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Contraction of striated muscle is triggered by a massive release of calcium from the sarcoplasmic reticulum (SR)
into the cytoplasm. This intracellular calcium release is initiated by membrane depolarization, which is sensed by
voltage-gated calcium channels CaV1.1 (in skeletal muscle) and CaV1.2 (in cardiac muscle) in the plasma
membrane (PM), which in turn activate the calcium-releasing channel ryanodine receptor (RyR) embedded in the
SR membrane. This cross-communication between channels in the PM and in the SR happens at specialized
regions, the SR-PM junctions, where these two compartments come in close proximity. Junctophilinl and
Junctophilin2 are responsible for the formation and stabilization of SR-PM junctions in striated muscle and actively

participate in the recruitment of the two essential players in intracellular calcium release, CaV and RyR.

triated muscle ER-PM junctions junctophilins excitation-contraction coupling

| 1. Introduction

Striated muscle evolved in early free-living invertebrates to confer locomotion to the individual and allow the search
for food and the avoidance of predators or harmful environments. The term striated arises from the typical striated
pattern of this tissue when observed in light and electron microscopy and defines both skeletal and cardiac muscle.
This striation is the manifestation of the finely organized contractile apparatus in each of the functional contractile
units of the muscle, the sarcomeres, which are arranged in series in the longitudinal direction of the muscle fiber.
By the 1960s, it was suspected that a chemical activator, later identified as calcium ions (Ca?*), was responsible
for muscle contraction, but it was still puzzling how a soluble activator, with a relatively slow diffusion speed, could
be responsible for the fast and uniform contraction of a muscle fiber that can be tens of microns thick. Experiments
conducted by Andrew Huxley and colleagues on frog, lizard and crab skeletal muscle revealed that the minimal
electrical stimulus necessary to achieve local contractions in the muscle fiber was lower in areas of the fiber that
fell along specific sections of the sarcomere W2 Such sections corresponded to regions where particular

structures, called triads, were observed in electron microscopy & (Figure 1).

Ultrastructural studies of the triad revealed a tri-partite organization, hence the name triad, in which
two enlarged regions of the sarcoplasmic reticulum (SR), called terminal cisternae, sandwich
another membrane structure, the T-tubule, which is in direct continuity with the plasma membrane
(PM) BBl The continuity of the T-tubule with the plasma membrane ensures fast transmission of the
membrane depolarization into the interior of the fiber, allowing for a uniform contraction. Therefore,
the triad in skeletal muscle represents a highly specialized form of ER-PM junction in which the SR
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membrane and the T-tubule are joined together in close proximity and with considerable strength,
since they have to withstand mechanical stress provided by the repetitive contractions and stretching
of the muscle fiber, which in some cases can reach extreme levels €I,

Mammalian ventricular cardiac muscle shows a similar organization to that of skeletal muscle with T-tubules and
SR terminal cisternae. However, the specialized ER-PM junctions are arranged as dyads with a T-tubule contacting

a single SR terminal cisterna [& rather than triads (Figure 1).

Skeletal

Cardiac

Figure 1. Organization of ER-PM junctions in skeletal and cardiac muscle. Thin section electron micrographs
illustrating the different organization of ER-PM junctions in skeletal and cardiac muscle. The sarcoplasmic
reticulum and the T-tubule are pseudo-colored in yellow and pink, respectively. The gap separating the T-tubule
and the SR membrane is pseudo-colored in blue. The T-tubule is absent in cardiac peripheral couplings since the
SR is juxtaposed to the plasma membrane at the periphery of the fiber. Images are from Perni et al. & (triad),

Lavorato et al. 19 (dyad) and Perni et al. (111 (peripheral coupling).

Triads in skeletal muscle and dyads and peripheral couplings in cardiac muscle are the sites at which membrane
depolarization is translated into Ca?* release from the SR and, eventually, muscle contraction. This process, called
excitation—contraction (EC) coupling, requires the cross-talk between two main players: the ryanodine receptor
(RyR), a highly conductive Ca%* channel embedded in the SR membrane and responsible for the rapid release of
Ca®* from the SR, and the L-type Ca?* channel in the plasma membrane (T-tubule), which senses membrane

depolarization and activates the RyR. The way RyR is activated differs in the cardiac and skeletal muscle systems.
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In the former, the opening of the cardiac muscle L-Type channel Cay1.2 generates a rapid Ca2* influx through the
channel from the extracellular environment, causing a rapid increase in Ca?* concentration in the narrow space
separating the T-tubule and the SR in the dyad, and inducing the opening of the cardiac RyR isoform, RyR2. This
mechanism is defined as calcium-induced calcium release (CICR) 12, In skeletal muscle, the release of CaZ* from
the SR is directly triggered by the activation of the skeletal muscle L-type channel, Cay1.1. The voltage-induced
conformational change in Cay1.1 is mechanically transmitted to RyR1 13, causing its opening. This mechanism,

which is independent of Ca2* influx through Cay1.1, is known as voltage-induced calcium release (VICR).

In addition to the voltage sensor in the membrane (Cay) and the Ca?*-releasing channel in the SR (RyR), the
voltage-gated Ca?* channels B subunits are also essential for EC coupling 2413 Ca,1.1 and Cay1.2 channels
bind to the skeletal fla and cardiac 32a, respectively, through their alpha interacting domain (AID) located in the
intracellular loop connecting transmembrane domains | and Il 18 Beta subunits are crucial for facilitating the
trafficking of the channel into the plasma membrane and for modulating the channel activity 1471 |n skeletal
muscle, the adapter protein Stac3 is also required for voltage-induced calcium release 18129 The exact role of
Stac3 in skeletal muscle EC coupling is yet to be elucidated. Stac3 facilitates, but is not essential for, the
membrane trafficking of Cay1.1[29[21: nonetheless, knocking out Stac3 completely abolishes the voltage-induced
Ca?* release 18l21] The observation that Stac3 binds to the II-Il intracellular loop of Cay1.1 22, which is critical for
the cross-talk between Cay1.1 and RyR1 [23], suggests that Stac3 might allow or facilitate the mechanical coupling

between these two channels.

It appears evident that the association of all the EC coupling essential and accessory proteins and the efficient
cross-talk between Cayl in the plasma membrane and RyR in the SR require the accurate formation and
organization of ER (SR)-PM junctions, making the proteins responsible for the organization of such junctions also

essential for EC coupling.

| 2. The Junctophilin Family

Junctophilins (JPH1, JPH2, JPH3 and JPH4) were discovered by Takeshima and collaborators in the early 2000s
in muscles and neurons 24231 Al four isoforms of this family contain a C-terminal transmembrane domain that
embeds in the ER membrane and eight N-terminal domains called membrane occupation and recognition nexuses

(MORN), thought to be responsible for the association with the plasma membrane (Figure 2).
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Figure 2. Schematic representation of junctophilin’s domain structure and its arrangement in the ER-PM junction.
(A) Linear map showing the first (I through 1V) and second (VII to VIII) set of MORN domains (in pink) separated by
the joining domain (white). The a-helical domain (orange) follows MORN VIII and is separated from the
transmembrane (TM, in cyan) by the long divergent domain (green). The numbers underneath the map indicate
mutations associated with human cardiomyopathies identified in JPH2 and their relative positions. (B) Schematic
representation of junctophilin’s organization in the ER-PM junctions (adapted from Garbino et al. 28)). The MORN
motifs associated with the internal leaflet of the plasma membrane and the C-terminal transmembrane domain
embedded in the endo/sarcoplasmic reticulum membrane allow junctophilins to bridge the two membrane systems

together. Different domains are color-coded as indicated in (A).

3. Recruitment of Junctional Proteins by Junctophilinsl and
2

3.1. Recruitment of Skeletal Muscle Junctional Proteins
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JPH1 and JPH2, and specifically a region in the two junctophilins spanning approximatively from the second half of
the joining domain to the first half of the putative a-helical domain, co-immunoprecipitate with Cay1.1 24, A 20-
residue sequence in the C-terminal domain of Cay1.1 is directly involved in the interactions with junctophilins and
in the recruitment of Cay1.1 to triads [28. Additionally, Cay1.1 is recruited to junctions formed by JPH2 when the
proteins are expressed in non-muscle cell models together with the Cay1.1 auxiliary subunit la and Stac3 22,
Overall, this indicates that JPH1 and JPH2 have an active role in recruiting the voltage-gated CaZ* channel to

triads by binding directly to the channel; the disruption of this interaction interferes with the assembly of the triad [£Z]
28],

JPH1 co-immunoprecipitates with RyR1, a behavior that has not been observed for JPH2 2%, Nonetheless, JPH1
KO mice can still perform EC coupling 132 suggesting that the presence of RyR1 in junctions does not depend
solely on JPH1. Therefore, the recruitment of RyR1 in JPH2-induced junctions might be due to a weak interaction
that is not detected in biochemical assays or requires the presence of additional proteins, with Cay1.1 being a likely
candidate.

3.2. Recruitment of Cardiac Muscle Junctional Proteins

The cardiac L-type CaZ* channel Cay1.2 co-immunoprecipitates with JPH2 [B3l34] indicating that, as in skeletal
muscle, JPH2 likely plays a role in recruiting the voltage-sensor channel in the dyads and peripheral couplings of
cardiac muscle. Notably, the same C-terminal sequence identified as the Cayl.1 site of interaction with
junctophilins, is conserved in Cay1.2 28 suggesting that this sequence might also be involved in Cay1.2—JPH2
interactions.

Differently from what was found with JPH2 and RyR1, co-immunoprecipitation was observed between JPH2 and
RyR2 [B3I34] indicating a stronger interaction between the two proteins. This interaction is disrupted by the E169K
substitution located towards the N-terminal end of the JPH2 joining domain 2 and weakened by the R420Q
mutation in RyR2 [8 A stronger interaction with RyR2 might be required by JPH2 because it is the only
junctophilin isoform expressed in cardiac muscle and possibly because cardiac muscle lacks the additional

stabilization provided by the mechanical connection between RyR1 and Cay1.1 that exists in skeletal muscle 121,

| 4. Functional Studies on Junctophilins 1 and 2
4.1. Junctophilin 1

JPH1 knock-out mice die within 24 h after birth due to suckling defects leading to undernourishment. The suckling
defect is likely due to muscle weakness since the neuronal suckling reflexes are normal in knock-out mice B,
Functional studies on isolated hindlimb muscle showed abnormal twitch tension and a greater dependency on
extracellular calcium in KO mice muscles, suggesting that a significant fraction of RyR1s in the junctional SR are
not directly coupled with the Cay/1.1 channels in the T-tubules and therefore operate via calcium-induced calcium

release. Nonetheless, knock-out (KO) mice are still relatively mobile and show skeletal muscle-type EC coupling to

https://encyclopedia.pub/entry/20014 5/15



Junctophilinl and Junctophilin2 in Assembly of Sarcoplasmic Reticulum | Encyclopedia.pub

a certain degree, indicating that JPH2 can support voltage-induced Ca?* release in the absence of JPH1. From a
structural point of view, although no major disorganization of the fiber is noticed at the light microscopy level,
evident alterations are noticeable at the ultrastructural level BLI38] |n particular, the skeletal muscle of wt and JPH1
KO mice show a similar development in the embryonic stages until shortly after birth. At this age, wt muscle
experiences a significant increase in JPH1 expression, which is temporally correlated with the transition from
immature SR-PM junctions, mainly organized in dyads at this stage, into fully formed triads. This transition is
absent in JPH1 KO muscle B8 syggesting that JPH2 is important in forming the dyads, while JPH1 has a
crucial role in the conversion from dyads to triads in the fully mature skeletal muscle. The knocking down of
junctophilins using sh-RNA, leads to the impairment of store-operated Ca?* entry (SOCE), altered intracellular
calcium release and intracellular calcium stores B2 and to a reduction in RyR1 and Cayl.1 co-clustering
associated with a decrease in Ca, 1.1 membrane expression 2 both in myotubes and muscle fibers. In both these
studies, a shRNA against both JPH1 and JPH2 was used; hence, it was impossible to distinguish each isoform’s

relative contribution to the resulting phenotype.

4.2. Junctophilin 2

JPH2 knock-out mice die in utero due to cardiac failure. Ultrastructural analyses on embryonic myotubes of KO
mice revealed a substantial reduction in the number and extension of peripheral couplings 3. To avoid the
complication related to the early mortality of KO mice, van Oort et al. generated a conditional JPH2 knockdown
mice model to assess the effect of JPH2-reduced expression in the mature heart #9. Inducing JPH2 knockdown
led to an increased frequency of heart failure events. At the cellular level, this was explained structurally by T-
tubule remodeling and destabilization and disorganization of the dyads, and functionally by Cay1.2 and RyR2
uncoupling and the consequent reduction in the efficiency of calcium-induced calcium release. An increase in the
frequency of calcium sparks was noticed in knocked down isolated cardiomyocytes, suggesting that JPH2 might

also modulate RyR2 by reducing its activity.

A number of point mutations in JPH2 have been discovered in association with hypertrophic cardiomyopathy and
atrial fibrillation. The localization of these mutations spans from the N-terminal MORN motifs to the divergent
domain at the C-terminus, indicating that multiple regions of JPH2 are involved in supporting cardiac muscle

structure and function.

Amino acid substitutions N101R and Y141H in the MORN IV and VI, respectively, and S165F in the joining domain,
cause similar phenotypes such as JPH2 mislocalization, reduction in spontaneous Ca?* signaling and increased
cell size in HL-1 and H9c2 cell lines ¥, Mutations Y141H and S165F were also tested in skeletal muscle
myotubes 2l where they were found to induce myocytes hypertrophy, reduce EC coupling gain and increase
intracellular Ca?* concentration. Additionally, Y141H but not S165F pathogenically increased store-operated
calcium entry ¥2. Mutation E169K, located in the joining domain, causes weaker binding between JPH2 and RyR2
and increased spontaneous Ca?* leakage from the SR in the form of a spontaneous Ca?* release and increased
CaZ* sparks in isolated cardiomyocytes from a pseudo-knock-in mouse model 22!, The A405S mutation is located

in the putative o-helical region of JPH2. The equivalent mutation introduced in mice (A399S) resulted in
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cardiomyocytes with an irregular T-tubule pattern but otherwise relatively normal Ca?* signaling with only a

moderate increase in sarco—endoplasmic reticulum Ca2* ATPase (SERCA) activity.

| 5. Post-Transcriptional Regulation of JPH1 and JPH2

Conditions of elevated cytosolic Ca?* concentrations lead to fragmentation of junctophilins 1 and 2 in skeletal and
cardiac muscle. Murphy and colleagues 43! determined that exposure to elevated (=20 uM) intracellular [CaZ*] for
60 min led to the almost complete loss of full-length JPH1 and JPH2 in skeletal muscle fibers. This loss is mirrored
by a loss of contractile force in skinned skeletal muscle fibers after just one minute of exposure to 40 uM Ca?*. The
same authors also observed fragmentation of JPH1 after raising the intracellular [Ca®*] by supraphysiological
stimulation of the muscle fiber. Interestingly, the proteolysis of JPH1 temporally matched the autolytic activation of
calpain-p (calpainl). The link between calpain, specifically calpainl, and JPH1 cleavage was recently confirmed by

data from Tammineni and colleagues in patients with malignant hyperthermia susceptibility (MHS) and muscle cell
lines [44],

After the identification of several putative calpain binding sites also in JPH2 [24l43] the implication of calpain in the
proteolytic regulation of JPH2 was verified using calpain inhibitors to rescue the loss of JPH2 in an inducible heart
failure mouse model and in mice cardiomyocytes after ischemia/reperfusion[48l. Akin to what was shown by
Tammineni and colleagues in skeletal muscle, Guo and collaborators also observed that digestion by calpainl
releases several fragments of JPH2 B4 Among these fragments, a ~ 75 kDa N-terminal peptide (JPH2-NTP),
generated by calpainl cleavage at residues R565/T566 in the JPH2 divergent region, migrates into the nucleus,
where it binds to TATA box regions and interacts with the transcription machinery 42, Altogether, these results
indicate a fine modulation of junctophilin 1 and 2 as a way to regulate intracellular Ca?* homeostasis and possibly

reduce EC coupling gain in conditions of excessive intracellular Ca* concentration.

6. New Insights from Deep Learning Protein Structure
Prediction

Remarkable advancements in protein folding prediction were recently achieved by the artificial intelligence software
Alphafold2 2. Alphafold2 is a giant leap forward in the reliability of protein folding prediction compared to similar
existing software 8! and it has already been used to predict the structure of nearly the entire human proteome.
Based on Aplhafold2 prediction models, junctophilin 1 and 2 show a similar 3D structure, also shared by the
neuronal isoforms JPH3 and JPH4 (UniProt protein ID: Q9HDCS5, Q9BR39, Q8WXH2, Q96JJ6 for human JPHL,
JPH2, JPH3 and JPH4, respectively). The structure of the most ordered domains of junctophilin, specifically the
MORN repeats, the a-helical region and the transmembrane domain, are predicted with high confidence by
Alphafold2. In contrast, the joining and divergent domains are likely disordered, at least in the isolated protein, and
the structure cannot be predicted with reasonable confidence. According to the prediction model (Figure 3), the

MORN domains are arranged in an extended “halfpipe” configuration, with the a-helical domain lying on the convex
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side of this half-pipe (Figure 3B,C) and establishing interactions with charged residues in the MORN domains (see
the zoomed-in region in Figure 3C for an example).

A MORN [-VI MORN VII-viI

——

N Jeining ) :
N-term ', 1 SIS ,l domain [E Divergent T_M

Junctophilin 1

Junctophilin 2

Figure 3. Structure of the MORNSs and a-helical domains of human junctophilinl and junctophilin2.(A) Schematic
representation of junctophilin domain as shown in Figure 2; the solid red lines indicate the regions for which the
structure is predicted with high fidelity by Alphafold2 and illustrated in (B,C). (B,C) predicted structures of the
MORNSs- -helical domains of junctophilinl (B) and junctophilin2 (C). The a-helical domain (in red) lies on the
convex side of the MORN domains half-pipe structure (in blue) in both junctophilinl and junctophilin2. B-sheet
hairpins forming MORN domains | and VIII (green parentheses) and the position of the N-terminal end (N-t) and C-
terminal end (C-t) of the joining domain (in pink), which is absent in this representation, are indicated in (B). The
inset in (C) shows some of the residues that form the hydrogen bonds that stabilize the association between the
MORN domains and the a-helical domain of junctophilin2.

The structure obtained using Alphafold2 is substantially different from what was previously predicted using RaptorX
software by Gross and colleagues 2. In the structure described by Gross et al., the a-helical domain extends

beyond the MORN domains without interacting with them at all. However, Alphafold2 software is considered to be
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more accurate than most (if not all) of the currently existing structure-predicting software, especially for proteins for
which no homologous structures exist BB and the reciprocal arrangement of JPH2 MORN motifs and a-helical
domain predicted by Alphafold2 agrees with data from Li and collaborators 52 based on the crystal structure of the
protein MORN4. MORN4 contains a series of MORN motifs arranged in a half-pipe configuration followed by a brief
o-helical region. The helical region stabilizes the MORN domains by lying over part of the convex side of the half-
pipe. The structure solved by Li and colleagues is in many ways very similar to the sequence predicted by
Alphafold2 for JPHSs.

Furthermore, in MORN 4, the concave side of the MORN half-pipe structure, containing most of the conserved
residues that define the MORN domain, engages in the binding with the a-helical region of myosin3a. It is
conceivable that the concave side of the junctophilin MORN motifs could also participate in protein—protein
interactions with components of the EC coupling machinery. The particular arrangement of the o-helical domain
with respect to the MORN motifs predicted by Alphafold2 and suggested by the observations of Li and colleagues
challenges the classic view of the o-helical domain as the spacer that spans most of the junctional gap (see
schematic representation in Figure 2) and points to the divergent domain as the region that most likely fulfills this
role.
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