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Abiotic stresses strongly affect plant growth, development, and quality of production; final crop yield can be really

compromised if stress occurs in plants’ most sensitive phenological phases. Additionally, the increase of crop stress

tolerance through genetic improvements requires long breeding programmes and different cultivation environments for

crop performance validation. Biostimulants have been proposed as agronomic tools to counteract abiotic stress. Indeed,

these products containing bioactive molecules have a beneficial effect on plants and improve their capability to face

adverse environmental conditions, acting on primary or secondary metabolism. Many companies are investing in new

biostimulant products development and in the identification of the most effective bioactive molecules contained in different

kinds of extracts, able to elicit specific plant responses against abiotic stresses. Most of these compounds are unknown

and their characterization in term of composition is almost impossible; therefore, they could be classified on the basis of

their role in plants. Biostimulants have been generally applied to high-value crops like fruits and vegetables; thus, in this

review, we examine and summarise literature on their use on vegetable crops, focusing on their application to counteract

the most common environmental stresses.

Keywords: plant biostimulant ; environmental stress ; vegetables

1. Abiotic Stresses

Plants are continuously subjected to a multitude of stressful events, from seed germination through to the whole life cycle.

These stresses are commonly divided into two categories—biotic and abiotic stresses—depending on the nature of the

trigger factor. The first are caused by other living organisms, including insects, bacteria, fungi, and weeds that affect plant

development and productivity. The second are generally linked with the climatic, edaphic, and physiographic components

of the environment, when they are limiting factors of plant growth and survival. The most important abiotic stresses limiting

agricultural productivity, almost all over the world, are drought, salinity, non-optimal temperatures, and low soil fertility.

Among these, drought, and nutrient deficiencies are major problems, mostly in developing countries where the incomes of

rural people depend on agriculture . Actually, in “The State of Food and Agriculture 2007”, FAO reported that only 3.5%

of the global land area is not affected by some environmental constraints. In 1982, Boyer estimated that yield losses

caused by unfavourable environments were as much as 70% . Farooq et al.  reported that drought induced a

reduction of yield between 13% and 94% in several crops, depending on the intensity and duration of the stress.

Afterwards, Cramer et al.  estimated the impacts of different abiotic stresses on crop production in terms of the

percentage of global land area affected, considering the 2000 and 2007 FAO reports. They also referred to the increasing

number of publications focused on this topic between 2001 and 2011. The exact impact of these changes on agricultural

systems is extremely difficult to predict and it depends on numerous parameters that are all not always included in

predictive models. Even if some projections show that positive and negative outcomes on crop production could be

balanced in the medium term, several studies agree that in the long term, the negative ones will prevail . Based on

future scenarios, adaptation and mitigation are essential to increase the resilience capacity of agricultural systems and to

ensure crops yield and quality. Since environmental conditions cannot be controlled, several strategies on different levels

are required, such as agronomical techniques or breeding of more tolerant cultivars .

In 2010, at the society’s annual conference, Vegetable Breeding and Stress Physiology working groups of the American

Society for Horticultural Sciences focused particularly on the “Improvement of Horticultural Crops for Abiotic Stress

Tolerance” considering the effects of climate change . Up to now, most studies on climate change impacts focus on

major crops, and only few papers pay attention to fruit and vegetable in terms of production, quality, and supply chain 

. An important aspect to take into consideration is the effect of the combination of different stressful factors. Most of the

time, crops are subjected to several abiotic stresses that occur simultaneously in the field. In these situations, studying the

stresses separately is not enough because plant response is unique and cannot be predicted by the reply obtained when
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each factor is applied individually . Moreover, biotic and abiotic components typically interact in an ecosystem.

For instance, environmental conditions affect plant-pest interaction in different ways, by decreasing plant tolerance or

increasing the risk of pathogen infection .

Focusing on horticultural species, the tolerance to abiotic stresses is an important trait because their cash value is usually

higher than field crops, they require more resources for farming and because they provide a source of many nutrients,

fibre, minerals, and carbohydrates, which are essential in a healthy diet . Food and Agriculture Organization (FAO)

reports that about 90% of essential vitamin C and 60% of vitamin A for human comes from vegetables. Indeed, low fruit

and vegetable intake is a major contributing risk factor to several widespread and debilitating nutritional diseases.

According to the Global Burden of Disease Study, 3.4 million deaths can be attributed to low consumption of fruit and 1.8

million to low vegetables diets worldwide . Therefore, growing high-quality vegetables becomes one of the most

important goals of current agriculture, in order to meet the needs of the population and the increasing demand for fruit and

vegetables. Abiotic stresses do not only affect the yield but also the quality of these products, triggering morphological,

physiological and biochemical changes that can alter the visual appearance and/or the nutraceutical value in a way that

the product could become unmarketable . Bisbis et al.  investigated the double effects of elevated temperature and

increased CO  on the physiology of different vegetables. They observed several responses according to plant species

and severity of the stress, taking into consideration the possible adaptation strategies that could be implemented in order

to mitigate the effects of climate change. Nonetheless, these mechanisms are still under-researched and should be

studied in depth, because not only different species but different cultivars also could respond differently to the same

environmental stress. For example, cultivars with low levels of antioxidants are particularly vulnerable to oxidative stress

compared to those with high antioxidant activity . This aspect has a particular importance as selection criterion

in the choice of appropriate cultivars for a specific situation. Oxidative stress is a common phenomenon caused by several

adverse conditions; it generally occurs when the balance between the production of reactive oxygen species (ROS) and

the quenching activity is upset by a stressful event . Low levels of ROS are normally produced by different reactions

during physiological metabolisms like photosynthesis or respiration, and they play an important signaling role in plant

growth and development. Their amount dramatically increases under abiotic stress conditions and, if not controlled could

result in cellular damage and death. Besides their toxicity to proteins, lipids or nucleic acids, the increased production of

ROS under stressful conditions plays a key role in the complex signaling network of plants stress responses. Their

concentration is maintained at non-toxic levels by the activity of the antioxidant system: a wide range of enzymatic or non-

enzymatic antioxidant molecules are accumulated in plant tissues to quench ROS induced by stress .

Moreover, the maintenance of this equilibrium is also dependent on numerous factors, such as the timing of stress

application, its intensity and duration. Indeed, moderate or controlled stress conditions could have a positive effect on

quality traits of several crops . For example, water deprivation might be a useful crop management strategy to improve

the quality of lettuce and fleshy fruits in terms of nutritive and health-promoting value and taste, by stimulating the

secondary metabolism and concentration of different phytochemicals such as α-tocopherol, β-carotene, flavonoid and so

on . Besides the production of ROS scavenging compounds, plants also increase the biosynthesis and accumulation

of compatible solutes with an osmoprotective role, like sugars and proline.

Plants generally reply to non-optimal environmental conditions both with short- and long-term adaptation strategies, by the

activation and regulation of the expression of specific stress associated genes .

Since plants are sessile organisms and they have to cope with adverse external conditions; all these mechanisms are

essential for their survival. These strategies are effective if they are activated in time, in order to set a defense response

and anticipate the environmental changes that might affect plant growth irreversibly. The trade-off between growth and

acclimation metabolisms results in a sort of fitness cost for plants, since energy and nutrients normally destined to growth

and production are intended for stress responsive mechanisms .

Agronomic management conducted in order to enhance plant tolerance towards abiotic stresses evolved over the

centuries due to the technologic progress, climate change, scientific knowledge, and farmers’ experiences. The choice of

the correct cultivar, the best growing period, the sowing density, and the amount of water or fertilizers are some of the

most common strategies applied to mitigate the negative effects of abiotic stresses . Protected cultivation is a cropping

technique adopted to preserve plants from unfavourable outdoor conditions. It is mainly suited to vegetables and

floriculture production in a non-optimal environment, through the control of temperatures, radiation or atmospheric

composition. Another agronomical strategy, especially applied in vegetable crops, is soilless cultivation. This approach

allows controlling of water and nutrients, avoiding the use of soil for cultivation and all the problems related to it, like poor

quality or contamination.
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Grafting is an additional tool adopted to counteract environmental stresses and increase tolerance in vegetable crops.

This technique is applied especially to high-yielding fruits and vegetables such as cucurbits and solanaceous to enhance

tolerance against saline soil, nutrient or water deficiency, heavy metals or pollutants toxicity .

Agronomical strategies are essential in mitigating the negative effect of several abiotic stresses, but sometimes their

application is not enough. Moreover, current experiments aim to transfer one or more genes involved in signaling or

regulatory pathways, or genes encoding to molecules, such as osmolytes and antioxidants, conferring tolerance to a

specific abiotic stress . Several functional and regulatory genes involved in abiotic stress tolerance have been identified

and studied. Results of these studies can be exploited for genetic improvement aiming to introduce tolerance traits in

cultivated crops. Since different physiological traits related to stress tolerance are under multigenic control, the

manipulation of a single gene generally is not enough. Hence, scientists have paid more attention to regulatory genes,

including transcription factors, due to their ability to regulate a vast array of downstream stress-responsive genes at a time

.

However, the huge existing genetic variability among vegetable species, the lack of knowledge about minor cultivars

genome, the complex responses triggered by abiotic stress conditions and the limited strategies currently available make

genetic improvement really difficult and often inefficient. Moreover, besides the wide diversity of germplasms available,

plant tolerance to stress depends both on stress features such as duration, severity, and frequency, as well as the affected

tissues and development stages of crops .

Additionally, the increase of crop tolerance through genetic improvements requires many years of work and different

cultivation environments that cannot be always taken into consideration. As a result, several new cultivars that can be

used by the growers are released each year.

Another technique widely used for developing stress tolerance in plants is in vitro selection. This culture-based tool allows

better understanding of several plants’ physiological and biochemical responses to adverse environmental conditions. It

has been applied specially to obtain salt/ and drought/tolerant lines in a wide range of plant species, including vegetables

. In vitro selection is based on the induction of a genetic variation among cells, tissues or organs, their exposure to a

stressor, and the subsequent regeneration of the whole organism starting from the surviving cells . Even if in vitro

selection is a less expensive and time-saving approach compared with classic molecular engineering, some limitations,

mostly concerning the stability of the selected traits and epigenetic adaptation, still exist.

In addition to these strategies, it has been observed that stress tolerance can also be induced by biostimulants or specific

bioactive compounds, if they are applied on vegetable crops when they really need to be protected . Biostimulant

application on horticultural crops under environmental stress conditions will be discussed in detail below.

2. Biostimulants

Biostimulant products have been considered innovative agronomic tools as demonstrated by the increase of scientific

publications and by the constant expansion of their market . France, Italy, and Spain are the leading EU countries in the

production of biostimulants . According to a new report by Grand View Research, Inc., the biostimulant market size is

expected to reach USD 4.14 billion by 2025 . The complex nature of the composition of these products and the wide

range of molecules contained makes it complicated to understand and define which compounds are the most active. The

isolation and study of a single component is almost impossible and the efficacy of a biostimulant is not due to a single

compound but is the consequence of the synergistic action of different bioactive molecules. Moreover, the application

rules and time are not always clear. For all these reasons, the European Commission developed a proposal for a new

regulatory framework and a draft for a new fertilizer regulation was prepared in 2016. The amendments to the proposal of

the European Commission were adopted by the European Parliament in October 2017, while the legislative resolution on

the proposal was approved on 27 March 2019 .

Plant biostimulants are defined as products obtained from different organic or inorganic substances and/or

microorganisms, that are able to improve plant growth, productivity and alleviate the negative effects of abiotic stresses

. Mineral elements, vitamins, amino acids, and poly- and oligosaccharides, trace of natural plant hormones are the

most known components. However, it is important to underline that the biostimulant activity must not depend on the

product’s nutrients or natural plant hormones content. The mechanisms activated by biostimulants are often difficult to

identify and are still under investigation . High-throughput phenotyping and omic technologies seem to be useful

approaches to understand biostimulants activity and hypothesize a mode of action . They can act directly on plant

physiology and metabolism by improving soil conditions . They are able to modify some molecular processes that

allow to improve water and nutrient use efficiency of crops, stimulate plant development, and counteract abiotic

stresses  by enhancing primary and secondary metabolism .
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One of the key points of the discussion is about the application of these products in stressful conditions and their role as

nutrients, not with a curative function. In particular, if a product has a direct effect against biotic stresses, it should not be

included in the biostimulant category but should be registered as plant protection products.

2.1 Biostimulants and Crop Tolerance to Abiotic Stresses

Table 1 is a summary of biostimulant products or bioactive molecules from different origins that have been evaluated for

amelioration of abiotic stresses in several vegetables species. The biostimulants effectiveness to counteract the stressful

condition depends on several factors, such as timing of application and their mode of action. The application of

biostimulants can be carried out with different timings: before the stress affects the cultivation, during the stress, or even

after. They could be applied on seeds, when plants are in early stages of growth, or when crops are fully developed,

depending on the desired results . As general consideration, biostimulants that contain anti-stress compounds, such as

proline or glutamic acid, can be applied when the stress occurs or during stress conditions. On the contrary, those that are

involved in the activation of bioactive compounds biosynthesis must be applied before the stress occurs. Proper timing of

application during crop development differs from species to species and it also depends on the most critical phases for

crop productivity. Thus, the identification of the right time of biostimulant application is as important as the determination of

the exact dose, in order to avoid waste of product, high production costs, and unexpected results. Biostimulants can be

applied as foliar spray or to the roots, at sowing for protecting the seedling in the early development stages, in a floating

system nutrient solution or during blooming or fruit setting. There is no general recipe that works for a crop species and in

each stress situation.

The protective role of biostimulants on plants has been increasingly studied. These products are able to counteract

environmental stress such as water deficit, soil salinization, and exposure to sub-optimal growth temperatures in several

ways . They improve plant performance, enhance plant growth and productivity, interact with several

processes involved in plant responses to stress, and increase the accumulation of antioxidant compounds that allow

decrease in plant stress sensitivity.   

Table 1. Examples of biostimulant products or substances with a biostimulant effect on horticultural crops to counteract

abiotic stress conditions.
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Chilling
or cold
stress

6 °C for 6

days

Asahi SL (Sodium para-

nitrophenolate, sodium

ortho-nitrophenolate,

sodium 5-nitroguaiacolate)

/ Goëmar Goteo

(Composition (w/v):

organic substances 1.3–

2.4%, phosphorus (P O ).

24.8%, potassium (K O)

.4.75%)

0.1% Foliar spray (3)
Coriandrum
sativum L.

Chlorophyll a and

carotenoids

↑Fv/Fm ↑E ↑gs

↓Ci

10, 12 °C for

7 days / 15

°C for 7, 10

days

Flavobacterium glaciei,
Pseudomonas
frederiksbergensis,
Pseudomonas
vancouverensis

-
Seed

inoculation

Solanum
lycopersicum

↑shoot height

↑root length

↑biomass

accumulation

↓electrolyte

leakage ↓lipid

peroxidation

↑proline

accumulation

↑SOD, CAT, APX,

POD, GR activity

−6 °C for 5

nights

Pepton 85/16 (enzymatic

hydrolysates obtained from

animal haemoglobin. L-α

amino acids (84.83%) and

free amino acids (16.52%),

organic-nitrogen content

(12%), mineral-nitrogen

content (1.4%), potassium

content (4.45%), iron

content (4061 ppm), very

low heavy-metal content)

2 L ha , 4 L

ha

Injection into

the soil (5x)

Fragaria ×
ananassa

↑new roots

↑flowering ↑fruit

weight

−3 °C for 4 h Pepton 85/16
0.4, 0.8, 1.6 g

L

Soil application

(1x)

Lactuca
sativa L.

↑fresh and dry

weight ↑SLA

↑RGR

4 °C for 8

days or nights

/6 °C for 8

days only to

the roots

Terra-Sorb  Foliar (Free

amino acids (ASP, SER,

GLU, GLY, HIS, ARG,

THR, ALA, PRO, CIS,

TYR, VAL, MET, LYS, ILE,

LEU, PHE, TRP) 9,3%

(w/w), Total amino acids

12% (w/w), Total nitrogen

(N) 2,1% (w/w), Organic

Nitrogen (N) 2,1% (w/w),

Boron (B) 0,02% (w/w),

Manganese (Mn) 0,05%

(w/w), Zinc (Zn) 0,07%

(w/w), Organic matter

14,8% (w/w))

3 mL L Foliar spray (3x)

Lactuca
sativa L. var.
capitata

↑roots fresh

weight ↑green

cover %

2 5

2
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3 °C for 48 h 5-aminolevulinic acid

0, 1, 10, 25,

50 ppm (15

mL for seed

soaking and

25 mL for soil

drench)

Seed soaking/

foliar spray/soil

drench (1x)

Capsicum
annuum

↓visual injuring

↑chlorophyll

↑RWC ↑gs

↓membrane

permeability

↑shoot and root

mass ↑SOD

activity

[72]



Drought
stress Occlusion of

xylem vessels

Azospirillum brasilense
(BNM65)

-
Seed

inoculation

Solanum
lycopersicum

↑height plants

↑dry weight

↑xylem vessel

area

No irrigation

for 5 days

Megafol  (Composition

(w/v): total nitrogen (N)

3.0% (36.6 g L ; organic

nitrogen (N) 1.0% (12.2 g

L ); ureic nitrogen (N)

2.0% (24.4 g L );

potassium oxide (K O)

soluble in water 8.0%

(97.6 g); organic carbon

(C) of biological origin

9.0% (109.8 g L ))

2 mL L Foliar spray (1x)
Solanum
lycopersicum

↑leaf area

↑RLWC

50% ET Ascophyllum nodosum 0.50%
Foliar spray and

drench

Spinacia
oleracea

↑RLWC ↑leaf

area ↑fresh and

dry weight ↑SLA

↑gas exchange

No irrigation

until

symptoms of

wilting appear

Pseudomonas spp. (P.
putida P. fluorescens)

-
Seed

inoculation

Pisum
sativum

↑grain yield ↑root

growth ↑shoot

length ↑number

of pods per plant

↑chlorophyll

No irrigation

for 12 days

Achromobacter piechaudii
(ARV8)

-
Seedling

inoculation

Solanum
lycopersicum

↑fresh and dry

weight of

seedling ↑plant

growth ↓ethylene

No irrigation

for 12 days

Achromobacter piechaudii
(ARV8)

-
Seedling

inoculation

Capsicum
annuum

↑ fresh and dry

weight of

seedling ↑plant

growth

No irrigation

for 7 days
Ascophyllum nodosum 0.33% Foliar spray (2x)

Solanum
lycopersicum

↑RWC ↑plant

growth ↑foliar

density

↑chlorophyll ↓lipid

peroxidation

↑proline ↑soluble

sugars

No irrigation

for 2 days

Ascophyllum nodosum +
amino acids

-
Soil application

(1x)/ foliar spray

(3x)

Brassica
oleracea var.
italica

↑Pn ↑gs

↑chlorophyll
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40, 70% field

capacity

Gibbrellic acid and titanium

dioxide
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0.03%

(titanium

nanoparticles)
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spray (2x)

Ocimum
basilicum

↑CAT activity

↓lipid

peroxidation

↑LRWC

No irrigation VIVA - 2x
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lycopersicum

↑plant biomass

↑roots biomass
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measured. The symbol x represents how many times the treatment was applied.


