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Wound healing requires careful, directed, and effective therapies to prevent infections and accelerate tissue

regeneration. In light of these demands, active biomolecules with antibacterial properties and/or healing capacities

have been functionalized onto nanostructured polymeric dressings and their synergistic effect examined. In this

work, various antibiotics, nanoparticles, and natural extract-derived products that were used in association with

electrospun nanocomposites containing cellulose, cellulose acetate and different types of nanocellulose (cellulose

nanocrystals, cellulose nanofibrils, and bacterial cellulose) have been reviewed. The impact of these combinations

in wound healing are here examined and explored.
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1. Introduction

In wound care, infections are a major concern, since they delay the healing process, leading to tissue

disfigurement or even patient death. Staphylococcus aureus and Pseudomonas aeruginosa are the most common

bacteria that are isolated from chronic wounds, being S. aureus usually detected on top of the wound and P.

aeruginosa in the deepest regions. They can express virulence factors and surface proteins that affect wound

healing. The co-infection of S. aureus and P. aeruginosa is even more problematic, since the virulence is

increased; both bacteria have intrinsic and acquired antibiotic resistance, making the clinical management of these

infections a real challenge . In fact, the World Health Organization considers P. aeruginosa as one of the

organisms in urgent need for novel, highly effective antibacterial strategies that combat its prevalence. Multiple

strains of S. aureus, including methicillin-resistant and vancomycin-resistant strains, have been identified as high

priority microbes in the fight against antimicrobial resistance build up . In addition to the above, other

microorganisms, such as beta-hemolytic streptococci, and mixtures of Gram-negative species, such as Escherichia

coli and Klebsiella strains, are also present in wounds. Bacterium native to human skin such as Staphylococcus

epidermidis (Gram-positive), may also turn pathogenic when exposed to systemic circulation in the wound bed .

Therefore, immediate care of open wounds is pivotal in preventing infection . To treat this problem, new

alternatives of wound dressings have emerged with incorporated bioactive agents that are capable of fighting these

infections and accelerating the healing process.

2. Application in Wound Healing: Synergistic Effect with
Specialized Biomolecules
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The performance of bioactive dressings processed via electrospinning is dependent on the polymer or polymer

blends properties (i.e. hydrophilicity and hydrophobicity), drug solubility, drug-polymer synergy, and mat structure.

Antimicrobial agent-loaded electrospun mats have shown superior performance to films produced by other

techniques, in regard to water uptake (four to five times superior), water permeability, drug release rate, and

antibacterial activity .

Drugs, nanoparticles, and natural extracts (Table 1) are some of the antimicrobial agents that have been

incorporated in nanofibrous dressings, in order to reduce the risk of infection . These compounds have been

used for their anti-inflammatory, pain-relieving, vasodilation, and antimicrobial features .

Table 1. Examples of compounds incorporated in electrospun nanostructures containing cellulose or its derivatives.

Subtract Drugs NanoparticlesNatural
Extracts Ref.

Cellulose

Tetracycline
hydrochloride
(TH)
Ciprofloxacin
(CIF)
Donepezil
hydrochloride
(DNP)

Silver NPs
(AgNPs)
Zinc oxide
NPs
(ZnONPs)

Bromelain

CA

TH
Ferulic acid
(FA)
Ibuprofen
(IBU)
Ketoprofen
(KET)
Amoxicillin
Thymoquinone
(TQ)
Silver salt of
sulfadiazine
(SSD)

Silver
Titanium
dioxide
Zinc oxide
Copper

Cinnamon
(CN);
Lemongrass
(LG);
Peppermint
(PM)
Rosemary;
Oregano
Thymol
Zein
Asiaticoside
(AC)
Curcumin
(Curc)
Acid gallic
Gingerol
Garlic
extract

CNC TH
ZnO
AgNPs

Thymol

BC   Soy protein
particles

Tragacanth
gum (TG)
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Subtract Drugs NanoparticlesNatural
Extracts Ref.

Graphene
oxide (GO)

Several researchers claim that producing cellulose-based electrospun mats is a big challenge due to its highly

crystalline structure, long chain length, increased rigidity, and strong inter- and intramolecular hydrogen bonding

. Selecting a proper solvent, adding other complementary polymers, or converting cellulose into its derivatives

can facilitate this task. The solvents or solvent systems most used for cellulose are the ionic liquids (ILs), aqueous

alkali/solvents (NaOH/urea), and polar aprotic solvents in combination with electrolytes (DMAc/LiCl); however,

these are not very volatile, not being completely removed during electrospinning and, thus, limiting the use of

cellulose in large scale productions. A proper solvent system is also very important in attaining appropriate viscosity

levels, required for a successful electrospinning process. In fact, this is such an important processing parameter

that to guarantee proper polymer solubilization, heaters have been placed within the electrospinning apparatus

generating a new system, the melt-electrospinning (minimize the viscosity of spinning dopes) . The option of

transforming cellulose into its derivatives, such as cellulose acetate (CA), cellulose acetate phthalate (CAP), ethyl

cellulose (EC), carboxymethyl cellulose (CMC), hydroxypropylcellulose (HPC), among others, is by far the most

recurrent alternative to reduce the complexity of processing cellulose via electrospinning. Besides, most of these

derivatives require different pHs for solubilization, which is a great advantage for biomedical applications .

Modifications have been proposed to increase the effectiveness of immobilized drugs, natural compounds,

peptides, or other biomolecules within a cellulose-based nanostructured surface. For example, Nada et al.

activated CA by introducing azide functional groups on the residual -OH groups of the polymeric chains, enhancing

the release kinetics of capsaicin and sodium diclofenac from the electrospun mat and, thus, promoting patient relief

. To confer biocidal properties to CA nanofibers, Jiang et al. modified their surface with 4,4’-diphenylmethane

diisocyanate (MDI). This resulted in a 100% inactivation of S. aureus and a 95% of E. coli within 10 min of

exposure, and complete death after a 30 min contact . Nano complexes with cellulose nanocrystals (CNCs)

were developed with cationic b-cyclodextrin (CD) containing curcumin by ionic association and used in the

treatment of colon and prostate cancers . Nanocellulose has also contributed to the development of new and

more efficient strategies for these biomolecules’ delivery. The three -OH groups that were present in each

individual glucose unit originate a highly reactive structure, which allows interaction with other molecules or with

enzymes and/or proteins, contributing to overcome the low solubility of most drugs in aqueous medium .

Besides, the -OH groups can also be tailored by physical adsorption, surface graft polymerization, and covalent

bonding to further improve the performance of the biomolecules. As a consequence of the bonds established,

strong polymer-filler interactions are generated, significantly increasing the mechanical properties of material .

Nonetheless, the in vivo behavior of nanocelluloses is still little explored. Studies have reported that its toxicity

depends on the solution concentration and its surface charges. In recent literature, nanocelluloses have not shown

any toxicity at concentrations lower than 1 mg/mL; however, there are studies that reveal a concentration-

dependent apoptotic toxicity of cellulose nanofibrils (CNFs) at 2–5 mg/mL. Additionally, anionic nanocelluloses,

e.g., carboxymethylated-CNF, have been reported to be more cytotoxic than cationic nanocelluloses, e.g.,
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trimethylammonium-CNF . Toxicity effects might arise from the diversity of chemical structures and properties

between cellulose types and sources. Among nanocelluloses, bacterial cellulose (BC) is considered to be the most

biocompatible and has already been applied in wound dressings . Still, its electrospinnability is very challenging

for the same structural reasons of cellulose .

The incorporation of BC into synthetic and natural polymers has been carried out to enhance their morphological

features as well as physicochemical and biological performances. A wide variety of polymers, such as chitosan,

polycaprolactone (PCL), polyethylene oxide (PEO), ethylene vinyl alcohol (EVOH), polyvinyl alcohol (PVA),

polylactic acid (PLA), polyacrylonitrile (PAN), polyester, silk, and zein, have been blended with BC and processed

by electrospinning. Functionalization with 3-aminopropyl triethoxysilane (APS) has been attempted to further

enhance cell attachment and antibacterial properties of BC-containing electrospun membranes for wound healing.

BC membranes grafted with two organosilanes and acetyled have also shown an improved moisture resistance

and hydrophobicity . Naeem et. al even synthetized in situ BC on CA-based electrospun mats in a process

known by self-assembly to produce a new generation of wound dressings .

Even though CNF has already been applied as a reinforcing agent in many polymeric composites via

electrospinning, no reports have been found regarding the incorporation of biomolecules along its fibers . 
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