Nutraceuticals for Improving Sleep Quality

Subjects: Nutrition & Dietetics

Contributor: Amanda Bulman , Nathan M. D'Cunha , Wolfgang Marx , Andrew J. McKune , Rati Jani , Nenad Naumovski

Functional beverages can be a valuable component of the human diet with the ability to not only provide essential hydration but to deliver important bioactive compounds that can contribute to chronic disease treatment and prevention. One area of the functional beverage market that has seen an increase in demand in recent years are beverages that promote relaxation and sleep. Sleep is an essential biological process, with optimal sleep being defined as one of adequate duration, quality and timing. It is regulated by a number of neurotransmitters which are, in turn, regulated by dietary intake of essential bioactive compounds.

sleepnutraceuticalstheaninechamomile extracttryptophancysteinefunctional beverages

1. Introduction

Beverages play an important role in human health and nutrition, not only from the perspective of hydration, but also as mediators of social and cultural connectedness. They can also serve as a source of essential nutrients, particularly for people who may not consume a balanced diet ^[1]. Beverages are also becoming increasingly popular carriers for the development of functional food products. The last few decades have seen increasing awareness and emphasis on the importance of nutrition for overall health ^[2]. In addition, busy lifestyles, an aging population and rising healthcare costs in most developed countries have fueled demand for functional food products, particularly beverages ^{[3][4]}. These products may contain naturally derived bioactive compounds that can be used to potentially treat and prevent a range of chronic illnesses in addition to optimizing general health ^{[4][5][6]}.

A substantial body of evidence exists on the health-protective benefits of specific dietary patterns rich in antioxidants and polyphenols, most notably the Mediterranean diet ^{[7][8]}. In addition, traditional medicine is now widely accepted in modern medicine as consumers seek more 'natural remedies' to treat and prevent illness ^[9]. In Indian Ayurvedic medicine, for example, Ashwagandha root, is used to treat a range of brain disorders including, anxiety, depression, Alzheimer's disease, Parkinson's disease, Schizophrenia and bipolar disorder ^[10]; Malkangani oil or Jyothishmati oil, obtained from *Celastrus paniculatus*, provides neuromodulatory, anti-oxidant, anti-inflammatory and sedative properties, among others ^[11]; *Nardostachys jatamansi* provides numerous beneficial properties by acting as an anticonvulsant, neuro-protective, hepatoprotective, neuroprotective and hypotensive ^[12]; and *Terminalia arjuna* which is used for angina, hypertension, congestive heart failure and dyslipidemia ^[13].

These dietary patterns and the integration of traditional medicine have led to the research and development of bioactive compounds originating from plant, fungi and animal sources, representing an innovative and fastemerging area of the food industry ^{[14][15]}. Advancement in extraction technologies and refinement of isolation and purification techniques has given rise to specifically formulated products with relatively high purity of selective ingredients of near pharmaceutical standards, providing the amalgamation of nutritional and pharmaceutical products jointly identified as nutraceuticals ^{[15][16][17]}. Whilst consumption of a number of supplements in the form of tablets, powders and extracts to improve health is widely accepted, the benefit of a functional beverage is the ability to deliver one or several nutraceutical compounds in one product ^[18]. Additional benefits include their convenience, storage capabilities, size and flavor variabilities, acceptability and relatively low cost ^[19]. Some successful commercial examples of the functional beverage concept include sports drinks, ready to drink teas, energy drinks and vitamin-enriched water ^[20]. These beverages are often designed to improve hydration, concentration and endurance; and delivery of essential vitamins, minerals and polyphenols ^{[4][18]}. One area of the commercial health and wellness market which has seen an increase in demand are functional beverages to improve sleep quality ^[21].

Sleep is essential for wide ranging physiological processes including growth, cognition, immune function, metabolism and cardiovascular health ^{[22][23]}. Optimal sleep comprises adequate duration, quality and timing that is regulated by several neurotransmitters including glutamate, acetylcholine, dopamine, serotonin, norepinephrine, histamine, orexin, gamma-aminobutyric acid (GABA), adenosine, melatonin and melanin-concentrating hormone, among others ^[24]. Some of these compounds are also important in mood, cognition, appetite, behavior and stress ^[25]. A bidirectional relationship exists between sleep disruption and physiological state, that is influenced by a number of different modalities (**Figure 1**), and an alteration in neurotransmitter levels can result in sleep disruption, fatigue, impaired performance and impaired memory ^{[26][27][28]}. Furthermore, chronic sleep disruption is associated with an increased risk of cognitive decline and memory impairment ^{[27][29]}, metabolic syndrome (MetS) ^[30], anxiety and depression ^[31], type 2 diabetes mellitus (T2DM) ^[32], cardiovascular disease (CVD) ^[33], inflammation and infection ^[34].

Figure 1. Factors Affecting Sleep Quality.

In support of the bidirectional relationship between diet and sleep, macronutrients have also been found to influence sleep quality. A review by St. Onge et al. (2016) reported that a high carbohydrate diet can negatively affect sleep quality by reducing slow-wave sleep and increasing rapid eye movement sleep (REM) ^[35]. Whereas, a high protein diet can positively effect sleep quality by reducing sleep onset latency and the number of wake episodes during the night ^[35]. Analysis of data from the National Health and Nutrition Survey (NHANES) conducted in the USA (n = 26,211) has also found that micronutrient deficiencies are inversely associated with sleep duration ^[36]. Furthermore, adherence to diets that are rich in fish, fruits, vegetables and nuts, such as the Mediterranean diet, have been found to be associated with better sleep quality, including better sleep efficiency and reduced sleep disturbances ^{[37][38]}. These diets are rich sources of important compounds involved in the sleep-wake cycle such as L-tryptophan, melatonin, magnesium and vitamin B6, among others, which have been the subject of numerous intervention studies to improve sleep quality ^{[37][38][39]}. These compounds are now being included in commercially available functional relaxation or sleep beverages.

2. Active Compounds

The summary of active compounds included here is presented in **Table 1**. The range of compounds is comprised of amino acid, hormone, vitamin and mineral compounds that influence the neurological pathways involved in sleep

with potential for development into a functional beverage.

Table 1. Selected nutraceuticals used in the promotion and improvement of quality of sleep and their outcomes in different population groups.

Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Outcome Measures	Effects on Sleep
		Adults without sleep complaints (<i>n</i> = 14)	20 g L-TRP- enriched			Improved morning alertness (<i>p</i> = 0.013) and increased
	Markus et al. (2005) ^[40]	Age (22 ± 3 years)	A-LAC protein	Double-blind	Subjective Sleep Quality Measures:	attention (p = 0.002) in both
	Netherlands	Adults with mild sleep complaint	(4.8 g L-TRP/100 g amino acids <i>w/w</i>)	Placebo- controlled	Stanford Sleepiness Scale	groups. Improved performance
		(n = 14) Age (22 ± 2 years)	1 night			in participants with sleep complaints only (<i>p</i> = 0.05).
L- Tryptophan	Ong et al. (2017) ^[<u>41</u>]	Healthy males without sleep	20 g L-TRP- enriched	Double-blind Placebo-	Objective Sleep Quality Measures (Actigraphy):	Increased objective and subjective
	Australia	complaint	A-LAC protein	controlled	Total sleep time	total sleep time by 12.8%
		(<i>n</i> = 10)	(4.8 g L-TRP/100 g amino acids	Randomized Crossover	Sleep onset latency	(<i>p</i> = 0.037) and 10.8%
		Age (26.9 ± 5.3 years)	w/w) of A-LAC protein	010330701	Sleep efficiency (%)	(p = 0.013),
			2 nights		Wake time after sleep onset	respectively; increased objective

					Outcome	
Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Measures	Effects on Sleep
					Measures	
					Subjective Sleep	sleep
					Measures (Sleep	efficiency by
					Log):	7.0%
					Bedtime	(p = 0.028).
					Time taken to fall	
					asleep	
					Frequency of	
					awakenings	
					Time taken to return	
					to sleep	
					Waking time	
					Rising time	
					Total sleep time	
	Cubero et al.	Pre-weaning	Diet A: Standard	Double-blind	Objective Sleep	Diet C
	(2007) ^[<u>42</u>]	infants	formula Diet B:	Randomized	Quality Measures	improved
	Spain	(<i>n</i> = 30)	Standard formula during the day	Ranuonnizeu	(Actigraphy):	objective total sleep time (p
		(and night formula		Time of nocturnal	< 0.05) and
		Age (4–20	(3.4 g L-TRP/100		sleep	subjective
		weeks)	g protein)		Martin	(parent) sleep
					Minutes of immobility	improvement;
			Diet C: Day formula during		minobility	Diet B and
			the day (1.5 g L-		Sleep latency	Diet C reduced
			TRP/100 g		Nooture	objective
			protein) + night		Nocturnal awakenings	sleep onset
			formula (3.4 g L-		awanciiiiyo	latency; Diet
			TRP/100 g		Sleep efficiency (%)	B improved
			-			

					Outcome	
Compound	Reference/Country	Participants	Intervention/Duration	Study Design		Effects on Sleep
					Measures	
			protein) in the		Sleep Diary:	objective
			evening			sleep
					Sleep over 24 h	efficiency.
			1 week per			
			formula		Number of bottle	(All p's <
					feeds	0.05)
					Observations or	
					incidences that	
					would influence the	
					infants rest	
	Bravo et al.	Older adults	L-TRP (60 mg)	Blind assay	Objective Sleep	Improvements
	(2013) ^[<u>43</u>]	with sleep	enriched cereal		Quality Measures	in objective
		difficulties	for breakfast and		(Actigraphy):	sleep
	Spain		dinner			measures
		(<i>n</i> = 35)			Time in bed	including
			1 week			increase in
		Age (55–75			Assumed sleep	actual sleep
		years)			Actual sleep time	time (p <
					Actual sleep time	0.01);
					Sleep onset latency	increase in sleep
					Sleep efficiency (%)	efficiency (<i>p</i> < 0.001);
					Number of	increase in
					awakenings	immobile time
						(<i>p</i> < 0.01);
					Immobile time	reduction in
						sleep latency
					Total activity	(<i>p</i> < 0.01);
					Fragmentation	wake bouts
					index (indicator of	(<i>p</i> < 0.05);
					quality of rest)	total activity

Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Outcome Measures	Effects on Sleep $(p < 0.01);$
						(<i>p</i> < 0.01); fragmentation index (<i>p</i> < 0.001).
5-HTP	Bruni et al. (2004) ^[44] Italy	Children with sleep terrors (n = 45) Age (3.2– 10.6 years)	2 mg/kg (Daily) 20 days	Randomized, controlled	Frequency of sleep terrors	After 1-month: Sleep terrors reduced > 50% from baseline in 93.5% of children treated with 5- HTP ($p <$ 0.00001). After 6 months: 51.6% were sleep-terror free ($p <$ 0.001).
Melatonin	Scheer et al. (2012) ^[45] USA	Hypertensive adults on beta blockers (<i>n</i> = 16)	2.5 mg (nightly, 1 h before bedtime) 3 weeks	Randomized, Double-blind Placebo- controlled	Objective Sleep Quality Measures (Polysomnography): Sleep stages	Increased total sleep time by 32 min (<i>p</i> = 0.046); increased
		Age (45–64 years)		Parallel- group design	Total sleep time	sleep

Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Outcome Measures	Effects on Sleep
					Time in bed	efficiency by 7.6% (p =
					Sleep efficiency (%)	0.046).
					Objective Sleep Quality Measures (Actigraphy):	Decreased sleep onset latency to stage 2
					Sleep onset latency	NREM sleep by 14 min (p
					Total sleep time	= 0.001) and increased the
					Sleep efficiency (%)	duration of stage 2 NREM sleep by 42 min (p = 0.037).
	Grima et al. (2018) ^{[<u>46]</u>}	Adults with sleep	2 mg	Randomized,	Objective Sleep Quality Measures	Improved subjective
	Australia	disturbance post onset of	(nightly 2 h before bedtime)	Double-blind	(Actigraphy)	sleep quality
		traumatic brain injury	4 weeks	Placebo- controlled	Sleep onset latency	(p < 0.0001) and objective
		(<i>n</i> = 33)		Two-period	Total sleep time	sleep efficiency (p <
		Age (37 ± 11		Two-	Sleep duration	0.04).
		years)		treatment	Sleep efficiency (%)	
				Crossover study	Sleep Diary:	
				,	Sleep onset/offset	
					Sleep duration	

Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Outcome Measures	Effects on Sleep
					Subjective Sleep Quality Measures: PSQI ESS FSS	
	Xu et al. (2020) [47] China	Adults with primary insomnia (<i>n</i> = 97) Age (45–60 years)	3 mg (nightly 1 h before bedtime) 4 weeks	Randomized, Double-blind Placebo- controlled Parallel study	Objective Sleep Quality Measures (Polysomnography): Sleep stages Total sleep time Sleep onset latency Wake after sleep onset Sleep efficiency (%) Subjective Sleep Quality Measures: PSQI ESS ISI	Decreased objective sleep measures including early morning wake (p = 0.001) and decreased percentage of Stage 2 NREM sleep (p = 0.031).
L-Cysteine	Sadasivam et al. (2011) ^[48]	Adults with obstructive sleep apnea	600 mg (Mucinac,	Randomized,	Objective Sleep Quality Measures	Improvements in objective slow wave

Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Outcome Measures	Effects on Sleep
	India	(<i>n</i> = 20)	Cipla), three times per day	Placebo- controlled	(Polysomnography):	sleep as sleep percent
		Age (53.1 ±			Sleep stages	time (<i>p</i> <
		2.3 years)	30 days		Total sleep time	0.001) and sleep efficiency.
					Sleep onset latency	emeneriey.
					Wake after sleep	(p < 0.05).
					onset	Reduction in
					Sleep efficiency (%)	subjective Epworth
					Sleep apnea	Sleepiness Score (p <
					Snoring	0.001).
					Subjective Sleep	
					Quality Measures:	
					ESS	
		Healthy adult	4 × 50 mg	Randomized,	Objective Sleep	Improvements
	(2019) ^[<u>49</u>]	males	(nightly, 1 h	Double-blind	Quality Measures (Actigraphy):	in objective sleep
	Japan	(<i>n</i> = 22)	before bedtime)		(rougiaphy).	measures
		Age (27.5 ±	6 days	Placebo- controlled	Time in bed	including an increase in
		0.9 years)		Crossover trial	Wake after sleep onset	objective sleep
				trict	Sleep onset latency	efficiency (p < 0.047) and
					Sleep length	reduction in intermittent
					Sleep efficiency (%)	wakening (p < 0.044).

					Outcome	
Compound	Reference/Country	Participants	Intervention/Duration	Study Design		Effects on Sleep
					Measures	
					Subjective Sleep Quality Measures: Obstructive Sleep Apnea Inventory questionnaire	Improvementsin subjectivesleepmeasuresincludingfeeling ofrecovery fromexhaustion orfatigue scores $(p < 0.042)$ andimprovementin refresheduponawakeningscores $(p < 0.014).$
L-Theanine	Lyon et al. (2011) ^[50] Canada	Boys with ADHD (n = 98) Age (8–12 years)	2 × 100 mg (twice per day, morning and evening) 6 weeks	Randomized, Double-blind Placebo- controlled Parallel trial	Objective Sleep Quality Measures (Actigraphy): Wake after sleep onset Sleep onset latency Sleep length Nocturnal activity Sleep efficiency (%)	Improved objective measures including sleep efficiency (<i>p</i> < 0.05), and reduced nocturnal activity (<i>p</i> < 0.05).

Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Outcome Measures	Effects on Sleep
					Subjective Sleep Quality Measures: Pediatric Sleep Questionnaire	Improved subjective sleep
	Sarris et al. (2019) ^[51] Australia	Adults with GAD (n = 46) Age (40.7 ± 15 years in TG; 32.2 ± 9.29 years in PG)	225 mg (twice daily); increased to 450 mg (twice daily) if anxiety score did not reduce by ≥35% after 4 weeks 8 weeks	Randomized, Double-blind Placebo- controlled Multi-center pilot study	Subjective Sleep Quality Measures: ISI	satisfaction (p < 0.015); improvements in ISI scores for "difficulty in falling asleep" (p < 0.049); "Problems waking up too early" ($p <$ 0.017); and "interference with daily functioning" (p = 0.030) in control.
	Hidese et al. (2019) ^{[<u>52</u>] Japan}	Healthy Adults (<i>n</i> = 30)	200 mg tablet daily before sleep 4 weeks	Randomized, Double-blind	Subjective Sleep Quality Measures: PSQI	Improved subjective sleep quality (<i>p</i> < 0.013), reduced sleep

Compound Reference/Country Participants Intervention/Duration Study Design Measures Measures Age (48.3 ± 11.9 years) Age (48.3 ± 11.9 years) Placebo- controlled onset latency, sileop Crossover trial Crossover trial Objective Sleep Vitamin Mayer et al. (1996) Healthy a6.6 ± 5.2 years. Age (78.2 ± 1.9 years) Age (78.2 ± 1.9 years) Mayer et al. (1996) Reduction in objective sileop time Vitamin Mayer et al. (1996) Age (CB12 = 1.4 days Randomized MB12 = 36.2 ± 5.2 years) Single-bind methycobacharin (MB12) Single-bind Between subjects Siep onset latency, Siep onset latency, Siep efficiency (%) Subjective Sleep Quality Measures; Reduction in objective siep time Luboshitzky et al. (2002) Healthy (n = 12) 100 mg (5.00 PM) Randomized (5.00 PM) Objective Sleep Quality Measures; Objective Sleep Quality Measures; Israel 1.00 mg (5.00 PM) Randomized (5.00 PM) Objective Sleep Quality Measures; No effect. Quality Measures;						Outcome	
Vitamin Mayer et al. (1996) [53) Age (48.3 ± 11.9 years) Placebo- controlled onset latency, controlled sleep adisturbance and use of sleep medication (All p's < 0.05). Vitamin Mayer et al. (1996) [53) Healthy Aduits Age (CB12 = 36.6 ± 5.2 years. 3 mg (cyano-(CB12) or methylobalamin 36.6 ± 5.2 years. Single-bind toward towards Sleep length (Aduits) Reduction in objective sleep time B12 Mayer et al. (1996) [53) Age (CB12 = 36.6 ± 5.2 years. Single-bind methylobalamin (MB12) Single-bind Between subject's 14 days Sleep length (MB12) MB12 group improvements in sleep quality and daytime alerness (All p's < 0.05). Luboshitzky et al. (2002) [54] Healthy Aduit Males 100 mg (Su0 PM) Randomized (Su0 PM) Objective Sleep Quality Measures (EEG): No effect. (EEG):	Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Maggurag	Effects on Sleep
11.9 years) controlled sleep 11.9 years) controlled disturbance 11.9 years) controlled sleep 11.9 years) controlled controlled 11.9 years) controlled sleep 11.9 years) controlled controlled 11.9 years) controlled sleep 11.9 years) controlled controlled 11.9 years) sleep sleep 11.9 years)						Measures	
Vitamin Mayer et al. (1996) [53] Healthy Adults 3 mg (n = 20) Radomized (2qano-(CB12) or methylcobalamin (MB12) Single-bilid Between subject's 14 days Single-bilid Between subject's 14 days Sleep length MB12 erace (BEI2) Reduction in objective sleep time Mayer et al. B12 Mayer et al. (1996) [53] Age (CB12 = 36.6 ± 5.2 years. Cyano-(CB12) or methylcobalamin (MB12)) Single-bilid Between subject's 14 days Sleep length Mortural activity design Nocturnal activity Subjective Sleep Quality Measures In sleep quality and daytime alertness (All p's < 0.05).					controlled Crossover		sleep disturbance and use of sleep medication (All p's <
al. (2002) ^[54] Adult Males Quality Measures (5.00 PM) Placebo- (EEG): Israel (n = 12) controlled Once Sleep stages (%)		-	Adults (n = 20) Age (CB12 = 36.6 ± 5.2 years. MB12 = 36.2	(cyano-(CB12) or methylcobalamin (MB12))	Single-blind Between subject's	Quality Measures (Actigraphy): Wake after sleep onset Sleep onset latency Sleep length Nocturnal activity Sleep efficiency (%) Subjective Sleep Quality Measures: Morning and	objective sleep time (p = 0.036) in MB12 group improvements in sleep quality and daytime alertness (All
		al. (2002) ^[54]	Adult Males	(5.00 PM)	Placebo- controlled	Quality Measures (EEG):	No effect.

Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Outcome Measures	Effects on Sleep
		Age (22–26 years)			Total recording time Sleep latency Actual sleep time Sleep efficiency (%) REM latency	
Vitamin B6	Ebben et al. (2002) ^[55] USA	Healthy Adults (<i>n</i> = 12) Age (18–28 years)	100 mg 250 mg Placebo (All nightly before bed) 5 days per treatment	Placebo- controlled Double-blind Crossover trial	Subjective Sleep Quality Measures: Sleep questionnaire Dream Salience Scale	Increase in dream salient scores in 250 mg B6 treatment compared to placebo (<i>p</i> = 0.05).
	Aspy et al. (2018) ^[56] Australia	Healthy Adults (n = 100) Age (mean = 27.5)	120 mg (pyridoxine hydrochloride) Vitamin B Complex (120 mg pyridoxine hydrochloride + other B vitamins) Placebo	Randomized Double-blind Placebo- controlled trial	Subjective Sleep Quality Measures: Sleep log	Increased the amount of dream content recalled ($p =$ 0.032) and decrease in sleep quality ($p = 0.014$) in B complex group.

Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Outcome Measures	Effects on Sleep
			(All nightly before bed) 5 days			
itamin D	Ghaderi et al. (2017) ^{[<u>57</u>] Iran}	Adults undergoing Methadone Treatment. (<i>n</i> = 68) Age (25–70 years)	50,000 IU (once per fortnight) 12 weeks	Randomized Double-blind Placebo- controlled trial	Subjective Sleep Quality Measures: PSQI	Improvement in subjective sleep score (p = 0.02).
	Mason et al. (2016) ^[58] USA	Overweight menopausal females with low VitD (n = 218) Age (50–75 years)	2000 IU vitamin D3 (daily) 12 months	Randomized Double-blind Placebo- controlled trial	Subjective Sleep Quality Measures: PSQI	Increase in PSQI score (<i>p</i> = 0.01) and increase in need to take sleep medication (<i>p</i> < 0.01).
ʻitamin C	Dadashpour et al. (2018) ^[59] Iran	Adults on hemodialysis with sleep disorder (<i>n</i> = 90) Age (18–70 years)	500 mg /5 cc intravenously–3 times per week 8 weeks	Randomized Double-blind Trial	Subjective Sleep Quality Measures: PSQI VAS	Reductions in subjective sleep quality, sleep latency, daytime dysfunction (All <i>p</i> 's = 0.001).

 Pan, S.-Y.; Litscher, G.; Gao, S.-H.; Zhou, S.-F.; Yu, Z.-L.; Chen, H.-Q.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ko, K.-M. Historical Perspective of Traditional Indigenous Medical Practices: The Current Renaissance and Conservation of Herbal Resources. Evid. Based Complement. Altern. Med. 2014, 2014, 1–20.

Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Outcome Measures	Effects on Sleep	andh 95. Astrus
	Yeom et al. (2007) ^[60] Korea	Adults with Stage IV cancer (n = 39) Age (53.5 \pm 10.5 years)	10 g vitamin C intravenously twice with 3-day interval, then 4 g oral supplement daily 1 week	Prospective study	Subjective Sleep Quality Measures: European Organization for Research and Treatment of Cancer Core Quality-of-Life questionnaire (EORTC QLQ- C30)-Korean Version	Lower subjective scores for sleep disturbance and fatigue (<i>p</i> < 0.005).	s of 5. Tradit ealth s to Saf.
			10 mmol for 3		Objective Sleep Quality Measures (EEG):		n, ar
	Murck et al. (2000) ^[61]	Older adults without sleep disturbances (n = 12)	days, then 20 mmol for 3 days, then	Randomized Placebo- controlled	Sleep stages (%) Total recording time Sleep latency	Increase in slow wave sleep (p < 0.05), delta and sigma	ls: 201
	Germany	Age (60–80 years)	30 mmol daily for 14 days	Crossover design	Actual sleep time	waves (p < 0.05 for both).	ffects
					REM latency		s. .nd
Magnesium	Abbasi et al. (2012) ^[62] Iran	Older adults (n = 43)	414 mg magnesium oxide (250 mg Mg) Twice per day	Double-blind Placebo- controlled trial	Subjective Sleep Quality Measures: ISI	Increase in subjective sleep time	ıd

 Businesswire. Global Relaxation Drinks Market (2019 to 2027)—CAGR of 14.06% Expected During the Forecast Period—ResearchAndMarkets.com. 2020. Available online: https://www.businesswire.com/news/home/20200317005330/en/Global-Relaxation-Drinks-Market-2019-to-2027---CAGR-of-14.06-Expected-During-the-Forecast-Period----ResearchAndMarkets.com (accessed on 17 March 2021).

2 Compound		Reference/Country	Participants	Intervention/Duration	Study Design	Outcome	Effects on Sleep	
		,	· · · · · · · · · · · · · · · · · · ·) <u>-</u> 9.1	Measures		
			Age (65 ±	8 weeks		Sleep Log	(<i>p</i> = 0.002)	54,
			4.6 years)				and	
							subjective sleep	6.
							efficiency ($p =$	G.;
							0.03);	l of
							decrease in	
							subjective	
							sleep onset	nd
							latency ($p =$	
							0.04), and	
							insomnia	Bra
							severity index	
							(p = 0.006).	
								cep
		Hornyak et al.	Alcohol	30 mmol	Open Pilot	Objective Sleep	Decrease in	
		(2004) ^[63]	dependent	Magnesium	Study	Quality Measures	objective	lt l
			adults in			(Polysomnography):	sleep latency	р
		Germany	subacute	L-aspartate		-		43-
			withdrawal	hydrochloride (10		Sleep stages	(<i>p</i> = 0.03),	43-
			with sleep	mmol morning		Total sleep time	improvement	
			disturbance	and 20 mmol		iotal sleep tille	in subjective	
			(- 11)	evening) daily		Sleep onset latency	sleep quality	
			(<i>n</i> = 11)	4 weeks			(<i>p</i> = 0.05).	oroi
				- 00000		Wake after sleep		
						onset		ld
								iu
						Sleep efficiency (%)		
						Periodic leg		ide
						movements in sleep		420
						(PLMS)		720
						Subjective Sleep		ur.
						Quality Measures:		ur.

- Ibarra-Coronado, E.G.; Pantaleón-Martínez, A.M.; Velazquéz-Moctezuma, J.; Prospéro-García, O.; Méndez-Díaz, M.; Pérez-Tapia, M.; Pavón, L.; Morales-Montor, J. The Bidirectional Relationship between Sleep and Immunity against Infections. J. Immunol. Res. 2015, 2015, 1–14.
- 35. St-Onge, M.-P.; Mikic, A.; Pietrolungo, C.E. Effects of Diet on Sleep Quality. Adv. Nutr. 2016, 7, 938–949.

Compound	Reference/Country	Darticinante	Intervention/Duration	Study Decian	Outcome	Effects on Sleep	eq
Compound	Reference/Country	Participarits		Study Design	Measures	Ellects on Sleep	
					PSQI		an 20
					Objective Sleep Quality Measures (Actigraphy):	Improvements	ane :iat
			Group A: Placebo		Wake after sleep onset	in objective sleep	201
		Healthy	Group B: 15 mg	Randomized	Sleep onset latency	efficiency in group B (<i>p</i> =	
	Saito et al. (2017) ^[64]	Adults	Group C: 15 mg + Astx	Double-blind	Sleep length	0.025); objective	N. nir
Zinc	Japan	(n = 94)	Group D:	Placebo- controlled	Frequency	sleep onset latency in	
		Age (20–84 years)	Placebo + 16 mg + Astx	Parallel group trial	Nocturnal activity	Group B and D (<i>p</i> < 0.032)	of
			12 weeks	9.000 1101	Sleep efficiency (%)	and (<i>p</i> = 0.004),	, A.
					Subjective Sleep Quality Measures:	respectively.	э.
					PSQI		arri :ota
	Gholipour et al. (2018) ^[65]	ICU nurses	1 × 220 mg	Multi-center	Subjective Sleep Quality Measures:	Improvements in subjective	.012
	Iran	(<i>n</i> = 54)	(every 72 h)	Randomized	PSQI	total sleep quality (p <	in
		Age (31.2 ± 5.42 years)	1 month	Two parallel group	,	0.002); sleep onset latency	а, S
				Placebo- controlled		(p < 0.003), sleep duration	th
				trial		(p < 0.02) and total sleep	cac al.

- 47. Xu, H.; Zhang, C.; Qian, Y.; Zou, J.; Li, X.; Liu, Y.; Zhu, H.; Meng, L.; Liu, S.; Zhang, W.; et al. Efficacy of melatonin for sleep disturbance in middle-aged primary insomnia: A double-blind, randomised clinical trial. Sleep Med. 2020, 76, 113–119.
- 48. Sadasivam, K.; Patial, K.; Vijayan, V.K.; Ravi, K. Anti-oxidant treatment in obstructive sleep apnoea syndrome. Indian J. chest Dis. Allied Sci. 2011, 53, 153–162.

4	Compound	Reference/Country	Participants	Intervention/Duration	Study Design	Outcome Measures	Effects on Sleep	2015,
5							quality score $(p < 0.008).$	ve uble-

51. Sarris, J.; Byrne, G.J.; Cribb, L.; Oliver, G.; Murphy, J.; Macdonald, P.; Nazareth, S.;

Karamacoska, D.; Galea, S.; Short, A.; et al. L-theanine in the adjunctive treatment of generalized Note: L-TRP-L-Tryptophan: A-LAC-alpha-lactalbumin: EEG-Electroencenhalography: 5-HTP-5anxiety disorder: A double-blind, randomised, placebo-controlled trial. J. Psychiatr. Res. 2019, hydroxytryptophan; SWS-Slow Wave Sleep; REM-Rapid Eye Movement; NREM-Non-Rapid Eye Movement; 110, 31-37. ADHD-Attention Deficit Hyperactivity Disorder; GAD-Generalized Anxiety Dissorder; TG-Treatment Group; PG-5-Plactide Grosp; PSQM-Pittsburghe Steep Shiding Index; Womatensive Cekie Unit, HSSGE Worth Steep Steep State State

58-31aNutraccuticalseas/Potential Targets for the Development of a Functional Beverage for Improving Sleep Quality

54. Luboshitzky, R.; Ophir, U.; Nave, R.; Epstein, R.; Shen-Orr, Z.; Herer, P. The effect of pyridoxine The researchers have indicated that L-TRP and melatonin may effectively improve sleep quality, as expected, due administration on melatonin secretion in normal men. Neuro Endocrinol. Lett. 2002, 23, 213–217. to their central roles in the sleep-wake cycle and the extensive studies conducted on these compounds. While the 55/ideabens Mill Lecalvericania and Spicebname Ats Effects of Physiolaxine on face and guarding in the study eto the Pergepta Mobileskills 12602a 94 135-1400 transmitters of the sleep-wake cycle, particularly serotonin and melatonin. Another finding of this research is the association between inflammation and oxidative stress on sleep 56. Aspy, D.J.; Madden, N.A.; Delfabbro, P. Effects of Vitamin B6 (Pyridoxine) and a B Complex quality. Oxidative stress leads to overexcitation of glutamate, decreasing L-CYS uptake. This also activates the Preparation on Dreaming and Sleep. Percept. Mot. Ski. 2018, 125, 451–462. kynurenine pathway, redirecting L-TRP and reducing sleep quality ^[66]. The use of compounds with antioxidant 57ro Gehaderisuch; as an affet, and Cand Matminero and Banavylis Azade Medi Bahmapioving Speepig Zaufylipical trialg oxidative affests of addition Revealementation on asyrebological symptops and metaboligraphiles in of traditional traditiona traditional trials. In 7 many eases, particularly for the herbal varieties, an extract in the form of a capsule was used to evaluate 518. Mastikeness, Tarsthua, the Bane offert any cot we achieved through usual visit consumption of the preverage. vitamin D associated with deterioration of sleep quality among postmenopausal women. Prev. Given the common physiological Med. 2016, 93, 166–170. nutraceutical combinations could be effective in improving sleep quality through either a synergistic or enhancing 5816 Pradasshour, Side Haimini, MeSstudieshaniking Effect offictraven ous attamina Greephlementation on plex conthe auality of sheep of thing and restless legistrictione in patients undergoing hemodialysis; A double-blind randomized clinical trial. J. Nephropharmacol. 2018, 7, 131-136. The future directions for development of functional beverages to improve sleep quality must consider several 60. Yeom, C.H.; Jung, G.C.; Song, K.J. Changes of Terminal Cancer Patients Health-related Quality factors to ensure its claims of functionality are substantiated. The bioavailability and functionality of the of Life after High Dose Vitamin C Administration. J. Korean Med. Sci. 2007, 22, 7–11. nutraceutical compound within the beverage may be affected by dose, solubility, pH, possible interactions with the Geverence with the strict of t Meraverises age related steep evaluating of appressing by new indeuropsychop ber macal 2000 109

Whate as 7G. THE is reported to have a bioavailability of approximately 45%-54% following digestion ^[70]. The mechanism of action of the nutraceutical and its interaction with other drugs is also important to consider as it may 62. Abbasi, B.; Kimiagar, M.; Sadeghniiat, K.; Shirazi, M.M.; Hedayati, M.; Rashidkhani, B. The effect interfere with the action of the drug. For example, magnesium supplementation and the absorption of of magnesium supplementation on primary insomnia in elderly: A double-blind placebo-contr channel blockers. It may enhance the effect of a drug resulting in an adverse reaction, such as L-TRP clinical trial. J. Res. Med. Sci. 2012, 17, 1161–1169. supplementation potentially increasing peripheral serotonin in conjunction with SSRI's. Furthermore, herbal 63xtHolsyxAkciMcaHeastaR oVeit100; GeachveHcoRsinthensy, navMagnesikeneffeenteneest of BriteranytAlcechtelas due Dependence Patienzein Disring Subarcuten With drewiali Ane Opever Edie tastu die vite brief von Bographeutical comb60h09. Willin Fre beverage Outring storage Inavalso affect their bioavailability [68]. These compounds may 672 ed anicrom.censulation, whereby a compound is encapsulated in a foodegrade, higher adable shell to protect its biozyailability fand shalt life [71] Witamin Geis susceptible to edegradation during fand preservation [72], whereas L-THE as stable in acidin environments, near withstand high temperatures and have been found of have been foun ^[73]. Additionally, a sensory profile of the beverage is essential to ensure its likeability. NAC is reported to have a 65. Baradari, A.G., Alipour, A., Mahdavi, A., Sharifi, H., Nouraei, S.M., Zeydi, A.E. The Effect of Zinc pungent taste and smell due to its sulfur groups and would therefore require additional flavors and delivery to make Supplementation on Sleep Quality of ICU Nurses: A Double Blinded Randomized Controlled Trial. Work Health Saf. 2018, 66, 191-200 after consuming the drink may disrupt normal sleep. Furthermore, when assessing the effectiveness of the 662 verage rithe: Ressociective strep Fas Saskinents Astach, as: a Etraph Moreed D. conditionation with Testine Or e sleep dia Cacaria towesten Bonca daroce a Docoetian Oxil data or espensive discesses en Chineffictery. Aging 2018, ume 13, 757-772.

- 67. Granato, D.; Nunes, D.S.; Barba, F.J. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends Food Sci. Technol. 2017, 62, 13–22.
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. A practical guide for designing effective nutraceutical combinations in the form of foods, beverages, and dietary supplements against chronic degenerative diseases. Trends Food Sci. Technol. 2019, 88, 179–193.
- 69. DeMuro, R.L.; Nafziger, A.N.; Blask, D.E.; Menhinick, A.M.; Bertino, J.S., Jr. The Absolute Bioavailability of Oral Melatonin. J. Clin. Pharmacol. 2000, 40, 781–784.
- 70. Scheid, L.; Ellinger, S.; Alteheld, B.; Herholz, H.; Ellinger, J.; Henn, T.; Helfrich, H.-P.; Stehle, P. Kinetics of L-Theanine Uptake and Metabolism in Healthy Participants Are Comparable after Ingestion of L-Theanine via Capsules and Green Tea. J. Nutr. 2012, 142, 2091–2096.
- 71. Ye, Q.; Georges, N.; Selomulya, C. Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends Food Sci. Technol. 2018, 78, 167–179.
- 72. Dhakal, S.P.; He, J. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Res. Int. 2020, 137, 109326.
- 73. Williams, J.; Kellett, J.; Roach, P.D.; McKune, A.; Mellor, D.; Thomas, J.; Naumovski, N. I-Theanine as a Functional Food Additive: Its Role in Disease Prevention and Health Promotion. Beverages 2016, 2, 13.

74. Greene, S.C.; Noonan, P.K.; Sanabria, C.; Peacock, W.F. Effervescent N-Acetylcysteine Tablets versus Oral Solution N-Acetylcysteine in Fasting Healthy Adults: An Open-Label, Randomized, Single-Dose, Crossover, Relative Bioavailability Study. Curr. Ther. Res. 2016, 83, 1–7.

Retrieved from https://encyclopedia.pub/entry/history/show/70602