

Neuropathological Hallmarks of Alzheimer's Disease

Subjects: **Biology**

Contributor: Atefeh Afsar , MARIA DEL CARMEN CHACON CASTRO , Adedamola Saidi Soladogun , Li Zhang

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and patient death. AD is characterized by intracellular neurofibrillary tangles, extracellular amyloid beta (A β) plaque deposition, and neurodegeneration. Diverse alterations have been associated with AD progression, including genetic mutations, neuroinflammation, blood–brain barrier (BBB) impairment, mitochondrial dysfunction, oxidative stress, and metal ion imbalance

Alzheimer's disease

Amyloid Beta protein

Tau proteins

1. The Role of A β and Neurofibrillary Tau Tangle in AD

The proteins A β and tau have been identified as key contributors to the pathophysiology of AD, largely due to their deposition in the histopathological brain lesions, the senile plaques for A β and the neurofibrillary tangles (NFTs) for tau. The soluble forms of A β and tau are also found to be increased in the brains of AD patients [1]. In healthy individuals, A β is naturally produced and eliminated from the brain at rates of 7.6% and 8.3% of total A β every hour, respectively. However, in late-onset AD (LOAD) this percentage is reduced by around 30% [2][3][4]. As a result of A β buildup, microglia and astrocytes are activated as part of the inflammatory response in an attempt to remove the plaque [5][6], but this also harms the nearby neurons and neurites. Additionally, NFTs, which are normally involved in intracellular activity, obstruct typical axonal transport, and eventually lead to neuronal death [5].

1.1. The Effects of A β in AD

Mitochondria are the main energy source for brain cells to function properly. A β and amyloid precursor protein (APP) have been found in the membranes of mitochondria, where they interact with mitochondrial proteins, increase the formation of reactive oxygen species (ROS), and damage the structure and function of mitochondria. This can lead to disruption in normal neural function. A β oligomers can also harm mitochondria by causing an increase in intracellular Ca $^{2+}$ levels and promoting the entry of Ca $^{2+}$ into mitochondria, which can further damage their structure and function [7][8][9][10][11]. Cognitive impairments correlate with synaptic damage in AD [12]. It has been suggested that mitochondrial dysfunction and A β buildup at synapses can cause synaptic injury, impaired neurotransmission, and cognitive decline in aging and AD patients [13]. Malfunctioning mitochondria have been shown to increase A β generation from APP, and A β causes mitochondrial dysfunction [14]. P-glycoprotein (P-gp) is essential for the regular clearance of A β across the BBB and plays a crucial gatekeeping role. Endogenous A β

peptide release from the brain is part of this process. Emerging evidence supports the hypothesis that defective P-gp activity promotes A β accumulation and contributes to the pathophysiology of AD [2][15]. A β oligomers are known to promote inflammation and oxidative stress. Moreover, there is evidence suggesting that inflammation and oxidative stress can also contribute to the formation of A β oligomers [2][16][17]. It has been proposed that the combination of anti-inflammatory and anti-oxidant drugs may be a useful strategy for treating AD [18]. Heme, a key functional form of iron in cells that is synthesized in mitochondria, binds to A β to form the A β –heme complex [19], which inhibits A β accumulation and results in heme deficiency. Heme shortage reduces mitochondrial complex IV's activity and protein content, causing oxidative stress and disrupting Ca²⁺ homeostasis. Heme deficiency also affects zinc and iron homeostasis, APP, mitochondrial complex IV, and NO synthase (NOS) [20][21][22]. The aging brain exhibits many of the same phenotypic changes as heme-deficient cells, and these changes are more pronounced in neurodegenerative diseases such as AD. Heme-deficient brain cells cannot differentiate or conduct a complete cell cycle, suggesting that heme has a unique function beyond its traditional role in cell biology [22].

Table 1 summarizes the effects of A β .

Table 1. A summary of the effects of tau and A β , two main players that are associated with the development of AD.

Biomarkers	Effects	References
A β	<p>results in heme deficiency, which changes:</p> <ul style="list-style-type: none"> •Homeostasis of zinc, iron, and Ca²⁺; •APP; •NOS. <p>causes oxidative stress and inflammation and vice versa</p> <p>produces hyperphosphorylated tau</p> <p>develops mitochondrial dysfunction and vice versa</p> <p>results in neurodegeneration</p>	<p>Atamna et al. 2002, [21]</p> <p>Chai et al. 2020, [2]</p> <p>Gotz et al. 2004, [23];</p> <p>Ittner et al. 2011, [24]</p> <p>Morley et al. 2014, [14]</p> <p>Wang et al. 2020, [25]</p>
Tau	<p>NFTs build up</p> <p>instability of microtubule</p> <p>causes oxidative stress and vice versa</p> <p>results in neurodegeneration</p> <p>buildup of tau tangle results in:</p> <ul style="list-style-type: none"> •Neuroinflammation; •impaired synaptic function; •dysfunctional autophagy; •dysfunctional mitochondria. 	<p>Miao et al. 2019, [26]</p> <p>Brion 1998, [27]</p> <p>Rawat et al. 2022, [28]</p> <p>Eckert et al. 2011, [29]</p> <p>Rawat et al. 2022, [28]</p>

1.2. The Effects of tau in AD

The biological activities of the phosphoprotein tau are controlled by the amount of its phosphorylation. In the AD brain, tau is hyperphosphorylated [30]. NFTs, built up from hyperphosphorylated tau, are associated with tauopathies. Hyperphosphorylation causes tau to lose its common physiological role, become more toxic, and aggregate to form NFTs [26]. In previous studies, in situ hybridization was used to examine the distribution of α -tubulin mRNA in the human hippocampus of normal subjects and those with AD. The hybridization signal was significantly lower in NFT-rich regions, and NFT-containing neurons had a weaker hybridization signal than NFT-

free neighboring neurons [31][32]. NFT-bearing neurons showed lower tubulin transcription, which might have a role in the reduced number of microtubules in these cells [32]. Microtubules are arranged in paraxial rows on the axons and dendrites. The structural backbone provided by the microtubule arrays allows axons and dendrites to develop and maintain their specific morphologies [33]. The development of NFTs is believed to be associated with neuronal dysfunction in AD. Microtubules are essential for maintaining the neuron's shape. The abnormal phosphorylation of tau likely causes microtubule disruption by reducing the levels of functional tau. Acetylated α -tubulin immunoreactivity decreased in most NFT-bearing neurons, even in the neuronal population with a relatively lower tau immunoreactivity, indicating early microtubule instability [27][34][35]. It has been demonstrated that cells with tau overexpression are more susceptible to oxidative stress, and evidence suggests that oxidative stress may contribute to tau pathology [36]. Tau tangles, which are formed due to microtubule instability, consist of tau oligomers and monomers. The accumulation of tau tangles is linked to neuroinflammation, impaired synaptic function, dysfunctional autophagy, and dysfunctional mitochondria, all of which can cause neuronal injury. Additionally, tau oligomers can spread from one neuron to another [28][37][38][39]. Calafate et al. [40] used a mouse model to study the propagation of tau pathology, and found that the presence of synaptic contacts can facilitate tau pathology propagation between neurons and the amount of total accumulated tau significantly decreased when synaptic connectivity was reduced. Similarly, Wu et al. [41] used a mouse model to investigate how tau pathology spreads through the brain, finding that neuronal activity in one area of the brain can enhance the propagation of tau pathology to connected regions through a trans-synaptic mechanism. Overall, both studies provide evidence that tau oligomers can pass from neuron to neuron through a process of trans-synaptic spread. It has been demonstrated that the hyperphosphorylated tau that makes up the NFTs can hinder transport of mitochondria. This leads to an energy shortage and oxidative stress at the synapses, which can eventually lead to neurodegeneration [29]. A summary of the effects of tau can be seen in **Table 1**.

1.3. A β and tau Interplay

While A β and tau cause toxicity via different pathways, in vitro and in vivo research suggests that they can interact in three different ways [23][24][42][43]. The first mode of interaction is that A β drives tau pathology. In APP transgenic mice, A β deposition leads to hyperphosphorylated tau, whereas tau transgenic mice do not have observable A β plaque pathology [23][24]. It has been reported that mitochondrial malfunction and a lack of energy are early signs of AD [44][45]. In the second mode of interaction, both A β and tau contribute to interactive toxicity, damaging mitochondrial respiration in triple transgenic mice (triple AD mice), which show combined A β and tau pathologies. This results in an amplification of mitochondrial dysfunction when both pathologies are present together in mice compared to mice overexpressing tau or APP alone [24][42]. In previous studies [42][46], there was a considerable disturbance in the regulation of 24 proteins, out of which about a third were found to be mitochondrial proteins that are mainly associated with complexes I and IV of the oxidative phosphorylation system (OXPHOS). At both the protein and activity levels, the deregulation of complex IV was dependent on A β , whereas the deregulation of complex I was dependent on tau. According to Vossel et al. [43], in the third mode of interaction, A β disrupts axonal transport, which is essential for neuronal activity. A β -induced axonal transport impairments are prevented by a decrease in tau.

2. Neuroinflammation

Another underlying mechanism of AD pathology is neuroinflammation [47][48][49][50]. Inflammation is essential for repair processes in the brain, but prolonged inflammation can impair brain function [51][52][53]. The molecular mechanisms underlying the progression from chronic, low-grade systemic inflammation to neurodegeneration are still not fully understood [54]. Neuroinflammation is most likely the result of AD pathologies and risk factors, and it exacerbates the disease severity [55]. AD brains show elevated levels of proinflammatory cytokines and inflammatory markers, possibly as a response to the A β plaques and NFT deposition, which induce neuronal damage or death [54][56]. A β deposition activates the complement system, microglia, and astrocytes, and induces the secretion of inflammatory mediators such as IL-1 α , IL-1 β , IL-6, and TNF- α , and reactive oxygen and nitrogen species, which lower phagocytosis and prolong neuroinflammation [55][56]. Proinflammatory mediators activate microglia during the AD pre-symptomatic stage, leading to synaptic dysfunction and neuronal death [55]. This implies that neuroinflammation is an early event in the development of AD pathology [51][57]. Moreover, in a previous study, activated microglia surrounding amyloid plaques and elevated proinflammatory cytokine levels were found in both the periphery and central nervous system (CNS), supporting the role of inflammation in AD [51][55]. Therefore, the inhibition of neuroinflammation could be a promising strategy to treat AD.

The role of cytokines in neuroinflammation in AD is diverse. TNF- α and IL-1 elevate the synthesis of A β from APP by β - and γ -secretase [58][59]. IL-1 also elevates tau phosphorylation by the p38-MAPK pathway [59][60]. IL-1 β suppresses astrocytic sonic hedgehog production, downregulates tight junction proteins, and elevates astrocytic activation with subsequent pro-inflammatory cytokine production, BBB disruption, and neuroinflammation. IL-6 increases APP expression and tau phosphorylation by the cdk5/p35 pathway [56][61]. Furthermore, elevated levels of chemokines and cytokines in AD brains may attract circulating immune cells in the periphery to cross the BBB to the CNS, exacerbating the inflammation [62]. Chemokines can also attract microglia to the periphery of A β plaques. Elevated expression levels of chemokine receptors on activated microglia were found in the brains of AD patients. Additionally, increased levels of MCP-1/CCL2 and CCL11 chemokines may reflect pathological changes and memory function alterations found in patients with early AD [63]. On the other hand, SDF-1/CXCR4 chemokine can activate microglia and reduce A β deposition. SDF-1 levels are low in early AD patients and negatively correlate with tau protein levels in the cerebrospinal fluid (CSF), consistent with its neuroprotective function [57][64]. Some other chemokines found to be elevated in the blood of AD patients are IP-10, IL-13, IL-8, MIP-1 α , and fractalkine; however, RANTES levels were found to be decreased in a previous study [57]. Nevertheless, controversy in the literature about these chemokines indicates that further studies are required to comprehend their role in AD progression.

A potential biomarker, the translocator protein (TSPO), an outer membrane mitochondrial protein, has been associated with neuroinflammation in AD [65][66][67]. TSPO expression is elevated in the brain periphery and is directly proportional to microglia, and potentially astrocyte, activation. TSPO radiotracers have been used for neuroinflammation imaging in vivo [51][68]. Other proteins that have been found to be dysregulated in AD are CSF1R, COX-1, COX-2, CB₂R, P2X7, and P2Y12 receptors [69][70][71][72][73][74][75][76][77][78][79]. Radiotracers for these proteins have been developed; however, further studies are required to determine their utilization as potential

imaging biomarkers to detect neuroinflammation [68]. Another inflammatory biomarker explored is the complement system. Lower levels of plasma C3, the central component of the complement system activation, are associated with a higher risk of AD. C3 and C4 levels were found increased in AD patients in previous studies [57][80][81]. Moreover, the acute-phase inflammatory protein C-reactive protein (CRP) may promote A β ₄₂ synthesis and the activation of the complement system in the AD brain. While some studies found elevated levels of serum CRP in AD brains, others found decreased levels [82][83][84]. This controversy is likely due to the changes in its levels as the disease progresses [57]. Targeting inflammation biomarkers can be exploited to image neuroinflammation and monitor AD progression *in vivo*, and may be a promising strategy for early diagnosis and therapeutic intervention.

There is evidence of an association between diet and AD development. The Western diet (WD), which is based on ultra-processed foods and is rich in carbohydrates, salt, fat, and cholesterol [85], can enhance brain amyloid accumulation, tau protein phosphorylation, systemic inflammation, and the impairment of memory, learning, and cognitive functions [54][86][87][88][89][90]. WD has also been linked to neuroinflammation. Chronic WD-fed AD mouse models showed elevated levels of activated macroglia and astroglial cells in the hippocampus and entorhinal cortex. Moreover, neuroinflammation was indicated by increased levels of proinflammatory genes (*Trem2*, *Trem12*, *Tyrobp*, *CX3CR1*, *Cc13*) and markers of phagocytic microglial cells (Iba1, CD68, TREM2) around the A β plaques [91][92][93]. WD-induced neuroinflammation seems to occur earlier, before A β plaque formation and brain deposition. Neuroinflammation can occur as a result of impaired amyloid clearance due to a loss of microglial phagocytic function and astrocyte-dependent disruption of the glymphatic system. Additionally, a higher impact of WD on AD development was observed in APOE4 carriers in a previous study [54].

Several studies demonstrated a link between diet, obesity, and AD [54][94][95][96][97][98][99][100]. Obesity increases the risk of cognitive decline and AD development six-fold in adulthood and midlife [54][101]. Obese individuals have an increased brain atrophy rate, decreased cortical and hippocampal volume, low performance in memory tasks, and deficits in executive functioning [102][103][104][105][106]. Diet-induced obesity has been associated with increased APP, p-tau levels, and hippocampal A β , decreased hippocampal neurogenesis, and cognitive tasks deficit in AD animal models [107][108][109]. Diet-induced hypercholesterolemia experiments in mice showed the exacerbated neuroinflammatory response, increased p-tau levels, and the generation and deposition of toxic A β in neurons and astrocytes, leading to impaired cognition [110][111][112]. Other studies have demonstrated that diet-related dysbiosis and alteration of the gut microbiome composition in humans might disturb neurotransmitter production, disrupt synaptogenesis, contribute to systemic inflammation, impair the BBB, and contribute to cognitive impairment and AD development [54][113][114]. Furthermore, diverse studies have suggested that type 2 diabetes mellitus (T2DM) is a major vascular risk factor, and contributes to AD development [95][115][116][117][118]. Patients with T2DM have a two-fold higher risk of developing AD than healthy individuals [94][119][120][121]. Future studies should address the influence and interaction of environmental and genetic risk factors in AD development and progression.

3. BBB Alteration

The BBB is a complex structure composed of endothelial cells, pericytes, glial cells, and neurons, which form microvascular networks within the CNS [54]. In addition to protecting the brain, the BBB can regulate the blood-to-

brain transport of nutrients, respond to soluble factors and plasma proteins, communicate with peripheral immune system cells, impede the entry of circulating cells and harmful molecules such as pro-inflammatory factors and toxins, and remove neurotoxic molecules and metabolic waste from the brain [54][57].

The loss of BBB integrity combined with the migration of immune cells into brain vessels may exacerbate inflammation and neurodegeneration in patients with AD [94]. Some pathological features of BBB breakdown in AD brains include the extravasation of blood-derived proteins (fibrinogen, thrombin, plasminogen, immunoglobulin C, albumin) in the hippocampus and cortex, an increase in the CSF levels of a pericyte injury marker, an increase in the CSF-to-plasma-albumin ratio, iron accumulation, and brain microbleeds [54][95].

Diverse studies demonstrated that increased A β production and deposition induce BBB disruption [122][123][124][125]. Disfunction of the BBB impairs A β clearance, and can promote or escalate A β production [122]. Thus, a vicious cycle between BBB damage and A β accumulation can be established, resulting in neuronal damage and a loss of neuronal networks [122][126]. BBB dysfunction can also induce tau hyperphosphorylation, and tau pathology can trigger BBB damage [122][127][128][129]. Moreover, BBB permeability was found to be increased in APOE4 carriers [130][131][132][133], which show accelerated pericyte degeneration and BBB breakdown [134]. The loss of pericytes in AD is associated with fibrinogen leakage, reduced oxygenation, and fibrillar A β accumulation [135]. Additionally, astrocytic dysfunction and reactive astrocytes may induce increased generation of A β [122][136]. Another common event in AD is the loss of tight junctions, which is associated with insoluble A β ₄₀ and synaptic dysfunction. Cortical tight junction proteins such as claudin-5 and occludin have been found to be decreased in AD brains [137]. Targeting the BBB and its components can result in a promising strategy to treat AD.

4. Cholinergic Neurons in AD

Cholinergic neurons are nerve cells that secrete the major brain neurotransmitter acetylcholine [138]. Early studies in rodent models and humans delineated the importance of acetylcholine and cholinergic neurons in memory function [139][140]. Although these neurons are localized in specific regions of the brain, they project into almost all brain regions and have been implicated in diverse behavioral, cognitive, and systemic functions [141][142][143][144]. Acetylcholine released by the cholinergic system modulates behavioral flexibility [145][146][147], attention [148][149], and arousal [150][151][152]. Of particular interest are the basal forebrain cholinergic neurons, which are essential for cognitive and memory function [153]. These basal forebrain cholinergic neurons form the major projection into the cerebral cortex and hippocampus [154][155][156][157]. These central cholinergic neurons display age-related dysfunction, leading to mild cognitive impairment [158][159][160].

The selective reduction in pre-synaptic cholinergic enzyme activity in specific brain regions of AD patients was first reported in the 1970s [161]. This finding pointed to a possible role for the loss of cholinergic neurons in the onset of AD. It was then shown that this cholinergic system failure is due to the degeneration of cholinergic neurons in the basal forebrain region responsible for the innervation of the cerebral cortex [162][163][164]. This gave rise to the concept of the “cholinergic hypothesis”, which posited the loss of cholinergic neuronal function and acetylcholine activity as the primary event in the onset of AD [165][166]. This hypothesis was further strengthened after it was

shown that treatment with an acetylcholinesterase inhibitor, tetrahydroaminoacridine (THA, Tacrine), produced clinical improvements in AD patients [167]. Although tacrine was the first acetylcholinesterase inhibitor approved by the Food and Drug Administration (FDA) for the treatment of AD and provided modest improvement in cognitive and memory symptoms in mild AD patients, it was withdrawn due to its severe hepatotoxicity [168][169].

Acetylcholine impairment is the most widespread and important neurotransmitter alteration in AD [170]. Acetylcholinesterase hydrolyses acetylcholine to choline and acetate, and is an essential enzyme of the neuronal cholinergic system [171][172]. Decreased acetylcholine availability resulting from cholinergic deficiency can be corrected by targeting acetylcholinesterase via inhibition. The goal of this approach is to increase the neuronal availability of acetylcholine and cholinergic neurotransmission, and make up for the shortfall in secretion and synaptic availability of acetylcholine resulting from central cholinergic neurons' dysfunction and degeneration in AD. Thus, following in the footsteps of Tacrine, several reversible inhibitors have been developed for the treatment of AD. Donepezil, galantamine, and rivastigmine are acetylcholinesterase inhibitors that have been approved by both the Food and Drug Administration and the European Medicines Agency for the treatment of AD [173][174]. In addition to these three, only two other treatments (Memantine and Aducanumab) have been approved for AD [175]. These drugs elicit improvement in certain cognitive and behavioral symptoms in mild to moderate AD, but do not treat the underlying problem of cholinergic neuronal degeneration or prevent disease progression [176][177]. In addition, they have several drawbacks such as (1) low efficacy, which wanes further as the disease progresses, and (2) severe adverse side effects such as cardiac arrhythmia, nausea, diarrhea, vomiting, and muscle cramps [178][179][180].

There is ongoing research to develop more effective and less toxic cholinergic inhibitors, as well as to incorporate molecular features of acetylcholinesterase inhibitors in multitarget drugs [181][182]. Drugs that improve cholinergic function are among the few FDA-approved therapeutics to treat AD, and will remain indispensable tools in the multifaceted approach to the treatment and management of AD patients. Therapeutics aimed at improving the cholinergic system have not been widely researched in recent years as attention has shifted to other promising mechanisms underpinning AD. Developing new therapeutics that can improve cholinergic function can provide further ammunition in the continued search for effective AD treatments.

Basal forebrain cholinergic neurons (BFCN) depend on nerve growth factor (NGF) for the maintenance of their biochemical phenotype. NGF released by cortical and hippocampal neurons also regulates the BFCN synaptic integrity and number [183]. The dependence of BFCN on NGF informed the hypothesis that BFCN atrophy is caused by NGF deficiency. Interestingly, the biosynthesis of NGF in the cerebral cortex is not altered in AD [184], while there is an increase in the levels of its precursor, proNGF [185][186]. However, evidence has implicated an altered NGF signaling system and interaction with BFCN in AD [187][188]. Dysfunction in the NGF pathway seemed to be due to impaired retrograde transport and maturation of NGF [189]. Genetic delivery of NGF to the brain of AD patients has been used to activate the neuronal trophic response [190]. NGF-based therapy seeking to boost NGF trophic activity should be explored to halt BFCN atrophy, especially in early stages of AD.

5. Glial Cells

The nervous system is composed of two major cell types: neurons and glial cells, which include astrocytes, microglia, oligodendrocytes, polydendrocytes (NG2 glia), and Schwann cells. Astrocytes play a vital role in regulating neurogenesis and synaptogenesis, shaping the micro-architecture, providing structural support for neurons, and protecting the brain from injuries [191][192][193][194][195]. Microglia cells are the major immune cells of the central nervous system and serve as resident macrophages of brain parenchyma, providing the first line of defense against external insults [196][197][198][199]. Microglia are also involved in synaptic formation and remodeling [200][201][202]. As part of the complement cascade of the CNS innate immune system, macroglia engulf and prune synapses [203][204][205]. Oligodendrocytes are the CNS cells responsible for myelin formation. They wrap myelin sheaths around the neuronal axon and ensure the proper propagation of the electrical action potential through the axon [206][207]. NG2 glia (also called oligodendrocyte precursor cells) are used to produce oligodendrocytes during development and adulthood, and they are also involved in the maintenance of microglia homeostasis and the regulation of brain innate immunity [208][209][210][211][212]. The essential functions of glial cells in normal brain development, function, immune response, and homeostasis mean that disruption of normal glial function can cause neuro-glial metabolic dysfunction, which can lead to and accelerate neurodegeneration. Evidence has linked impaired glial cell function and homeostasis to the pathogenesis of AD, as discussed below.

5.1. Astrocytes

Astrocytes are the most prevalent glial cells, and constitute about a third of cells in the human central nervous system [193][194]. Many mechanisms link astrocytes to the development and progression of AD. *APOE*, the major genetic risk factor for LOAD, is expressed in the astrocytes of the normal brain. Astrocytes exhibit reactive astrogliosis in response to a CNS infection or injury. Reactive astrogliosis is the functional, molecular, cellular, morphological, and population alterations in astrocytes that serve as a protective mechanism against insults [213][214][215][216]. Reactive astrogliosis has been reported in the brains of mouse models of AD and AD patients. Astrocytes become more reactive and associate with A β plaques in the AD brain [215][217][218]. The reactive astrocytes display morphological hypertrophy and increase the expression of glial fibrillary acidic protein (GFAP). GFAP is being explored as an early marker of AD with promising results [219][220][221]. A β can activate astrocyte reactivity, upregulate the release of pro-inflammatory cytokines [222][223][224][225], and alter astrocyte-Ca²⁺ homeostasis [226][227][228]. Impaired calcium signaling mediated by astrocytes, especially increased Ca²⁺ activity leading to the hyperactivation of Ca²⁺-dependent proteins, can promote the release of transmitters such as GABA, which alters neuron-glial communication, disrupt synaptic plasticity and transmission, and accelerate cognitive deficits [226][229][230].

Atrophic astrocytes have been documented in both mouse models of AD and the post-mortem brains of AD patients [231][232][233]. It has been suggested that atrophy of astrocytes might be an early event in AD, leading to the loss of astrocyte homeostasis and function. Recent evidence indicates that astrocyte dysfunction and disease-associated astrocytes are present in the early stages of AD, providing support for this claim [232][234]. Astrocyte dysfunction can lead to synaptic impairment, which produces cognitive deficits that are hallmarks of the early stages of AD. Astrocytes are involved in the phagocytosis and clearance of A β [235][236]. A defective astrocyte might not be able to effectively clear A β . In the later stages of neurodegeneration, as A β deposition increases, senile

plaques promote the formation of reactive astrocytes, which, in turn, activate microglia. Activated microglia release neurotoxic and neuroinflammatory factors, which induce synaptic impairment, neuronal loss, and severe neurodegeneration in a feedforward vicious cycle.

5.2. Microglia

Microglia are innate immune cells of the CNS, and are vital for normal brain development and function both in the healthy and pathological state. They control the immune response in the brain by interacting with other immune cells [237][238][239]. Microglia are transformed into reactive states in response to infections and injuries in a process known as microglia activation. Depending on the type of stress or pathological change, reactive microglia undergo specific changes in phenotype, morphology, proliferation patterns, and activity. They release various neurochemicals including growth factors, cytokines, chemokines, and other inflammatory mediators [237][240][241]. Reactive microglia are a neuropathological hallmark of AD brain response to amyloid deposition, neurofibrillary tau tangles, and neuronal death [242][243][244]. Reactive microglia are widely considered to be a manifestation of AD pathology, but recent evidence points to active roles for microglia in the pathogenesis of AD and their potential as a therapeutic target.

5.3. AD Risk Loci Are Expressed by Microglia

Several genetic loci, including *APOE*, *TREM2*, *SPI1*, and *CD33*, which are highly associated with the risk of AD, are predominantly or exclusively expressed by microglia [245]. The *APOE4* allele is a major genetic risk factor for LOAD [246]. *APOE* is involved in amyloid clearance and plaque formation. The *APOE4* allele seems to reduce amyloid removal and elevate amyloid deposition in plaques [247][248][249]. *APOE4* has been reported to alter lipid homeostasis in glia cells [250] and promote dysfunctional microglia phenotypes in neurodegeneration [251]. *TREM2* is a surface receptor expressed on myeloid cells including microglia. *TREM2* is involved in the clearance of A β , the removal of cell debris, and microglial survival [252][253][254][255]. Dysfunctional *TREM* due to mutations in the *TREM* gene is likely to contribute to an increased risk of AD, although the exact mechanisms are not fully understood.

5.4. Microglia in the Complement System and Inflammatory Signaling

The microglia-mediated innate immune complement system is essential for engulfing and shaping synapses during development [256]. Some genes, such as *CR1*, involved in the complement system, are genetic risk factors for AD development [257][258]. Hyperactivation of the complement system is possibly involved in synaptic loss and neuronal degeneration in AD. This hypothesis is supported by experiments that show that inhibition of the complement system protects against synaptic loss and neurodegeneration [203][257].

6. Synaptic and Neuronal Loss in AD

A progressive decline in cognitive function is a major symptom and hallmark of AD [259][260]. Cognitive deficit has been reported to be present at early stages of the disease and decades before amyloid deposition [261][262]. Multiple

lines of evidence point to synapse loss as the major cause of cognitive impairment in AD. Examination of the postmortem brains of AD patients shows that synapse loss is the best correlate to cognitive deficits in AD [263][264][265][266][267][268]. Synaptic dysfunction and loss have been extensively reported in animal models of AD [269][270][271][272][273]. The correlation between synapse loss and cognitive defects has been demonstrated using various methods and models [274][275][276][277].

Neuronal loss is a canonical neuropathological feature of AD [278][279][280]. The loss of neurons starts at early stages and accelerates as the disease progresses [281][282][283]. There is a pronounced loss of neurons in the entorhinal cortex and hippocampus compared to other brain regions [282][283][284]. Neuronal loss in these regions closely correlates with cognitive impairments [285][286]. Various AD transgenic mouse models replicate the neuronal loss seen in AD [287][288][289][290][291].

Mechanisms of Synaptic Loss and Neuronal Loss

A β is connected to synaptic dysfunction in AD. However, it is the soluble oligomeric A β species, and not the total amyloid plaque deposition, that constitutes the most toxic forms of amyloid, contributing to synaptic damage and neuronal loss in the disease. [292][293][294][295][296]. The mechanism of A β -induced damage possibly involves the binding of A β to synaptic-associated proteins [297][298]. Advanced imaging techniques have been used to show the presence of soluble amyloid species in synapses [297][299]. The AD generic risk gene *APOE4* promotes the transport of these amyloid species to the synapse, where they exert toxic effects and mediate neuronal loss [300].

The accumulation of tau proteins correlates with cognitive decline and clinical symptoms in AD [301]. Although tau is found in healthy and AD synapses, there are higher levels of hyperphosphorylated tau in the synapses of the AD brain [302][303][304][305][306]. Tau toxicity to synapses and neurons seems to be mediated by soluble, hyperphosphorylated, oligomer forms [307][308][309][310]. Normal tau protein is involved in the axonal transport of mitochondria and other important molecules to synapses [311]. Impaired axonal transport resulting from tau pathology can contribute to synaptic dysfunction and neuronal atrophy. Indeed, reduced mitochondrial numbers have been observed in AD brains [43][305][312][313].

Inflammation, both local and systemic, possibly contributes to synaptic loss and neuronal death. Glia cells are highly involved in the innate immune system-mediated inflammatory response through the release of various factors and the expression of proteins that can affect synaptic function [6][314]. Microglia functions such as the pruning of synapses via the complement system, release of pro-inflammatory cytokines, and phagocytic activities have direct effects on synaptic integrity [315][316].

Neuronal cell death in AD has been reported to be mediated by cellular processes involving apoptosis, necrosis, autophagy, parthanatos, ferroptosis, pyroptosis, and the mitochondrial permeability transition pore [317].

References

1. Gulisano, W.; Maugeri, D.; Baltrons, M.A.; Fa, M.; Amato, A.; Palmeri, A.; D'Adamio, L.; Grassi, C.; Devanand, D.P.; Honig, L.S.; et al. Role of Amyloid-beta and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade. *J. Alzheimers Dis.* 2018, 64, S611–S631.
2. Chai, A.B.; Leung, G.K.F.; Callaghan, R.; Gelissen, I.C. P-glycoprotein: A role in the export of amyloid-beta in Alzheimer's disease? *FEBS J.* 2020, 287, 612–625.
3. Bateman, R.J.; Munsell, L.Y.; Morris, J.C.; Swarm, R.; Yarasheski, K.E.; Holtzman, D.M. Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. *Nat. Med.* 2006, 12, 856–861.
4. Mawuenyega, K.G.; Sigurdson, W.; Ovod, V.; Munsell, L.; Kasten, T.; Morris, J.C.; Yarasheski, K.E.; Bateman, R.J. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. *Science* 2010, 330, 1774.
5. Chakraborty, A.; de Wit, N.M.; van der Flier, W.M.; de Vries, H.E. The blood brain barrier in Alzheimer's disease. *Vascul. Pharmacol.* 2017, 89, 12–18.
6. Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: The role of inflammation in Alzheimer disease. *Nat. Rev. Neurosci.* 2015, 16, 358–372.
7. Reddy, P.H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease. *Exp. Neurol.* 2009, 218, 286–292.
8. Manczak, M.; Anekonda, T.S.; Henson, E.; Park, B.S.; Quinn, J.; Reddy, P.H. Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: Implications for free radical generation and oxidative damage in disease progression. *Hum. Mol. Genet.* 2006, 15, 1437–1449.
9. Devi, L.; Prabhu, B.M.; Galati, D.F.; Avadhani, N.G.; Anandatheerthavarada, H.K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. *J. Neurosci.* 2006, 26, 9057–9068.
10. Sanz-Blasco, S.; Valero, R.A.; Rodriguez-Crespo, I.; Villalobos, C.; Nunez, L. Mitochondrial Ca²⁺ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. *PLoS ONE* 2008, 3, e2718.
11. Nunez, L.; Senovilla, L.; Sanz-Blasco, S.; Chamero, P.; Alonso, M.T.; Villalobos, C.; Garcia-Sancho, J. Bioluminescence imaging of mitochondrial Ca²⁺ dynamics in soma and neurites of individual adult mouse sympathetic neurons. *J. Physiol.* 2007, 580, 385–395.
12. John, A.; Reddy, P.H. Synaptic basis of Alzheimer's disease: Focus on synaptic amyloid beta, P-tau and mitochondria. *Ageing Res. Rev.* 2021, 65, 101208.
13. Reddy, P.H.; Beal, M.F. Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer's disease. *Trends Mol. Med.* 2008, 14,

45–53.

14. Morley, J.E.; Farr, S.A. The role of amyloid-beta in the regulation of memory. *Biochem. Pharmacol.* 2014, 88, 479–485.
15. Vogelgesang, S.; Cascorbi, I.; Schroeder, E.; Pahnke, J.; Kroemer, H.K.; Siegmund, W.; Kunert-Keil, C.; Walker, L.C.; Warzok, R.W. Deposition of Alzheimer's beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. *Pharmacogenetics* 2002, 12, 535–541.
16. Zhao, Y.; Zhao, B. Oxidative stress and the pathogenesis of Alzheimer's disease. *Oxidative Med. Cell. Longev.* 2013, 2013, 316523.
17. Cai, Z.; Zhao, B.; Ratka, A. Oxidative stress and beta-amyloid protein in Alzheimer's disease. *Neuromolecular Med.* 2011, 13, 223–250.
18. Yao, Y.; Chinnici, C.; Tang, H.; Trojanowski, J.Q.; Lee, V.M.; Pratico, D. Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis. *J. Neuroinflammation* 2004, 1, 21.
19. Atamna, H.; Frey, W.H., 2nd; Ko, N. Human and rodent amyloid-beta peptides differentially bind heme: Relevance to the human susceptibility to Alzheimer's disease. *Arch. Biochem. Biophys.* 2009, 487, 59–65.
20. Atamna, H.; Boyle, K. Amyloid-beta peptide binds with heme to form a peroxidase: Relationship to the cytopathologies of Alzheimer's disease. *Proc. Natl. Acad. Sci. USA* 2006, 103, 3381–3386.
21. Atamna, H.; Killilea, D.W.; Killilea, A.N.; Ames, B.N. Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging. *Proc. Natl. Acad. Sci. USA* 2002, 99, 14807–14812.
22. Atamna, H.; Liu, J.; Ames, B.N. Heme deficiency selectively interrupts assembly of mitochondrial complex IV in human fibroblasts: Reliance to aging. *J. Biol. Chem.* 2001, 276, 48410–48416.
23. Gotz, J.; Streffer, J.R.; David, D.; Schild, A.; Hoerndl, F.; Pennanen, L.; Kurosinski, P.; Chen, F. Transgenic animal models of Alzheimer's disease and related disorders: Histopathology, behavior and therapy. *Mol. Psychiatry* 2004, 9, 664–683.
24. Ittner, L.M.; Gotz, J. Amyloid-beta and tau--a toxic pas de deux in Alzheimer's disease. *Nat. Rev. Neurosci.* 2011, 12, 65–72.
25. Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: Recent advances. *Mol. Neurodegener.* 2020, 15, 30.
26. Miao, J.; Shi, R.; Li, L.; Chen, F.; Zhou, Y.; Tung, Y.C.; Hu, W.; Gong, C.X.; Iqbal, K.; Liu, F. Pathological Tau From Alzheimer's Brain Induces Site-Specific Hyperphosphorylation and SDS- and Reducing Agent-Resistant Aggregation of Tau in vivo. *Front. Aging Neurosci.* 2019, 11, 34.

27. Brion, J.P. Neurofibrillary tangles and Alzheimer's disease. *Eur. Neurol.* 1998, 40, 130–140.

28. Rawat, P.; Sehar, U.; Bisht, J.; Selman, A.; Culberson, J.; Reddy, P.H. Phosphorylated Tau in Alzheimer's Disease and Other Tauopathies. *Int. J. Mol. Sci.* 2022, 23, 12841.

29. Eckert, A.; Schmitt, K.; Gotz, J. Mitochondrial dysfunction—The beginning of the end in Alzheimer's disease? Separate and synergistic modes of tau and amyloid-beta toxicity. *Alzheimers Res. Ther.* 2011, 3, 15.

30. Alonso, A.D.; Zaidi, T.; Novak, M.; Barra, H.S.; Grundke-Iqbali, I.; Iqbali, K. Interaction of tau isoforms with Alzheimer's disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. *J. Biol. Chem.* 2001, 276, 37967–37973.

31. Brion, J.P.; Anderton, B.H.; Authelet, M.; Dayanandan, R.; Leroy, K.; Lovestone, S.; Octave, J.N.; Pradier, L.; Touchet, N.; Tremp, G. Neurofibrillary tangles and tau phosphorylation. *Biochem. Soc. Symp.* 2001, 67, 81–88.

32. Brion, J.P.; Flament-Durand, J. Distribution and expression of the alpha-tubulin mRNA in the hippocampus and the temporal cortex in Alzheimer's disease. *Pathol. Res. Pract.* 1995, 191, 490–498.

33. Baas, P.W.; Rao, A.N.; Matamoros, A.J.; Leo, L. Stability properties of neuronal microtubules. *Cytoskeleton* 2016, 73, 442–460.

34. Hempen, B.; Brion, J.P. Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer's disease. *J. Neuropathol. Exp. Neurol.* 1996, 55, 964–972.

35. Alonso, A.C.; Zaidi, T.; Grundke-Iqbali, I.; Iqbali, K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. *Proc. Natl. Acad. Sci. USA* 1994, 91, 5562–5566.

36. Stamer, K.; Vogel, R.; Thies, E.; Mandelkow, E.; Mandelkow, E.M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. *J. Cell Biol.* 2002, 156, 1051–1063.

37. Yoshiyama, Y.; Higuchi, M.; Zhang, B.; Huang, S.M.; Iwata, N.; Saido, T.C.; Maeda, J.; Suhara, T.; Trojanowski, J.Q.; Lee, V.M. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. *Neuron* 2007, 53, 337–351.

38. Reddy, P.H.; Oliver, D.M. Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer's Disease. *Cells* 2019, 8, 488.

39. Kuang, H.; Tan, C.Y.; Tian, H.Z.; Liu, L.H.; Yang, M.W.; Hong, F.F.; Yang, S.L. Exploring the bi-directional relationship between autophagy and Alzheimer's disease. *CNS Neurosci. Ther.* 2020, 26, 155–166.

40. Calafate, S.; Buist, A.; Miskiewicz, K.; Vijayan, V.; Daneels, G.; de Strooper, B.; de Wit, J.; Verstreken, P.; Moechars, D. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation. *Cell Rep.* 2015, 11, 1176–1183.

41. Wu, J.W.; Hussaini, S.A.; Bastille, I.M.; Rodriguez, G.A.; Mrejeru, A.; Rilett, K.; Sanders, D.W.; Cook, C.; Fu, H.; Boonen, R.A.; et al. Neuronal activity enhances tau propagation and tau pathology in vivo. *Nat. Neurosci.* 2016, 19, 1085–1092.

42. Rhein, V.; Song, X.; Wiesner, A.; Ittner, L.M.; Baysang, G.; Meier, F.; Ozmen, L.; Bluethmann, H.; Drose, S.; Brandt, U.; et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. *Proc. Natl. Acad. Sci. USA* 2009, 106, 20057–20062.

43. Vossel, K.A.; Zhang, K.; Brodbeck, J.; Daub, A.C.; Sharma, P.; Finkbeiner, S.; Cui, B.; Mucke, L. Tau reduction prevents Abeta-induced defects in axonal transport. *Science* 2010, 330, 198.

44. Hauptmann, S.; Scherping, I.; Drose, S.; Brandt, U.; Schulz, K.L.; Jendrach, M.; Leuner, K.; Eckert, A.; Muller, W.E. Mitochondrial dysfunction: An early event in Alzheimer pathology accumulates with age in AD transgenic mice. *Neurobiol. Aging* 2009, 30, 1574–1586.

45. Rhein, V.; Baysang, G.; Rao, S.; Meier, F.; Bonert, A.; Muller-Spahn, F.; Eckert, A. Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. *Cell. Mol. Neurobiol.* 2009, 29, 1063–1071.

46. Eckert, A.; Schulz, K.L.; Rhein, V.; Gotz, J. Convergence of amyloid-beta and tau pathologies on mitochondria in vivo. *Mol. Neurobiol.* 2010, 41, 107–114.

47. Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; et al. Inflammation and Alzheimer's disease. *Neurobiol. Aging* 2000, 21, 383–421.

48. Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer's disease. *Lancet Neurol.* 2015, 14, 388–405.

49. Fu, W.Y.; Wang, X.; Ip, N.Y. Targeting Neuroinflammation as a Therapeutic Strategy for Alzheimer's Disease: Mechanisms, Drug Candidates, and New Opportunities. *ACS Chem. Neurosci.* 2019, 10, 872–879.

50. Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer's disease: Current evidence and future directions. *Alzheimers Dement.* 2016, 12, 719–732.

51. Chaney, A.; Williams, S.R.; Boutin, H. In vivo molecular imaging of neuroinflammation in Alzheimer's disease. *J. Neurochem.* 2019, 149, 438–451.

52. Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer's disease. *Alzheimers Dement.* 2018, 4, 575–590.

53. Kim, Y.S.; Joh, T.H. Microglia, major player in the brain inflammation: Their roles in the pathogenesis of Parkinson's disease. *Exp. Mol. Med.* 2006, 38, 333–347.

54. Wieckowska-Gacek, A.; Mietelska-Porowska, A.; Wydrych, M.; Wojda, U. Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. *Ageing Res. Rev.* 2021, 70, 101397.

55. Ozben, T.; Ozben, S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer's disease. *Clin. Biochem.* 2019, 72, 87–89.

56. Sung, P.S.; Lin, P.Y.; Liu, C.H.; Su, H.C.; Tsai, K.J. Neuroinflammation and Neurogenesis in Alzheimer's Disease and Potential Therapeutic Approaches. *Int. J. Mol. Sci.* 2020, 21, 701.

57. Hao, J.; Guo, Y.; Guo, K.; Yang, Q. Peripheral Inflammatory Biomarkers of Alzheimer's Disease. *J. Alzheimers Dis.* 2022, 88, 389–398.

58. Blasko, I.; Marx, F.; Steiner, E.; Hartmann, T.; Grubeck-Loebenstein, B. TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. *FASEB J.* 1999, 13, 63–68.

59. Blasko, I.; Veerhuis, R.; Stampfer-Kountchev, M.; Saurwein-Teissl, M.; Eikelenboom, P.; Grubeck-Loebenstein, B. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. *Neurobiol. Dis.* 2000, 7, 682–689.

60. Li, Y.; Liu, L.; Barger, S.W.; Griffin, W.S. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. *J. Neurosci.* 2003, 23, 1605–1611.

61. Parodi-Rullan, R.M.; Javadov, S.; Fossati, S. Dissecting the Crosstalk between Endothelial Mitochondrial Damage, Vascular Inflammation, and Neurodegeneration in Cerebral Amyloid Angiopathy and Alzheimer's Disease. *Cells* 2021, 10, 2903.

62. Fiala, M.; Zhang, L.; Gan, X.; Sherry, B.; Taub, D.; Graves, M.C.; Hama, S.; Way, D.; Weinand, M.; Witte, M.; et al. Amyloid-beta induces chemokine secretion and monocyte migration across a human blood–brain barrier model. *Mol. Med.* 1998, 4, 480–489.

63. Bettcher, B.M.; Fitch, R.; Wynn, M.J.; Lalli, M.A.; Elofson, J.; Jastrzab, L.; Mitic, L.; Miller, Z.A.; Rabinovici, G.D.; Miller, B.L.; et al. MCP-1 and eotaxin-1 selectively and negatively associate with memory in MCI and Alzheimer's disease dementia phenotypes. *Alzheimers Dement.* 2016, 3, 91–97.

64. Laske, C.; Stellos, K.; Eschweiler, G.W.; Leyhe, T.; Gawaz, M. Decreased CXCL12 (SDF-1) plasma levels in early Alzheimer's disease: A contribution to a deficient hematopoietic brain support? *J. Alzheimers Dis.* 2008, 15, 83–95.

65. Papadopoulos, V.; Lecanu, L.; Brown, R.C.; Han, Z.; Yao, Z.X. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. *Neuroscience* 2006, 138, 749–756.

66. Diorio, D.; Welner, S.A.; Butterworth, R.F.; Meaney, M.J.; Suranyi-Cadotte, B.E. Peripheral benzodiazepine binding sites in Alzheimer's disease frontal and temporal cortex. *Neurobiol. Aging* 1991, 12, 255–258.

67. McGeer, E.G.; Singh, E.A.; McGeer, P.L. Peripheral-type benzodiazepine binding in Alzheimer disease. *Alzheimer Dis. Assoc. Disord.* 1988, 2, 331–336.

68. Zhou, R.; Ji, B.; Kong, Y.; Qin, L.; Ren, W.; Guan, Y.; Ni, R. PET Imaging of Neuroinflammation in Alzheimer's Disease. *Front. Immunol.* 2021, 12, 739130.

69. Chitu, V.; Biundo, F.; Shlager, G.G.L.; Park, E.S.; Wang, P.; Gulinello, M.E.; Gokhan, S.; Ketchum, H.C.; Saha, K.; DeTure, M.A.; et al. Microglial Homeostasis Requires Balanced CSF-1/CSF-2 Receptor Signaling. *Cell Rep.* 2020, 30, 3004–3019.e3005.

70. Hu, B.; Duan, S.; Wang, Z.; Li, X.; Zhou, Y.; Zhang, X.; Zhang, Y.W.; Xu, H.; Zheng, H. Insights Into the Role of CSF1R in the Central Nervous System and Neurological Disorders. *Front. Aging Neurosci.* 2021, 13, 789834.

71. Hoozemans, J.J.; O'Banion, M.K. The role of COX-1 and COX-2 in Alzheimer's disease pathology and the therapeutic potentials of non-steroidal anti-inflammatory drugs. *Curr. Drug Targets CNS Neurol. Disord.* 2005, 4, 307–315.

72. Solas, M.; Francis, P.T.; Franco, R.; Ramirez, M.J. CB2 receptor and amyloid pathology in frontal cortex of Alzheimer's disease patients. *Neurobiol. Aging* 2013, 34, 805–808.

73. Basavarajappa, B.S.; Shivakumar, M.; Joshi, V.; Subbanna, S. Endocannabinoid system in neurodegenerative disorders. *J. Neurochem.* 2017, 142, 624–648.

74. Francistiova, L.; Bianchi, C.; Di Lauro, C.; Sebastian-Serrano, A.; de Diego-Garcia, L.; Kobolak, J.; Dinnyes, A.; Diaz-Hernandez, M. The Role of P2X7 Receptor in Alzheimer's Disease. *Front. Mol. Neurosci.* 2020, 13, 94.

75. Parvathenani, L.K.; Tertyshnikova, S.; Greco, C.R.; Roberts, S.B.; Robertson, B.; Posmantur, R. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. *J. Biol. Chem.* 2003, 278, 13309–13317.

76. Martin, E.; Amar, M.; Dalle, C.; Youssef, I.; Boucher, C.; Le Duigou, C.; Bruckner, M.; Prigent, A.; Sazdovitch, V.; Halle, A.; et al. New role of P2X7 receptor in an Alzheimer's disease mouse

model. *Mol. Psychiatry* 2019, 24, 108–125.

77. Mildner, A.; Huang, H.; Radke, J.; Stenzel, W.; Priller, J. P2Y(12) receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. *Glia* 2017, 65, 375–387.

78. Kenkhuis, B.; Somarakis, A.; Kleindouwel, L.R.T.; van Roon-Mom, W.M.C.; Hollt, T.; van der Weerd, L. Co-expression patterns of microglia markers Iba1, TMEM119 and P2RY12 in Alzheimer's disease. *Neurobiol. Dis.* 2022, 167, 105684.

79. Maeda, J.; Minamihisamatsu, T.; Shimojo, M.; Zhou, X.; Ono, M.; Matsuba, Y.; Ji, B.; Ishii, H.; Ogawa, M.; Akatsu, H.; et al. Distinct microglial response against Alzheimer's amyloid and tau pathologies characterized by P2Y12 receptor. *Brain Commun.* 2021, 3, fcab011.

80. Zhou, J.; Fonseca, M.I.; Pisalyaput, K.; Tenner, A.J. Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer's disease. *J. Neurochem.* 2008, 106, 2080–2092.

81. Daborg, J.; Andreasson, U.; Pekna, M.; Lautner, R.; Hanse, E.; Minthon, L.; Blennow, K.; Hansson, O.; Zetterberg, H. Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer's disease. *J. Neural Transm.* 2012, 119, 789–797.

82. Bi, B.T.; Lin, H.B.; Cheng, Y.F.; Zhou, H.; Lin, T.; Zhang, M.Z.; Li, T.J.; Xu, J.P. Promotion of beta-amyloid production by C-reactive protein and its implications in the early pathogenesis of Alzheimer's disease. *Neurochem. Int.* 2012, 60, 257–266.

83. Zacicagic, A.; Lepara, O.; Valjevac, A.; Arslanagic, S.; Fajkic, A.; Hadzovic-Dzuvo, A.; Avdagic, N.; Alajbegovic, A.; Mehmedika-Suljic, E.; Coric, G. Elevated serum C-reactive protein concentration in Bosnian patients with probable Alzheimer's disease. *J. Alzheimers Dis.* 2007, 12, 151–156.

84. Gong, C.; Wei, D.; Wang, Y.; Ma, J.; Yuan, C.; Zhang, W.; Yu, G.; Zhao, Y. A Meta-Analysis of C-Reactive Protein in Patients With Alzheimer's Disease. *Am. J. Alzheimers Dis. Other Dement.* 2016, 31, 194–200.

85. Hoscheidt, S.; Sanderlin, A.H.; Baker, L.D.; Jung, Y.; Lockhart, S.; Kellar, D.; Whitlow, C.T.; Hanson, A.J.; Friedman, S.; Register, T.; et al. Mediterranean and Western diet effects on Alzheimer's disease biomarkers, cerebral perfusion, and cognition in mid-life: A randomized trial. *Alzheimers Dement.* 2022, 18, 457–468.

86. Lin, B.; Hasegawa, Y.; Takane, K.; Koibuchi, N.; Cao, C.; Kim-Mitsuyama, S. High-Fat-Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer's Disease, Independently of Metabolic Disorders. *J. Am. Heart Assoc.* 2016, 5, e003154.

87. Zhou, M.M.; Ding, L.; Wen, M.; Che, H.X.; Huang, J.Q.; Zhang, T.T.; Xue, C.H.; Mao, X.Z.; Wang, Y.M. Mechanisms of DHA-enriched phospholipids in improving cognitive deficits in aged SAMP8

mice with high-fat diet. *J. Nutr. Biochem.* 2018, **59**, 64–75.

88. Walker, J.M.; Dixit, S.; Saulsberry, A.C.; May, J.M.; Harrison, F.E. Reversal of high fat diet-induced obesity improves glucose tolerance, inflammatory response, beta-amyloid accumulation and cognitive decline in the APP/PSEN1 mouse model of Alzheimer's disease. *Neurobiol. Dis.* 2017, **100**, 87–98.

89. Wen, J.; Wang, Y.; Wang, C.; Yuan, M.; Chen, F.; Zou, Q.; Cai, Z.; Zhao, B. Dietary High-Fat Promotes Cognitive Impairment by Suppressing Mitophagy. *Oxidative Med. Cell. Longev.* 2023, **2023**, 4822767.

90. Martin, S.A.; Jameson, C.H.; Allan, S.M.; Lawrence, C.B. Maternal high-fat diet worsens memory deficits in the triple-transgenic (3xTgAD) mouse model of Alzheimer's disease. *PLoS ONE* 2014, **9**, e99226.

91. Graham, L.C.; Harder, J.M.; Soto, I.; de Vries, W.N.; John, S.W.; Howell, G.R. Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer's disease. *Sci. Rep.* 2016, **6**, 21568.

92. Nam, K.N.; Mounier, A.; Wolfe, C.M.; Fitz, N.F.; Carter, A.Y.; Castranio, E.L.; Kamboh, H.I.; Reeves, V.L.; Wang, J.; Han, X.; et al. Effect of high fat diet on phenotype, brain transcriptome and lipidome in Alzheimer's model mice. *Sci. Rep.* 2017, **7**, 4307.

93. Wieckowska-Gacek, A.; Mietelska-Porowska, A.; Chutoranski, D.; Wydrych, M.; Dlugosz, J.; Wojda, U. Western Diet Induces Impairment of Liver-Brain Axis Accelerating Neuroinflammation and Amyloid Pathology in Alzheimer's Disease. *Front. Aging Neurosci.* 2021, **13**, 654509.

94. Litwiniuk, A.; Bik, W.; Kalisz, M.; Baranowska-Bik, A. Inflammasome NLRP3 Potentially Links Obesity-Associated Low-Grade Systemic Inflammation and Insulin Resistance with Alzheimer's Disease. *Int. J. Mol. Sci.* 2021, **22**, 5603.

95. Nelson, A.R.; Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. *Biochim. Biophys. Acta* 2016, **1862**, 887–900.

96. Baranowski, B.J.; Marko, D.M.; Fenech, R.K.; Yang, A.J.T.; MacPherson, R.E.K. Healthy brain, healthy life: A review of diet and exercise interventions to promote brain health and reduce Alzheimer's disease risk. *Appl. Physiol. Nutr. Metab.* 2020, **45**, 1055–1065.

97. Tabassum, S.; Misrani, A.; Yang, L. Exploiting Common Aspects of Obesity and Alzheimer's Disease. *Front. Hum. Neurosci.* 2020, **14**, 602360.

98. Lee, E.B. Obesity, leptin, and Alzheimer's disease. *Ann. N. Y. Acad. Sci.* 2011, **1243**, 15–29.

99. Terzo, S.; Amato, A.; Mule, F. From obesity to Alzheimer's disease through insulin resistance. *J. Diabetes Complicat.* 2021, **35**, 108026.

100. Gannon, O.J.; Robison, L.S.; Salinero, A.E.; Abi-Ghanem, C.; Mansour, F.M.; Kelly, R.D.; Tyagi, A.; Brawley, R.R.; Ogg, J.D.; Zuloaga, K.L. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer's disease and mixed dementia in a sex-dependent manner. *J. Neuroinflammation* 2022, 19, 110.

101. Yang, H.; Graham, L.C.; Reagan, A.M.; Grabowska, W.A.; Schott, W.H.; Howell, G.R. Transcriptome profiling of brain myeloid cells revealed activation of Itgal, Trem1, and Spp1 in western diet-induced obesity. *J. Neuroinflammation* 2019, 16, 169.

102. Coppin, G.; Nolan-Poupart, S.; Jones-Gotman, M.; Small, D.M. Working memory and reward association learning impairments in obesity. *Neuropsychologia* 2014, 65, 146–155.

103. Isaac, V.; Sim, S.; Zheng, H.; Zagorodnov, V.; Tai, E.S.; Chee, M. Adverse Associations between Visceral Adiposity, Brain Structure, and Cognitive Performance in Healthy Elderly. *Front. Aging Neurosci.* 2011, 3, 12.

104. Shefer, G.; Marcus, Y.; Stern, N. Is obesity a brain disease? *Neurosci. Biobehav. Rev.* 2013, 37, 2489–2503.

105. Gomez-Apo, E.; Mondragon-Maya, A.; Ferrari-Diaz, M.; Silva-Pereyra, J. Structural Brain Changes Associated with Overweight and Obesity. *J. Obes.* 2021, 2021, 6613385.

106. Tanaka, H.; Gourley, D.D.; Dekhtyar, M.; Haley, A.P. Cognition, Brain Structure, and Brain Function in Individuals with Obesity and Related Disorders. *Curr. Obes. Rep.* 2020, 9, 544–549.

107. Koga, S.; Kojima, A.; Kuwabara, S.; Yoshiyama, Y. Immunohistochemical analysis of tau phosphorylation and astroglial activation with enhanced leptin receptor expression in diet-induced obesity mouse hippocampus. *Neurosci. Lett.* 2014, 571, 11–16.

108. Puig, K.L.; Floden, A.M.; Adhikari, R.; Golovko, M.Y.; Combs, C.K. Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. *PLoS ONE* 2012, 7, e30378.

109. Thirumangalakudi, L.; Prakasam, A.; Zhang, R.; Bimonte-Nelson, H.; Sambamurti, K.; Kindy, M.S.; Bhat, N.R. High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. *J. Neurochem.* 2008, 106, 475–485.

110. Heverin, M.; Maioli, S.; Pham, T.; Mateos, L.; Camporesi, E.; Ali, Z.; Winblad, B.; Cedazo-Minguez, A.; Bjorkhem, I. 27-hydroxycholesterol mediates negative effects of dietary cholesterol on cognition in mice. *Behav. Brain Res.* 2015, 278, 356–359.

111. Park, S.H.; Kim, J.H.; Choi, K.H.; Jang, Y.J.; Bae, S.S.; Choi, B.T.; Shin, H.K. Hypercholesterolemia accelerates amyloid beta-induced cognitive deficits. *Int. J. Mol. Med.* 2013, 31, 577–582.

112. Rutkowsky, J.M.; Lee, L.L.; Puchowicz, M.; Golub, M.S.; Befroy, D.E.; Wilson, D.W.; Anderson, S.; Cline, G.; Bini, J.; Borkowski, K.; et al. Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/- and C57BL/6 mice fed a western diet. *PLoS ONE* 2018, 13, e0191909.

113. de J R De-Paula, V.; Forlenza, A.S.; Forlenza, O.V. Relevance of gutmicrobiota in cognition, behaviour and Alzheimer's disease. *Pharmacol. Res.* 2018, 136, 29–34.

114. Giau, V.V.; Wu, S.Y.; Jamerlan, A.; An, S.S.A.; Kim, S.Y.; Hulme, J. Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer's Disease. *Nutrients* 2018, 10, 1765.

115. Tumminia, A.; Vinciguerra, F.; Parisi, M.; Frittitta, L. Type 2 Diabetes Mellitus and Alzheimer's Disease: Role of Insulin Signalling and Therapeutic Implications. *Int. J. Mol. Sci.* 2018, 19, 3306.

116. Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. *Nat. Rev. Neurol.* 2018, 14, 168–181.

117. Hamze, R.; Delangre, E.; Tolu, S.; Moreau, M.; Janel, N.; Bailbe, D.; Movassat, J. Type 2 Diabetes Mellitus and Alzheimer's Disease: Shared Molecular Mechanisms and Potential Common Therapeutic Targets. *Int. J. Mol. Sci.* 2022, 23, 15287.

118. Pakdin, M.; Toutouchian, S.; Namazi, S.; Arbabpour, Z.; Pouladi, A.; Afsahi, S.; Poudineh, M.; Nasab, M.M.M.; Yaghoobpoor, S.; Deravi, N. Type 2 Diabetes Mellitus and Alzheimer's Disease: A Review of the Potential Links. *Curr. Diabetes Rev.* 2022, 18, e051121197760.

119. Zemva, J.; Schubert, M. Central insulin and insulin-like growth factor-1 signaling: Implications for diabetes associated dementia. *Curr. Diabetes Rev.* 2011, 7, 356–366.

120. Marrano, N.; Biondi, G.; Borrelli, A.; Rella, M.; Zambetta, T.; Di Gioia, L.; Caporusso, M.; Logroscino, G.; Perrini, S.; Giorgino, F.; et al. Type 2 Diabetes and Alzheimer's Disease: The Emerging Role of Cellular Lipotoxicity. *Biomolecules* 2023, 13, 183.

121. Pruzin, J.J.; Nelson, P.T.; Abner, E.L.; Arvanitakis, Z. Review: Relationship of type 2 diabetes to human brain pathology. *Neuropathol. Appl. Neurobiol.* 2018, 44, 347–362.

122. Cai, Z.; Qiao, P.F.; Wan, C.Q.; Cai, M.; Zhou, N.K.; Li, Q. Role of Blood-Brain Barrier in Alzheimer's Disease. *J. Alzheimers Dis.* 2018, 63, 1223–1234.

123. Li, J.; Li, M.; Ge, Y.; Chen, J.; Ma, J.; Wang, C.; Sun, M.; Wang, L.; Yao, S.; Yao, C. beta-amyloid protein induces mitophagy-dependent ferroptosis through the CD36/PINK/PARKIN pathway leading to blood-brain barrier destruction in Alzheimer's disease. *Cell Biosci.* 2022, 12, 69.

124. del Valle, J.; Duran-Vilaregut, J.; Manich, G.; Pallas, M.; Camins, A.; Vilaplana, J.; Pelegri, C. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice. *Neurodegener. Dis.* 2011, 8, 421–429.

125. Cuevas, E.; Rosas-Hernandez, H.; Burks, S.M.; Ramirez-Lee, M.A.; Guzman, A.; Imam, S.Z.; Ali, S.F.; Sarkar, S. Amyloid Beta 25-35 induces blood-brain barrier disruption in vitro. *Metab. Brain Dis.* 2019, 34, 1365–1374.

126. Yamazaki, Y.; Kanekiyo, T. Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer's Disease. *Int. J. Mol. Sci.* 2017, 18, 1965.

127. Blair, L.J.; Frauen, H.D.; Zhang, B.; Nordhues, B.A.; Bijan, S.; Lin, Y.C.; Zamudio, F.; Hernandez, L.D.; Sabbagh, J.J.; Selenica, M.L.; et al. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. *Acta Neuropathol. Commun.* 2015, 3, 8.

128. Ramos-Cejudo, J.; Wisniewski, T.; Marmar, C.; Zetterberg, H.; Blennow, K.; de Leon, M.J.; Fossati, S. Traumatic Brain Injury and Alzheimer's Disease: The Cerebrovascular Link. *EBioMedicine* 2018, 28, 21–30.

129. Nation, D.A.; Sweeney, M.D.; Montagne, A.; Sagare, A.P.; D'Orazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. *Nat. Med.* 2019, 25, 270–276.

130. Kurz, C.; Walker, L.; Rauchmann, B.S.; Perneczky, R. Dysfunction of the blood-brain barrier in Alzheimer's disease: Evidence from human studies. *Neuropathol. Appl. Neurobiol.* 2022, 48, e12782.

131. Zipser, B.D.; Johanson, C.E.; Gonzalez, L.; Berzin, T.M.; Tavares, R.; Hulette, C.M.; Vitek, M.P.; Hovanesian, V.; Stopa, E.G. Microvascular injury and blood-brain barrier leakage in Alzheimer's disease. *Neurobiol. Aging* 2007, 28, 977–986.

132. Montagne, A.; Nation, D.A.; Zlokovic, B.V. APOE4 Accelerates Development of Dementia After Stroke: Is There a Role for Cerebrovascular Dysfunction? *Stroke* 2020, 51, 699–700.

133. Riphagen, J.M.; Ramakers, I.; Freeze, W.M.; Pagen, L.H.G.; Hanseeuw, B.J.; Verbeek, M.M.; Verhey, F.R.J.; Jacobs, H.I.L. Linking APOE-epsilon4, blood-brain barrier dysfunction, and inflammation to Alzheimer's pathology. *Neurobiol. Aging* 2020, 85, 96–103.

134. Halliday, M.R.; Rege, S.V.; Ma, Q.; Zhao, Z.; Miller, C.A.; Winkler, E.A.; Zlokovic, B.V. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. *J. Cereb. Blood Flow Metab.* 2016, 36, 216–227.

135. Miners, J.S.; Schulz, I.; Love, S. Differing associations between Abeta accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease. *J. Cereb. Blood Flow Metab.* 2018, 38, 103–115.

136. Cai, Z.; Wan, C.Q.; Liu, Z. Astrocyte and Alzheimer's disease. *J. Neurol.* 2017, 264, 2068–2074.

137. Yamazaki, Y.; Shinohara, M.; Shinohara, M.; Yamazaki, A.; Murray, M.E.; Liesinger, A.M.; Heckman, M.G.; Lesser, E.R.; Parisi, J.E.; Petersen, R.C.; et al. Selective loss of cortical endothelial tight junction proteins during Alzheimer's disease progression. *Brain* 2019, 142, 1077–1092.

138. Mesulam, M.M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer's disease. *J. Comp. Neurol.* 2013, 521, 4124–4144.

139. Deutsch, J.A. The cholinergic synapse and the site of memory. *Science* 1971, 174, 788–794.

140. Drachman, D.A.; Leavitt, J. Human memory and the cholinergic system. A relationship to aging? *Arch. Neurol.* 1974, 30, 113–121.

141. Bonsi, P.; Cuomo, D.; Martella, G.; Madeo, G.; Schirinzi, T.; Puglisi, F.; Ponterio, G.; Pisani, A. Centrality of striatal cholinergic transmission in Basal Ganglia function. *Front. Neuroanat.* 2011, 5, 6.

142. Dautan, D.; Hacioglu Bay, H.; Bolam, J.P.; Gerdjikov, T.V.; Mena-Segovia, J. Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis. *Front. Neuroanat.* 2016, 10, 1.

143. Everitt, B.J.; Robbins, T.W. Central cholinergic systems and cognition. *Annu. Rev. Psychol.* 1997, 48, 649–684.

144. Sarter, M.; Bruno, J.P. Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. *Brain Res. Rev.* 1997, 23, 28–46.

145. Aoki, S.; Liu, A.W.; Akamine, Y.; Zucca, A.; Zucca, S.; Wickens, J.R. Cholinergic interneurons in the rat striatum modulate substitution of habits. *Eur. J. Neurosci.* 2018, 47, 1194–1205.

146. Beccaria, J.P.; Pretell Annan, C.A.; Keifman, E.; Murer, M.G.; Belforte, J.E. Striatal Cholinergic Interneurons Are Required for Contending Strategy Selection While Solving Spatial Navigation Problems. *J. Neurosci.* 2022, 42, 1303–1315.

147. Okada, K.; Nishizawa, K.; Setogawa, S.; Hashimoto, K.; Kobayashi, K. Task-dependent function of striatal cholinergic interneurons in behavioural flexibility. *Eur. J. Neurosci.* 2018, 47, 1174–1183.

148. Decker, A.L.; Duncan, K. Acetylcholine and the complex interdependence of memory and attention. *Curr. Opin. Behav. Sci.* 2020, 32, 21–28.

149. Howe, W.M.; Gritton, H.J.; Lusk, N.A.; Roberts, E.A.; Hetrick, V.L.; Berke, J.D.; Sarter, M. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta-Gamma Coupling during Cue Detection. *J. Neurosci.* 2017, 37, 3215–3230.

150. Hangya, B.; Ranade, S.P.; Lorenc, M.; Kepecs, A. Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback. *Cell* 2015, 162, 1155–1168.

151. Kasanuki, K.; Ferman, T.J.; Murray, M.E.; Heckman, M.G.; Pedraza, O.; Hanna Al-Shaikh, F.S.; Mishima, T.; Diehl, N.N.; van Gerpen, J.A.; Uitti, R.J.; et al. Daytime sleepiness in dementia with Lewy bodies is associated with neuronal depletion of the nucleus basalis of Meynert. *Park. Relat. Disord.* 2018, 50, 99–103.

152. Teles-Grilo Ruivo, L.M.; Baker, K.L.; Conway, M.W.; Kinsley, P.J.; Gilmour, G.; Phillips, K.G.; Isaac, J.T.R.; Lowry, J.P.; Mellor, J.R. Coordinated Acetylcholine Release in Prefrontal Cortex and Hippocampus Is Associated with Arousal and Reward on Distinct Timescales. *Cell Rep.* 2017, 18, 905–917.

153. Ballinger, E.C.; Ananth, M.; Talmage, D.A.; Role, L.W. Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. *Neuron* 2016, 91, 1199–1218.

154. Bloem, B.; Schoppink, L.; Rotaru, D.C.; Faiz, A.; Hendriks, P.; Mansvelder, H.D.; van de Berg, W.D.; Wouterlood, F.G. Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. *J. Neurosci.* 2014, 34, 16234–16246.

155. Chandler, D.J.; Lamperski, C.S.; Waterhouse, B.D. Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. *Brain Res.* 2013, 1522, 38–58.

156. Henny, P.; Jones, B.E. Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. *Eur. J. Neurosci.* 2008, 27, 654–670.

157. Kondo, H.; Zaborszky, L. Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. *J. Comp. Neurol.* 2016, 524, 2503–2515.

158. Mesulam, M.M.; Mufson, E.J.; Levey, A.I.; Wainer, B.H. Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. *J. Comp. Neurol.* 1983, 214, 170–197.

159. Schliebs, R.; Arendt, T. The cholinergic system in aging and neuronal degeneration. *Behav. Brain Res.* 2011, 221, 555–563.

160. Woolf, N.J. Cholinergic systems in mammalian brain and spinal cord. *Prog. Neurobiol.* 1991, 37, 475–524.

161. Davies, P.; Maloney, A.J. Selective loss of central cholinergic neurons in Alzheimer's disease. *Lancet* 1976, 2, 1403.

162. Coyle, J.T.; Price, D.L.; DeLong, M.R. Alzheimer's disease: A disorder of cortical cholinergic innervation. *Science* 1983, 219, 1184–1190.

163. Whitehouse, P.J.; Price, D.L.; Clark, A.W.; Coyle, J.T.; DeLong, M.R. Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. *Ann. Neurol.* 1981, 10, 122–126.

164. Whitehouse, P.J.; Price, D.L.; Struble, R.G.; Clark, A.W.; Coyle, J.T.; Delon, M.R. Alzheimer's disease and senile dementia: Loss of neurons in the basal forebrain. *Science* 1982, 215, 1237–1239.

165. Contestabile, A. The history of the cholinergic hypothesis. *Behav. Brain Res.* 2011, 221, 334–340.

166. Craig, L.A.; Hong, N.S.; McDonald, R.J. Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. *Neurosci. Biobehav. Rev.* 2011, 35, 1397–1409.

167. Summers, W.K.; Majovski, L.V.; Marsh, G.M.; Tachiki, K.; Kling, A. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. *N. Engl. J. Med.* 1986, 315, 1241–1245.

168. Bautista-Aguilera, O.M.; Ismaili, L.; Iriepa, I.; Diez-Iriepa, D.; Chabchoub, F.; Marco-Contelles, J.; Perez, M. Tacrines as Therapeutic Agents for Alzheimer's Disease. V. Recent Developments. *Chem. Rec.* 2021, 21, 162–174.

169. Eckroat, T.J.; Manross, D.L.; Cowan, S.C. Merged Tacrine-Based, Multitarget-Directed Acetylcholinesterase Inhibitors 2015-Present: Synthesis and Biological Activity. *Int. J. Mol. Sci.* 2020, 21, 5965.

170. Pena-Bautista, C.; Torres-Cuevas, I.; Baquero, M.; Ferrer, I.; Garcia, L.; Vento, M.; Chafer-Pericas, C. Early neurotransmission impairment in non-invasive Alzheimer Disease detection. *Sci. Rep.* 2020, 10, 16396.

171. Sharma, K. Cholinesterase inhibitors as Alzheimer's therapeutics (Review). *Mol. Med. Rep.* 2019, 20, 1479–1487.

172. Stanciu, G.D.; Luca, A.; Rusu, R.N.; Bild, V.; Beschea Chiriac, S.I.; Solcan, C.; Bild, W.; Ababei, D.C. Alzheimer's Disease Pharmacotherapy in Relation to Cholinergic System Involvement. *Biomolecules* 2019, 10, 40.

173. Bond, M.; Rogers, G.; Peters, J.; Anderson, R.; Hoyle, M.; Miners, A.; Moxham, T.; Davis, S.; Thokala, P.; Wailoo, A.; et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's disease (review of Technology Appraisal No. 111): A systematic review and economic model. *Health Technol. Assess.* 2012, 16, 1–470.

174. Tricco, A.C.; Ashoor, H.M.; Soobiah, C.; Rios, P.; Veroniki, A.A.; Hamid, J.S.; Ivory, J.D.; Khan, P.A.; Yazdi, F.; Ghassemi, M.; et al. Comparative Effectiveness and Safety of Cognitive Enhancers for Treating Alzheimer's Disease: Systematic Review and Network Metaanalysis. *J. Am. Geriatr. Soc.* 2018, 66, 170–178.

175. Tampi, R.R.; Forester, B.P.; Agronin, M. Aducanumab: Evidence from clinical trial data and controversies. *Drugs Context* 2021, 10, 2021-7-3.

176. Dou, K.X.; Tan, M.S.; Tan, C.C.; Cao, X.P.; Hou, X.H.; Guo, Q.H.; Tan, L.; Mok, V.; Yu, J.T. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer's disease: A network meta-analysis of 41 randomized controlled trials. *Alzheimers Res. Ther.* 2018, 10, 126.

177. Sharma, P.; Tripathi, M.K.; Shrivastava, S.K. Cholinesterase as a Target for Drug Development in Alzheimer's Disease. *Methods Mol. Biol.* 2020, 2089, 257–286.

178. Corey-Bloom, J.; Anand, R.; Veach, J. A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer's disease. *Int. J. Geriatr. Psychopharmacol.* 1998, 1, 55–65.

179. Kho, J.; Ioannou, A.; Mandal, A.K.J.; Missouris, C.G. Donepezil induces ventricular arrhythmias by delayed repolarisation. *Naunyn-Schmiedeberg's Arch. Pharmacol.* 2021, 394, 559–560.

180. Weinstock, M. Selectivity of Cholinesterase Inhibition. *CNS Drugs* 1999, 12, 307–323.

181. Li, Q.; He, S.; Chen, Y.; Feng, F.; Qu, W.; Sun, H. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. *Eur. J. Med. Chem.* 2018, 158, 463–477.

182. Reis, J.; Cagide, F.; Valencia, M.E.; Teixeira, J.; Bagetta, D.; Perez, C.; Uriarte, E.; Oliveira, P.J.; Ortuso, F.; Alcaro, S.; et al. Multi-target-directed ligands for Alzheimer's disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. *Eur. J. Med. Chem.* 2018, 158, 781–800.

183. Iulita, M.F.; Cuello, A.C. Nerve growth factor metabolic dysfunction in Alzheimer's disease and Down syndrome. *Trends Pharmacol. Sci.* 2014, 35, 338–348.

184. Fahnstock, M.; Scott, S.A.; Jette, N.; Weingartner, J.A.; Crutcher, K.A. Nerve growth factor mRNA and protein levels measured in the same tissue from normal and Alzheimer's disease parietal cortex. *Brain Res. Mol. Brain Res.* 1996, 42, 175–178.

185. Bruno, M.A.; Leon, W.C.; Fragoso, G.; Mushynski, W.E.; Almazan, G.; Cuello, A.C. Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease. *J. Neuropathol. Exp. Neurol.* 2009, 68, 857–869.

186. Cuello, A.C.; Bruno, M.A.; Bell, K.F. NGF-cholinergic dependency in brain aging, MCI and Alzheimer's disease. *Curr. Alzheimer Res.* 2007, 4, 351–358.

187. Calissano, P.; Amadoro, G.; Matrone, C.; Ciafre, S.; Marolda, R.; Corsetti, V.; Ciotti, M.T.; Mercanti, D.; Di Luzio, A.; Severini, C.; et al. Does the term 'trophic' actually mean anti-amyloidogenic? The case of NGF. *Cell Death Differ.* 2010, 17, 1126–1133.

188. Triaca, V.; Calissano, P. Impairment of the nerve growth factor pathway driving amyloid accumulation in cholinergic neurons: The incipit of the Alzheimer's disease story? *Neural Regen. Res.* 2016, 11, 1553–1556.

189. Iulita, M.F.; Bistue Millon, M.B.; Pentz, R.; Aguilar, L.F.; Do Carmo, S.; Allard, S.; Michalski, B.; Wilson, E.N.; Ducatenzeiler, A.; Bruno, M.A.; et al. Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer's disease. *Neurobiol. Dis.* 2017, 108, 307–323.

190. Tuszyński, M.H.; Yang, J.H.; Barba, D.; Hoi-Sang, U.; Bakay, R.A.; Pay, M.M.; Masliah, E.; Conner, J.M.; Kobalka, P.; Roy, S.; et al. Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease. *JAMA Neurol.* 2015, 72, 1139–1147.

191. Barreto, G.E.; Gonzalez, J.; Torres, Y.; Morales, L. Astrocytic-neuronal crosstalk: Implications for neuroprotection from brain injury. *Neurosci. Res.* 2011, 71, 107–113.

192. Casse, F.; Richetin, K.; Toni, N. Astrocytes' Contribution to Adult Neurogenesis in Physiology and Alzheimer's Disease. *Front. Cell. Neurosci.* 2018, 12, 432.

193. Shan, L.; Zhang, T.; Fan, K.; Cai, W.; Liu, H. Astrocyte-Neuron Signaling in Synaptogenesis. *Front. Cell. Dev. Biol.* 2021, 9, 680301.

194. Stogsdill, J.A.; Ramirez, J.; Liu, D.; Kim, Y.H.; Baldwin, K.T.; Enustun, E.; Ejikeme, T.; Ji, R.R.; Eroglu, C. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. *Nature* 2017, 551, 192–197.

195. Zamboni, M.; Llorens-Bobadilla, E.; Magnusson, J.P.; Frisen, J. A Widespread Neurogenic Potential of Neocortical Astrocytes Is Induced by Injury. *Cell Stem Cell* 2020, 27, 605–617.e605.

196. Borst, K.; Dumas, A.A.; Prinz, M. Microglia: Immune and non-immune functions. *Immunity* 2021, 54, 2194–2208.

197. Schafer, D.P.; Stevens, B. Microglia Function in Central Nervous System Development and Plasticity. *Cold Spring Harb. Perspect. Biol.* 2015, 7, a020545.

198. Song, W.M.; Colonna, M. The identity and function of microglia in neurodegeneration. *Nat. Immunol.* 2018, 19, 1048–1058.

199. Xu, Y.; Jin, M.Z.; Yang, Z.Y.; Jin, W.L. Microglia in neurodegenerative diseases. *Neural Regen. Res.* 2021, 16, 270–280.

200. Akiyoshi, R.; Wake, H.; Kato, D.; Horiuchi, H.; Ono, R.; Ikegami, A.; Haruwaka, K.; Omori, T.; Tachibana, Y.; Moorhouse, A.J.; et al. Microglia Enhance Synapse Activity to Promote Local Network Synchronization. *eNeuro* 2018, 5, 1–13.

201. Parkhurst, C.N.; Yang, G.; Ninan, I.; Savas, J.N.; Yates, J.R., 3rd; Lafaille, J.J.; Hempstead, B.L.; Littman, D.R.; Gan, W.B. Microglia promote learning-dependent synapse formation through brain-

derived neurotrophic factor. *Cell* 2013, 155, 1596–1609.

202. Weinhard, L.; di Bartolomei, G.; Bolasco, G.; Machado, P.; Schieber, N.L.; Neniskyte, U.; Exiga, M.; Vadisiute, A.; Raggioli, A.; Schertel, A.; et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. *Nat. Commun.* 2018, 9, 1228.

203. Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. *Science* 2016, 352, 712–716.

204. Paolicelli, R.C.; Bolasco, G.; Pagani, F.; Maggi, L.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T.A.; Guiducci, E.; Dumas, L.; et al. Synaptic pruning by microglia is necessary for normal brain development. *Science* 2011, 333, 1456–1458.

205. Wang, C.; Yue, H.; Hu, Z.; Shen, Y.; Ma, J.; Li, J.; Wang, X.D.; Wang, L.; Sun, B.; Shi, P.; et al. Microglia mediate forgetting via complement-dependent synaptic elimination. *Science* 2020, 367, 688–694.

206. Duncan, G.J.; Simkins, T.J.; Emery, B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. *Front. Cell. Dev. Biol.* 2021, 9, 653101.

207. Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in Development, Myelin Generation and Beyond. *Cells* 2019, 8, 1424.

208. Dimou, L.; Gallo, V. NG2-glia and their functions in the central nervous system. *Glia* 2015, 63, 1429–1451.

209. Liu, Y.; Aguzzi, A. NG2 glia are required for maintaining microglia homeostatic state. *Glia* 2020, 68, 345–355.

210. Parolisi, R.; Boda, E. NG2 Glia: Novel Roles beyond Re-/Myelination. *Neuroglia* 2018, 1, 151–175.

211. Vigano, F.; Dimou, L. The heterogeneous nature of NG2-glia. *Brain Res.* 2016, 1638, 129–137.

212. Zhang, S.Z.; Wang, Q.Q.; Yang, Q.Q.; Gu, H.Y.; Yin, Y.Q.; Li, Y.D.; Hou, J.C.; Chen, R.; Sun, Q.Q.; Sun, Y.F.; et al. NG2 glia regulate brain innate immunity via TGF-beta2/TGFBR2 axis. *BMC Med.* 2019, 17, 204.

213. Kumar, A.; Fontana, I.C.; Nordberg, A. Reactive astrogliosis: A friend or foe in the pathogenesis of Alzheimer's disease. *J. Neurochem.* 2021, 164, 309–324.

214. Pekny, M.; Pekna, M. Astrocyte reactivity and reactive astrogliosis: Costs and benefits. *Physiol. Rev.* 2014, 94, 1077–1098.

215. Serrano-Pozo, A.; Muzikansky, A.; Gomez-Isla, T.; Growdon, J.H.; Betensky, R.A.; Frosch, M.P.; Hyman, B.T. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid

deposits in Alzheimer disease. *J. Neuropathol. Exp. Neurol.* 2013, 72, 462–471.

216. Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. *Acta Neuropathol.* 2010, 119, 7–35.

217. Beach, T.G.; McGeer, E.G. Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer's disease visual cortex. *Brain Res.* 1988, 463, 357–361.

218. Nagele, R.G.; D'Andrea, M.R.; Lee, H.; Venkataraman, V.; Wang, H.Y. Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. *Brain Res.* 2003, 971, 197–209.

219. Chatterjee, P.; Pedrini, S.; Stoops, E.; Goozee, K.; Villemagne, V.L.; Asih, P.R.; Verberk, I.M.W.; Dave, P.; Taddei, K.; Sohrabi, H.R.; et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer's disease. *Transl. Psychiatry* 2021, 11, 27.

220. Cicognola, C.; Janelidze, S.; Hertze, J.; Zetterberg, H.; Blennow, K.; Mattsson-Carlsgren, N.; Hansson, O. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. *Alzheimers Res. Ther.* 2021, 13, 68.

221. Viejo, L.; Noori, A.; Merrill, E.; Das, S.; Hyman, B.T.; Serrano-Pozo, A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. *Neuropathol. Appl. Neurobiol.* 2022, 48, e12753.

222. Choi, S.S.; Lee, H.J.; Lim, I.; Satoh, J.; Kim, S.U. Human astrocytes: Secretome profiles of cytokines and chemokines. *PLoS ONE* 2014, 9, e92325.

223. Kashon, M.L.; Ross, G.W.; O'Callaghan, J.P.; Miller, D.B.; Petrovitch, H.; Burchfiel, C.M.; Sharp, D.S.; Markesberry, W.R.; Davis, D.G.; Hardman, J.; et al. Associations of cortical astrogliosis with cognitive performance and dementia status. *J. Alzheimers Dis.* 2004, 6, 595–604; discussion 673–581.

224. Olabarria, M.; Noristani, H.N.; Verkhratsky, A.; Rodriguez, J.J. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease. *Glia* 2010, 58, 831–838.

225. Sajja, V.S.; Hlavac, N.; VandeVord, P.J. Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction. *Front. Integr. Neurosci.* 2016, 10, 7.

226. Alberdi, E.; Wyssenbach, A.; Alberdi, M.; Sanchez-Gomez, M.V.; Cavaliere, F.; Rodriguez, J.J.; Verkhratsky, A.; Matute, C. Ca(2+) -dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid beta-treated astrocytes and in a model of Alzheimer's disease. *Aging Cell* 2013, 12, 292–302.

227. Alves, V.S.; Alves-Silva, H.S.; Orts, D.J.B.; Ribeiro-Silva, L.; Arcisio-Miranda, M.; Oliveira, F.A. Calcium Signaling in Neurons and Glial Cells: Role of Cav1 channels. *Neuroscience* 2019, 421, 95–111.

228. Lim, D.; Iyer, A.; Ronco, V.; Grolla, A.A.; Canonico, P.L.; Aronica, E.; Genazzani, A.A. Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf- κ B. *Glia* 2013, 61, 1134–1145.

229. Pleiss, M.M.; Sompol, P.; Kraner, S.D.; Abdul, H.M.; Furman, J.L.; Guttmann, R.P.; Wilcock, D.M.; Nelson, P.T.; Norris, C.M. Calcineurin proteolysis in astrocytes: Implications for impaired synaptic function. *Biochim. Biophys. Acta* 2016, 1862, 1521–1532.

230. Sompol, P.; Norris, C.M. Ca(2+), Astrocyte Activation and Calcineurin/NFAT Signaling in Age-Related Neurodegenerative Diseases. *Front. Aging Neurosci.* 2018, 10, 199.

231. Colombo, J.A.; Quinn, B.; Puissant, V. Disruption of astroglial interlaminar processes in Alzheimer's disease. *Brain Res. Bull.* 2002, 58, 235–242.

232. Hsu, E.T.; Gangolli, M.; Su, S.; Holleran, L.; Stein, T.D.; Alvarez, V.E.; McKee, A.C.; Schmidt, R.E.; Brody, D.L. Astrocytic degeneration in chronic traumatic encephalopathy. *Acta Neuropathol.* 2018, 136, 955–972.

233. Verkhratsky, A.; Zorec, R.; Rodriguez, J.J.; Parpura, V. Astroglia dynamics in ageing and Alzheimer's disease. *Curr. Opin. Pharmacol.* 2016, 26, 74–79.

234. Galea, E.; Weinstock, L.D.; Larramona-Arcas, R.; Pybus, A.F.; Gimenez-Llort, L.; Escartin, C.; Wood, L.B. Multi-transcriptomic analysis points to early organelle dysfunction in human astrocytes in Alzheimer's disease. *Neurobiol. Dis.* 2022, 166, 105655.

235. Fong, L.K.; Yang, M.M.; Dos Santos Chaves, R.; Reyna, S.M.; Langness, V.F.; Woodruff, G.; Roberts, E.A.; Young, J.E.; Goldstein, L.S.B. Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid-beta clearance in human astrocytes. *J. Biol. Chem.* 2018, 293, 11341–11357.

236. Thal, D.R. The role of astrocytes in amyloid beta-protein toxicity and clearance. *Exp. Neurol.* 2012, 236, 1–5.

237. Kierdorf, K.; Prinz, M. Microglia in steady state. *J. Clin. Investig.* 2017, 127, 3201–3209.

238. Sarlus, H.; Heneka, M.T. Microglia in Alzheimer's disease. *J. Clin. Investig.* 2017, 127, 3240–3249.

239. Wolf, S.A.; Boddeke, H.W.; Kettenmann, H. Microglia in Physiology and Disease. *Annu. Rev. Physiol.* 2017, 79, 619–643.

240. Hanisch, U.K.; Kettenmann, H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. *Nat. Neurosci.* 2007, 10, 1387–1394.

241. Kreutzberg, G.W. Microglia: A sensor for pathological events in the CNS. *Trends Neurosci.* 1996, 19, 312–318.

242. Itagaki, S.; McGeer, P.L.; Akiyama, H.; Zhu, S.; Selkoe, D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. *J. Neuroimmunol.* 1989, 24, 173–182.

243. Labzin, L.I.; Heneka, M.T.; Latz, E. Innate Immunity and Neurodegeneration. *Annu. Rev. Med.* 2018, 69, 437–449.

244. Morales, I.; Guzman-Martinez, L.; Cerdá-Troncoso, C.; Farias, G.A.; Maccioni, R.B. Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. *Front. Cell. Neurosci.* 2014, 8, 112.

245. Verheijen, J.; Sleegers, K. Understanding Alzheimer Disease at the Interface between Genetics and Transcriptomics. *Trend Genet.* 2018, 34, 434–447.

246. Lanfranco, M.F.; Sepulveda, J.; Kopetsky, G.; Rebeck, G.W. Expression and secretion of apoE isoforms in astrocytes and microglia during inflammation. *Glia* 2021, 69, 1478–1493.

247. Castellano, J.M.; Kim, J.; Stewart, F.R.; Jiang, H.; DeMattos, R.B.; Patterson, B.W.; Fagan, A.M.; Morris, J.C.; Mawuenyega, K.G.; Cruchaga, C.; et al. Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. *Sci. Transl. Med.* 2011, 3, 89ra57.

248. Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer's disease: Advances in genetics, pathophysiology, and therapeutic approaches. *Lancet Neurol.* 2021, 20, 68–80.

249. Verghese, P.B.; Castellano, J.M.; Garai, K.; Wang, Y.; Jiang, H.; Shah, A.; Bu, G.; Frieden, C.; Holtzman, D.M. ApoE influences amyloid-beta (Abeta) clearance despite minimal apoE/Abeta association in physiological conditions. *Proc. Natl. Acad. Sci. USA* 2013, 110, E1807–E1816.

250. Sienski, G.; Narayan, P.; Bonner, J.M.; Kory, N.; Boland, S.; Arczewska, A.A.; Ralvenius, W.T.; Akay, L.; Lockshin, E.; He, L.; et al. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. *Sci. Transl. Med.* 2021, 13, eaaz4564.

251. Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O'Loughlin, E.; Xu, Y.; Fanek, Z.; et al. The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. *Immunity* 2017, 47, 566–581.e569.

252. Poliani, P.L.; Wang, Y.; Fontana, E.; Robinette, M.L.; Yamanishi, Y.; Gilfillan, S.; Colonna, M. TREM2 sustains microglial expansion during aging and response to demyelination. *J. Clin. Investig.* 2015, 125, 2161–2170.

253. Song, W.; Hooli, B.; Mullin, K.; Jin, S.C.; Cella, M.; Ulland, T.K.; Wang, Y.; Tanzi, R.E.; Colonna, M. Alzheimer's disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation. *Alzheimer's Dement.* 2017, 13, 381–387.

254. Yeh, F.L.; Wang, Y.; Tom, I.; Gonzalez, L.C.; Sheng, M. TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia. *Neuron* 2016, 91, 328–340.

255. Zheng, H.; Jia, L.; Liu, C.C.; Rong, Z.; Zhong, L.; Yang, L.; Chen, X.F.; Fryer, J.D.; Wang, X.; Zhang, Y.W.; et al. TREM2 Promotes Microglial Survival by Activating Wnt/beta-Catenin Pathway. *J. Neurosci.* 2017, 37, 1772–1784.

256. Schafer, D.P.; Lehrman, E.K.; Kautzman, A.G.; Koyama, R.; Mardinly, A.R.; Yamasaki, R.; Ransohoff, R.M.; Greenberg, M.E.; Barres, B.A.; Stevens, B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. *Neuron* 2012, 74, 691–705.

257. Brouwers, N.; Van Cauwenberghe, C.; Engelborghs, S.; Lambert, J.C.; Bettens, K.; Le Bastard, N.; Pasquier, F.; Montoya, A.G.; Peeters, K.; Mattheijssens, M.; et al. Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. *Mol. Psychiatry* 2012, 17, 223–233.

258. Jun, G.; Naj, A.C.; Beecham, G.W.; Wang, L.S.; Buros, J.; Gallins, P.J.; Buxbaum, J.D.; Ertekin-Taner, N.; Fallin, M.D.; Friedland, R.; et al. Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes. *Arch. Neurol.* 2010, 67, 1473–1484.

259. McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. *Neurology* 1984, 34, 939–944.

260. Wilson, R.S.; Leurgans, S.E.; Boyle, P.A.; Bennett, D.A. Cognitive decline in prodromal Alzheimer disease and mild cognitive impairment. *Arch. Neurol.* 2011, 68, 351–356.

261. Morris, J.C.; Storandt, M.; Miller, J.P.; McKeel, D.W.; Price, J.L.; Rubin, E.H.; Berg, L. Mild cognitive impairment represents early-stage Alzheimer disease. *Arch. Neurol.* 2001, 58, 397–405.

262. Petersen, R.C.; Roberts, R.O.; Knopman, D.S.; Boeve, B.F.; Geda, Y.E.; Ivnik, R.J.; Smith, G.E.; Jack, C.R., Jr. Mild cognitive impairment: Ten years later. *Arch. Neurol.* 2009, 66, 1447–1455.

263. Blennow, K.; Bogdanovic, N.; Alafuzoff, I.; Ekman, R.; Davidsson, P. Synaptic pathology in Alzheimer's disease: Relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. *J Neural Transm.* 1996, 103, 603–618.

264. DeKosky, S.T.; Scheff, S.W.; Styren, S.D. Structural correlates of cognition in dementia: Quantification and assessment of synapse change. *Neurodegeneration* 1996, 5, 417–421.

265. Gomez-Isla, T.; Hollister, R.; West, H.; Mui, S.; Growdon, J.H.; Petersen, R.C.; Parisi, J.E.; Hyman, B.T. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. *Ann. Neurol.* 1997, 41, 17–24.

266. Spires-Jones, T.L.; Hyman, B.T. The intersection of amyloid beta and tau at synapses in Alzheimer's disease. *Neuron* 2014, 82, 756–771.

267. Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. *Ann. Neurol.* 1991, 30, 572–580.

268. de Wilde, M.C.; Overk, C.R.; Sijben, J.W.; Masliah, E. Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vesicular machinery vulnerability. *Alzheimers Dement.* 2016, 12, 633–644.

269. Bai, Y.; Li, M.; Zhou, Y.; Ma, L.; Qiao, Q.; Hu, W.; Li, W.; Wills, Z.P.; Gan, W.B. Abnormal dendritic calcium activity and synaptic depotentiation occur early in a mouse model of Alzheimer's disease. *Mol. Neurodegener.* 2017, 12, 86.

270. Forner, S.; Baglietto-Vargas, D.; Martini, A.C.; Trujillo-Estrada, L.; LaFerla, F.M. Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony. *Trends Neurosci.* 2017, 40, 347–357.

271. Pozueta, J.; Lefort, R.; Shelanski, M.L. Synaptic changes in Alzheimer's disease and its models. *Neuroscience* 2013, 251, 51–65.

272. Spires-Jones, T.; Knafo, S. Spines, plasticity, and cognition in Alzheimer's model mice. *Neural Plast.* 2012, 2012, 319836.

273. Stephen, T.L.; Tamagnini, F.; Piegza, J.; Sung, K.; Harvey, J.; Oliver-Evans, A.; Murray, T.K.; Ahmed, Z.; Hutton, M.L.; Randall, A.; et al. Imbalance in the response of pre- and post-synaptic components to amyloidopathy. *Sci. Rep.* 2019, 9, 14837.

274. Bereczki, E.; Francis, P.T.; Howlett, D.; Pereira, J.B.; Hoglund, K.; Bogstedt, A.; Cedazo-Minguez, A.; Baek, J.H.; Hortobagyi, T.; Attems, J.; et al. Synaptic proteins predict cognitive decline in Alzheimer's disease and Lewy body dementia. *Alzheimers Dement.* 2016, 12, 1149–1158.

275. Bereczki, E.; Branca, R.M.; Francis, P.T.; Pereira, J.B.; Baek, J.H.; Hortobagyi, T.; Winblad, B.; Ballard, C.; Lehtio, J.; Aarsland, D. Synaptic markers of cognitive decline in neurodegenerative diseases: A proteomic approach. *Brain* 2018, 141, 582–595.

276. Mecca, A.P.; O'Dell, R.S.; Sharp, E.S.; Banks, E.R.; Bartlett, H.H.; Zhao, W.; Lipior, S.; Diepenbrock, N.G.; Chen, M.K.; Naganawa, M.; et al. Synaptic density and cognitive performance in Alzheimer's disease: A PET imaging study with UCB-J. *Alzheimers Dement.* 2022, 18, 2527–2536.

277. Scheff, S.W.; Price, D.A. Synaptic pathology in Alzheimer's disease: A review of ultrastructural studies. *Neurobiol. Aging* 2003, 24, 1029–1046.

278. Coleman, P.D.; Flood, D.G. Neuron numbers and dendritic extent in normal aging and Alzheimer's disease. *Neurobiol. Aging* 1987, 8, 521–545.

279. DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer's disease. *Mol. Neurodegener.* 2019, 14, 32.

280. Hof, P.R.; Morrison, J.H. Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease: II. Primary and secondary visual cortex. *J. Comp. Neurol.* 1990, 301, 55–64.

281. Arendt, T.; Bruckner, M.K.; Morawski, M.; Jager, C.; Gertz, H.J. Early neurone loss in Alzheimer's disease: Cortical or subcortical? *Acta Neuropathol. Commun.* 2015, 3, 10.

282. Gomez-Isla, T.; Price, J.L.; McKeel, D.W., Jr.; Morris, J.C.; Growdon, J.H.; Hyman, B.T. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. *J. Neurosci.* 1996, 16, 4491–4500.

283. West, M.J.; Coleman, P.D.; Flood, D.G.; Troncoso, J.C. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. *Lancet* 1994, 344, 769–772.

284. Mountjoy, C.Q.; Roth, M.; Evans, N.J.; Evans, H.M. Cortical neuronal counts in normal elderly controls and demented patients. *Neurobiol. Aging* 1983, 4, 1–11.

285. Andrade-Moraes, C.H.; Oliveira-Pinto, A.V.; Castro-Fonseca, E.; da Silva, C.G.; Guimaraes, D.M.; Szczupak, D.; Parente-Bruno, D.R.; Carvalho, L.R.; Polichiso, L.; Gomes, B.V.; et al. Cell number changes in Alzheimer's disease relate to dementia, not to plaques and tangles. *Brain* 2013, 136, 3738–3752.

286. Giannakopoulos, P.; Herrmann, F.R.; Bussiere, T.; Bouras, C.; Kovari, E.; Perl, D.P.; Morrison, J.H.; Gold, G.; Hof, P.R. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. *Neurology* 2003, 60, 1495–1500.

287. Casas, C.; Sergeant, N.; Itier, J.M.; Blanchard, V.; Wirths, O.; van der Kolk, N.; Vingtdeux, V.; van de Steeg, E.; Ret, G.; Canton, T.; et al. Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. *Am. J. Pathol.* 2004, 165, 1289–1300.

288. Oakley, H.; Cole, S.L.; Logan, S.; Maus, E.; Shao, P.; Craft, J.; Guillozet-Bongaarts, A.; Ohno, M.; Disterhoft, J.; Van Eldik, L.; et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: Potential factors in amyloid plaque formation. *J. Neurosci.* 2006, 26, 10129–10140.

289. Ribe, E.M.; Perez, M.; Puig, B.; Gich, I.; Lim, F.; Cuadrado, M.; Sesma, T.; Catena, S.; Sanchez, B.; Nieto, M.; et al. Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. *Neurobiol. Dis.* 2005, 20, 814–822.

290. Schmitz, C.; Rutten, B.P.; Pielen, A.; Schafer, S.; Wirths, O.; Tremp, G.; Czech, C.; Blanchard, V.; Multhaup, G.; Rezaie, P.; et al. Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer's disease. *Am. J. Pathol.* 2004, 164, 1495–1502.

291. Ugolini, F.; Lana, D.; Nardiello, P.; Nosi, D.; Pantano, D.; Casamenti, F.; Giovannini, M.G. Different Patterns of Neurodegeneration and Glia Activation in CA1 and CA3 Hippocampal Regions of TgCRND8 Mice. *Front. Aging Neurosci.* 2018, 10, 372.

292. Cline, E.N.; Bicca, M.A.; Viola, K.L.; Klein, W.L. The Amyloid-beta Oligomer Hypothesis: Beginning of the Third Decade. *J. Alzheimer's Dis.* 2018, 64, S567–S610.

293. Esparza, T.J.; Zhao, H.; Cirrito, J.R.; Cairns, N.J.; Bateman, R.J.; Holtzman, D.M.; Brody, D.L. Amyloid-beta oligomerization in Alzheimer dementia versus high-pathology controls. *Ann. Neurol.* 2013, 73, 104–119.

294. Lambert, M.P.; Barlow, A.K.; Chromy, B.A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T.E.; Rozovsky, I.; Trommer, B.; Viola, K.L.; et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. *Proc. Natl. Acad. Sci. USA* 1998, 95, 6448–6453.

295. Shankar, G.M.; Li, S.; Mehta, T.H.; Garcia-Munoz, A.; Shepardson, N.E.; Smith, I.; Brett, F.M.; Farrell, M.A.; Rowan, M.J.; Lemere, C.A.; et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. *Nat. Med.* 2008, 14, 837–842.

296. Walsh, D.M.; Klyubin, I.; Fadeeva, J.V.; Cullen, W.K.; Anwyl, R.; Wolfe, M.S.; Rowan, M.J.; Selkoe, D.J. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. *Nature* 2002, 416, 535–539.

297. Cisse, M.; Halabisky, B.; Harris, J.; Devidze, N.; Dubal, D.B.; Sun, B.; Orr, A.; Lotz, G.; Kim, D.H.; Hamto, P.; et al. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. *Nature* 2011, 469, 47–52.

298. Smith, L.M.; Stittmatter, S.M. Binding Sites for Amyloid-beta Oligomers and Synaptic Toxicity. *Cold Spring Harb. Perspect. Med.* 2017, 7, a024075.

299. Koffie, R.M.; Meyer-Luehmann, M.; Hashimoto, T.; Adams, K.W.; Mielke, M.L.; Garcia-Alloza, M.; Micheva, K.D.; Smith, S.J.; Kim, M.L.; Lee, V.M.; et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. *Proc. Natl. Acad. Sci. USA* 2009, 106, 4012–4017.

300. Koffie, R.M.; Hashimoto, T.; Tai, H.C.; Kay, K.R.; Serrano-Pozo, A.; Joyner, D.; Hou, S.; Kopeikina, K.J.; Frosch, M.P.; Lee, V.M.; et al. Apolipoprotein E4 effects in Alzheimer's disease are mediated by synaptotoxic oligomeric amyloid-beta. *Brain* 2012, 135, 2155–2168.

301. Guerrero-Munoz, M.J.; Gerson, J.; Castillo-Carranza, D.L. Tau Oligomers: The Toxic Player at Synapses in Alzheimer's Disease. *Front. Cell. Neurosci.* 2015, 9, 464.

302. Augustinack, J.C.; Schneider, A.; Mandelkow, E.M.; Hyman, B.T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. *Acta Neuropathol.* 2002, 103, 26–35.

303. DeVos, S.L.; Miller, R.L.; Schoch, K.M.; Holmes, B.B.; Kebodeaux, C.S.; Wegener, A.J.; Chen, G.; Shen, T.; Tran, H.; Nichols, B.; et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. *Sci. Transl. Med.* 2017, 9, eaag0481.

304. Fein, J.A.; Sokolow, S.; Miller, C.A.; Vinters, H.V.; Yang, F.; Cole, G.M.; Gyllys, K.H. Co-localization of amyloid beta and tau pathology in Alzheimer's disease synaptosomes. *Am. J. Pathol.* 2008, 172, 1683–1692.

305. Tai, H.C.; Wang, B.Y.; Serrano-Pozo, A.; Frosch, M.P.; Spires-Jones, T.L.; Hyman, B.T. Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer's disease. *Acta Neuropathol. Commun.* 2014, 2, 146.

306. Zhou, L.; McInnes, J.; Wierda, K.; Holt, M.; Herrmann, A.G.; Jackson, R.J.; Wang, Y.C.; Swerts, J.; Beyens, J.; Miskiewicz, K.; et al. Tau association with synaptic vesicles causes presynaptic dysfunction. *Nat. Commun.* 2017, 8, 15295.

307. Ghag, G.; Bhatt, N.; Cantu, D.V.; Guerrero-Munoz, M.J.; Ellsworth, A.; Sengupta, U.; Kayed, R. Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross-seeding behavior. *Protein Sci.* 2018, 27, 1901–1909.

308. Jin, M.; Shepardson, N.; Yang, T.; Chen, G.; Walsh, D.; Selkoe, D.J. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. *Proc. Natl. Acad. Sci. USA* 2011, 108, 5819–5824.

309. Kopeikina, K.J.; Hyman, B.T.; Spires-Jones, T.L. Soluble forms of tau are toxic in Alzheimer's disease. *Transl. Neurosci.* 2012, 3, 223–233.

310. Sealey, M.A.; Vourkou, E.; Cowan, C.M.; Bossing, T.; Quraishi, S.; Grammenoudi, S.; Skoulakis, E.M.C.; Mudher, A. Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy. *Neurobiol. Dis.* 2017, 105, 74–83.

311. Szabo, L.; Eckert, A.; Grimm, A. Insights into Disease-Associated Tau Impact on Mitochondria. *Int. J. Mol. Sci.* 2020, 21, 6344.

312. Kopeikina, K.J.; Carlson, G.A.; Pitstick, R.; Ludvigson, A.E.; Peters, A.; Luebke, J.I.; Koffie, R.M.; Frosch, M.P.; Hyman, B.T.; Spires-Jones, T.L. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain. *Am. J. Pathol.* 2011, 179, 2071–2082.

313. Pickett, E.K.; Rose, J.; McCrory, C.; McKenzie, C.A.; King, D.; Smith, C.; Gillingwater, T.H.; Henstridge, C.M.; Spires-Jones, T.L. Region-specific depletion of synaptic mitochondria in the

brains of patients with Alzheimer's disease. *Acta Neuropathol.* 2018, 136, 747–757.

314. McGeer, P.L.; McGeer, E.G. The inflammatory response system of brain: Implications for therapy of Alzheimer and other neurodegenerative diseases. *Brain Res. Brain Res. Rev.* 1995, 21, 195–218.

315. Davies, C.; Spires-Jones, T.L. Complementing Tau: New Data Show that the Complement System Is Involved in Degeneration in Tauopathies. *Neuron* 2018, 100, 1267–1269.

316. Henstridge, C.M.; Hyman, B.T.; Spires-Jones, T.L. Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. *Nat. Rev. Neurosci.* 2019, 20, 94–108.

317. Goel, P.; Chakrabarti, S.; Goel, K.; Bhutani, K.; Chopra, T.; Bali, S. Neuronal cell death mechanisms in Alzheimer's disease: An insight. *Front. Mol. Neurosci.* 2022, 15, 937133.

Retrieved from <https://encyclopedia.pub/entry/history/show/100828>