. Emerging evidence has

provided more value in recent years, highlighting the importance of different vitamin D compounds in human biology and

clinical immunology . While the musculoskeletal system functions maintained with smaller doses, of between 800 and

1,000 IU/day, higher amounts, like 5,000 to 10,000 IU per day or 50,000 IU once a week are necessary for a non-obese

70 kg adult, to maintain serum 25(OH)D concentrations above 50 ng/mL—that needed to overcome infections  and

overcome cancers .
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Those who are obese, taking medications that increase catabolic activity of vitamin D (e.g., anti-epileptic and retroviral

agents), or have significant fat malabsorption require severalfold higher doses than those mentioned above. Even with

such amounts, unless a loading dose is administered , a vitamin D-deficient person takes several months to

increase their serum 25(OH)D to therapeutic levels of over 50 ng/mL . Using the mentioned doses of vitamin D, even in

a vitamin D-sufficient person to reach and maintain a serum 25(OH)D concentration of above 40 ng/mL (as guidelines for

community-dwelling persons) would take a few weeks to raise serum 25(OH)D concentration above 50 ng/mL .

Therefore, such doses could be insufficient and ineffective to achieve the desired target serum 25(OH)D concentration in

emergencies. Consequently, even moderately high daily doses without administering an upfront (one-time) loading dose

are unlikely to significantly benefit a person in overcoming critical disorders like infections, sepsis, and cancer.

4. Doses of Vitamin D Needed to Overcome Disorders

Serum 25(OH)D concentrations are reduced in chronic diseases like metabolic disorders, obesity, cancer, infections, and

all-cause mortality . Less frequent administration—intervals of less than once a month—(i.e., intermittent

bolus dosing) and even repeat administration of higher doses, like 300,000 once in six months, do not generate the

intended clinical outcomes and thus should be avoided. This is because the half-life of vitamin D is about one day, and

25(OH)D is between two to three weeks, depending on the vitamin D status. No matter the dose, the serum 25(OH)D

concentration would not remain high enough for more than three months . In addition, infrequent administrations

lead to unphysiological fluctuation of serum and tissue levels of vitamin D metabolites and could stimulate catabolic

enzymes, like 24-hydroxylase (see below).

4.1. Clinical Study Outcomes Using Higher Doses of Vitamin D

Meta-analyses of RCTs concerning vitamin D supplementation reported a significant reduction in the incidence and

severity of respiratory tract infections. Daily vitamin D supplements provide better clinical outcomes than with infrequent

administration. In contrast, when vitamin D is administered at longer intervals than once a month, benefits are less, and

the outcomes are not satisfactory .

Using higher doses of vitamin D consistently has been reported to have better clinical outcomes than the government-

recommended doses of 800 IU/day, which has no tangible effect on any disease other than muscular skeletal disorders

. For example, adequate supplementation with vitamin D reduces cancer , regress prostate cancer , lowers

blood pressure (especially in African Americans) , and reduces insulin resistance , including in obese children ,

and prevent multiple sclerosis .

However, those studies that used pediatric doses of vitamin D in adults based on outdated recommendations (i.e., using

280 IU/day or less than 1,000 IU/day) , as with the Women’s Health Initiative study of cancer prevention and

infrequent administration of 100,000 IU vitamin D  quarterly , failed to prevent cancer and other disorders. Based on

vitamin D biology and physiology, this is not surprising. Most clinical studies reported an inverse association between

vitamin D status and mortality , and the relation is curvilinear .

4.2. Entry of D and 25(OH)D into Peripheral Target Cells

In peripheral target cells as immune cells, genomic action follows binding to vitamin D/calcitonin receptors, and non-

genomic functions, like intracrine/autocrine and paracrine signaling/functions of calcitriol, are driven by calcitriol

synthesized within these cells. In these peripheral target cells, calcitriol is synthesized by 1a-hydroxylase enzyme,

transcribed by the CYP27B1 gene. This hydroxylation of 1a-position, however, is dependent on the ability to diffuse

enough vitamin D and 25(OH)D from the circulation . This mainly occurs via the diffusion of these two molecules

across the cell membranes, which is crucial for all immune cell activities. This is the prime reason why, in contrast to

musculoskeletal tissues, peripheral target cells (tissues) need higher circulatory 25(OH)D concentrations.

In addition to diffusion, a smaller proportion of VDBP-bound D and 25(OH)D enters these cells via endocytosis . Since

the affinity of vitamin D to VDBP is less than 25(OH)D, given the same concentration in the blood, more D is likely to enter

immune cells. However, since the half-life of vitamin D is only one day, the total entry of D is still less than 25(OH)D.

Figure 2 illustrates the mode of vitamin D and 25(OH)D access in peripheral target cells, like immune cells . This entry

of vitamin D and 25(OH)D from the circulation into immune cells allows the generation of calcitriol intracellularly , which

is crucial for both genomic, autocrine, and paracrine functions of immune cells and other peripheral target cells 

.
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Figure 2. Pathways and mechanisms of actions of calcitriol activating immune cell functions: Activation of D and 25(OH)D

into calcitriol [1,25(OH) D] intracellularly leads to genomic actions, autocrine (activation of functions within the same cells)

and paracrine (indicating cell to effector cells) signaling.

When vitamin D is taken daily, the circulatory vitamin D concentrations are more stable and likely higher than 25(OH)D

concentrations than when the same dose is taken once in two weeks or monthly . Therefore, more vitamin D is likely to

diffuse into peripheral target cells because of the higher concentration gradient of D with daily doses than 25(OH)D. When

this is the case, the measurement of serum 25(OH)D alone, as done in routine clinical practice today, may not provide the

correct information about vitamin D adequacy or guide the replacement requirements for physiological functions, including

maintaining a robust immune system. The opposite happens when the same dose of vitamin is consumed infrequently; a

higher concentration of 25(OH)D is present in the circulation than in vitamin D.

4.3. Vitamin D, Epithelial Barriers, and Gap Junction Stability

D  enhances epithelial and endothelial stability, independent of canonical pathways through calcitriol/CTR-derived

genomic outcome . Disruption of endothelial stability and an enhancement of vascular leak is prevented by D

supplementation. These rapid membrane-related actions of vitamin D, 25(OH)D, and 1,25(OH) D, are at a similar

potency.

The deficiency of D  and its metabolites impairs endothelial barriers, leading to vascular fluid leakage into soft tissues .

Similarly, weakening gap junctions and epithelial barriers lead to viral infiltration and propagation of infections, as seen in

sepsis and viral infections like SARS-CoV-2 . These non-transcriptional (non-genomic) mechanisms are essential in

controlling inflammation and preventing endothelial and epithelial cell destabilization.

5. Novel Information Related to Clinical Aspects of Vitamin D

5.1. Amounts of Daily Vitamin D Doses Needed to Maintain Clinically Effective Serum 25(OH)D
Concentrations Cover 99.5% of Disorders

Different dosing schedules have varied effects on serum vitamin D and 25(OH)D concentrations—daily doses (but not

infrequent doses) maintain a stable circulating concentration . In contrast, ingesting vitamin D longer than monthly

intervals results in significant circulatory 25(OH)D concentration fluctuations, which is not physiological and may not

benefit . Schedules recommended below for vitamin D supplementation as prophylactic and longer-term RCTs in

hypovitaminosis D will significantly increase (at least double) the serum D and 25(OH)D concentrations, thus profoundly

affecting intended beneficial clinical outcomes. A simplified formula is illustrated below for calculating the vitamin D dose

for an individual based on BMI (body weight and fat mass) for different body weight groups .

     Not obese (average wt.: BMI, <29): 70-90 IU/kg BW

     Moderately obese (BMI, 30-39): 100-130 IU/kg BW

     Morbid obesity (BMI, over 40): 140-180 IU/kg BW

5.2. What has Changed Over the Years Related to Vitamin D?

A century ago, it was observed that exposure to sun rays (vitamin D) reversed rickets in children, and it was effective

against tuberculosis. Since then, much scientific evidence has demonstrated that vitamin D is central to disease

prevention, complications, and deaths . Previously, it was believed that exposure to sufficient UVB rays generated
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about 3,000 IU/day. However, recent data confirmed a person with a lighter skin color could generate up to 10,000 IU of

vitamin D  within one hour following exposure of a third of the upper body to sunlight .

Maintaining a steady state of D and 25(OH)D in circulation is helpful for physiological functions. In contrast, marked

fluctuating serum 25(OHD concentrations from intermittent administration of high doses of vitamin D is unphysiological.

Such could over-express the catabolic enzyme, 24-hydroxylase enzyme (via CYP24A1). Based on the circulatory half-life,

the frequency of administration of vitamin D must not exceed once a month, preferably not more than two-week intervals

. This would avoid significant fluctuations in serum 25(OH)D concentration .

Most of the positive respiratory tract infections-related RCTs are conducted in children , using daily doses of

vitamin D . Meta-analysis of RCTs on vitamin D in respiratory tract infections reported that vitamin D is more

effective as a treatment when administered in daily doses than intermittently . Chronic diseases are most common

among older people partly due to longer-term vitamin D deficiency  and are associated with an increased rate of deaths

. They also have multiple co-morbidities associated with hypovitaminosis D and low circulating ACE-2 receptors,

increasing the vulnerability to infections and other pathological ailments (Figure 3).

Figure 3. Schematic representation of how chronic diseases increase morbidity and mortality in older people. These are

exacerbated by hypovitaminosis D, low angiotensin converting enzyme-2 (ACE-2) concentrations, environmental

issues/pollution, and co-morbidities.

6. Discussion

The current paradigms related to vitamin D are primarily based on retrospective analyses and epidemiological studies

(cohort, cross-sectional, observational, prospective, and ecological studies) . Many have used false concepts and

assumptions of doses and serum 25(OH)D concentration needed to improve outcomes based on outdated information 

. In contrast, recent reports overwhelmingly support the positive effects of vitamin D in extra-musculoskeletal disorders,

including chronic diseases and infections.

During the past decade, many advances were made in understanding the physiology and biology of vitamin D and its

receptor ecology. The knowledge of the physiology of D  and vitamin D–VDR has advanced the understanding of the

biology, metabolism, and effects of gene polymorphisms on the vitamin D axis. Data pointed towards the need for a

minimum serum 25(OH)D concentration of 50 ng/mL for extra-musculoskeletal target cell physiological activity. It will take

time to incorporate such into vitamin guidelines and recommendations.

Evidence supports strong physiological associations of vitamin D with disease risk reduction and improved physical and

mental functions. Together, these data have facilitated the understanding of new rationale to prevent and treat diseases

cost-efficiently. Overall evidence suggests that vitamin D deficiency, as determined by maintaining serum 25(OH)D

concentrations of more than 40 ng/mL, is associated with increased risks of many illnesses and disorders and higher all-

cause mortality, even among otherwise healthy individuals. The proper functioning of the vitamin D endocrine, paracrine,

and autocrine systems is essential for many physiological activities and maintaining good health.

Recent data from epidemiological, cross-sectional, and longitudinal studies support that having physiological serum

concentrations of 25(OH)D, levels greater than 40 ng/mL, significantly reduces the incidence of extra-musculoskeletal

disorders. The latter includes diabetes, MS, rheumatoid arthritis, osteoporosis, autoimmune diseases, and certain types of

cancer , as well as reducing all-cause mortality.
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The dosages of vitamin D prescribed for non-obese deficient persons of average weight of 70 kg should be between 4000

and 7000 IU/day, 20,000 IU twice a week, or 50,000 IU once a week or once in 10 days. Such doses would allow

approximately 97.5% of people to maintain their serum 25(OH)D concentrations above 40 ng/mL . However,

intermittent doses at intervals longer than once a month are unphysiological and thus ineffective. Daily vitamin D

supplements are more beneficial than supplementation administered less frequently.

Furthermore, some medications, environmental pollutants, and physical activities/ lifestyles influence vitamin D

metabolism and actions, modulating the balance between energy intake and expenditure. However, using vitamin D

analogs is inappropriate for alleviating hypovitaminosis D or treating osteoporosis. In the absence of adequate exposure

to sunlight, average-weight non-obese individuals require daily vitamin D intake (food plus supplements) of between 5000

and 7000 IU to maintain serum 25(OH)D concentrations above 50 ng/mL (125 nmol/L). Longer-term maintenance of a

steady state of the serum 25(OH)D concentration is necessary to have a meaningful impact on reducing disease

incidences and all-cause mortality.

Clinical practice recommendations should be geared toward healthcare professionals and the public, patient education,

and informing the public regarding appropriate actions for avoiding micronutrient deficiency. However, most countries

neither have policies or guidance on sun exposure and vitamin D intake nor cost-effective public health interventions,

especially for micronutrients. They should consider embracing cost-effective measures to prevent diseases, significantly

reducing healthcare costs.

Maintaining serum 25(OH)D concentrations above 50 ng/mL improves overall health and reduces the severity of chronic

diseases, infection and autoimmunity, and all-cause mortality. Furthermore, it minimizes infection-related complications,

including COVID-19-related hospitalizations and deaths. Vitamin D sufficiency is the most cost-effective way to reduce

illnesses, infections, and healthcare costs. It should be a part of routine public health and clinical care.
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