
Hill Climb Assembler Encoding | Encyclopedia.pub

https://encyclopedia.pub/entry/26142 1/6

Hill Climb Assembler Encoding
Subjects: Computer Science, Artificial Intelligence

Contributor: Tomasz Praczyk

Hill Climb Assembler Encoding (HCAE) which is a light variant of Hill Climb Modular Assembler Encoding

(HCMAE). While HCMAE, as the name implies, is dedicated to modular neural networks, the target application of

HCAE is to evolve small/mid-scale monolithic neural networks. HCAE is a light variant of HCMAE and it originates

from both AE and AEEO. All the algorithms are based on three key components, i.e., a network definition matrix

(NDM), which represents the neural networks, assembler encoding program (AEP), which operates on NDM, and

evolutionary algorithm, whose task is to produce optimal AEPs, NDMs, and, consequently, the networks.

evolutionary neural networks hill climb control

1. Network Definition Matrix

To represent a neural network, HCAE, like its predecessors, uses a matrix called network definition matrix (NDM).

The matrix includes all the parameters of the network, including the weights of inter-neuron connections, bias, etc.

The matrix which contains non-zero elements above and below the diagonal encodes a recurrent neural network

(RANN), whereas the matrix with only the content above the diagonal represents a feed-forward network (FFANN)

.

2. Assembler Encoding Program

In all the AE family, filling up the matrix, and, consequently, constructing an ANN is the task of an assembler

encoding program (AEP) which, like an assembler program, consists of a list of operations and a sequence of data.

Each operation implements a fixed algorithm and its role is to modify a piece of NDM. The operations are run one

after another and their working areas can overlap, which means that modifications made by one operation can be

overwritten by other operations which are placed further in the program. AEPs can be homogeneous or

heterogeneous in terms of applied operations. In the first case, all operations in AEP are of the same type and they

implement the same algorithm whereas, in the second case, AEPs can include operations with different algorithms.

The first solution is applied in HCAE and AEEO, whereas the second one in AE .

The way each operation works depends, on the one hand, on its algorithm and, on the other hand, on its

parameters. Each operation can be fed with its “private” parameters, linked exclusively to it, or with a list of shared

parameters concentrated in the data sequence. Parametrization allows operations with the same algorithm to work

in a different manner, for example, to work in different fragments of NDM.

[1]

[1]

Hill Climb Assembler Encoding | Encyclopedia.pub

https://encyclopedia.pub/entry/26142 2/6

HCAE uses two types of operations, say, Oper1 and Oper2. Oper1 is an adaptation of a solution applied in

AEEO. It is of a global range, which means that it can modify any element of NDM, and it uses a small feed-

forward neural network, say, ANN operation, in the decision-making process. The task of ANN operation is to

decide which NDM items are to be updated and how they are to be updated (see Figure 1). The architecture of

each ANN operation is determined by parameters of Oper1, whereas inputs to the ANN operation are taken from

the data sequence of AEP. A pseudo-code of Oper1 is given in Algorithm 1.

Figure 1. Applying ANN operations in Oper1: ANN operation is run for each item in NDM, one after another, and it

can change the value of each item. The figure shows applying the network to determine the value of three items:

NDM[2,2], NDM[4,6] and NDM[5,5]. In the first case, the item is modified to the value out5, which is the response of

the network to the input r2,c2. r2,c2 are data items that correspond to the second row and column, that is, to the

location of the modified item. The value out5 is inserted into NDM because out1<out2 and out3<out4. In the

second case, the item receives the value 0 because out1<out2 and out3≥out4. In addition, in the third case, the

item is left unchanged because out1≥out2.

Each ANN operation has two inputs and five outputs. The inputs indicate individual items of NDM. In AEEO, ANN

operations are fed with coordinates of items to be modified, that is, with numbers of columns and rows, for

example, in order to modify item [i,j], an ANN operation is supplied with i and j. In HCAE, a different approach is

used, namely, instead of i, j, ANN operations are fed with data items which correspond to i and j, that is, with row [i]

and column [j] (lines (10) and (11) in Algorithm 1). Vectors row and column are filled with appropriate data items

(lines (2) and (5) in Algorithm 1).

The outputs of ANN operation decide whether to modify a given item of NDM or to leave it intact—outputs no. 1

and no. 2 (line (13) in Algorithm 1), and then, whether to reset the item or to assign it a new value—outputs no. 3

Hill Climb Assembler Encoding | Encyclopedia.pub

https://encyclopedia.pub/entry/26142 3/6

and no. 4 (line (14) in Algorithm 1), the new value is taken from the fifth output of the ANN operation (line (15) in

Algorithm 1). Parameter M is a scaling parameter.

Like resultant ANNs, ANN operations are also represented in the form of NDMs, say, NDM operations. To generate

an NDM operation, and consequently, an ANN operation, getANN(p) is applied whose pseudo-code is depicted in

Algorithm 2. It fills all matrix items with subsequent parameters of Oper1 divided by a scaling coefficient, N. If the

number of parameters is too small to fill the entire matrix, they are used many times.

Unlike Oper1, Oper2 works locally in NDM, and is an adaptation of a solution applied in AE. Pseudo-code

of Oper2 is given in Algorithm 3 and 4. It does not use ANN-operations; instead, it directly fills NDM with values

from the data sequence of AEP: where NDM is updated, and which and how many data items are used, are

determined by operation parameters. The first parameter indicates the direction according to which NDM is

modified, that is, whether it is changed along columns or rows (lines (4) and (10) in Algorithm 3). The second

parameter determines the size of holes between NDM updates, that is, the number of zeros that separate

consecutive updates (line (3) in Algorithm 4). The next two parameters point out the location in NDM where the

operation starts to work, i.e., they indicate the starting row and column (line (1) in Algorithm 4). The fifth parameter

Algorithm 1 Pseudo-code of Oper1.

Input: operation parameters (p), data sequence (d), NDM
Output: NDM

1:  for i∈<0..NDM.numberOfRows) do
2:    row[i] ← d[i mod d.length];
3:  end for
4:  for i∈<0..NDM.numberOfColumns) do
5:    column[i] ← d[(i+NDM.numberOfRows) mod d.length];
6:  end for
7:  ANN-oper ← getANN(p);
8:  fori∈<0..NDM.numberOfColumns) do
9:    for j∈<0..NDM.numberOfRows) do
10:      ANN-oper.setIn(1,row[j]);
11:      ANN-oper.setIn(2,column[i]);
12:      ANN-oper.run();
13:      if ANN-oper.getOut(1) <ANN-oper.getOut(2) then
14:        if ANN-oper.getOut(3) < ANN-oper.getOut(4) then
15:          NDM[j,i] ←M*ANN-oper.getOut(5);
16:        else
17:          NDM[j,i] ← 0;
18:        end if
19:      end if
20:    end for
21:  end for
22:  Return NDM

Algorithm 2 Pseudo-code of getANN.

Input: operation parameters (p)
Output: ANN-operation

1:  NDM-operation ← 0;
2:  noOfItem← 0;
3:  for i∈<0..NDM-operation.numberOfColumns) do
4:    for j<i //feed-forward ANN do
5:      NDM-operation[j,i] ← p[noOfItemmod p.length]/N;
6:      noOfItem++;
7:    end for
8:  end for
9:  Return ANN-operation encoded in NDM-operation.

Hill Climb Assembler Encoding | Encyclopedia.pub

https://encyclopedia.pub/entry/26142 4/6

determines the size of the altered NDM area, in other words, it indicates how many NDM items are updated (line

(1) in Algorithm 4). Additionally, the last, sixth parameter points out location in the sequence of data from where the

operation starts to take data items and put them into the NDM (line (2) in Algorithm 3) .

3. Evolutionary Algorithm

The common characteristic of all AE-based algorithms is the use of cooperative co-evolutionary GA (CCEGA)

to evolve AEPs, that is, to determine the number of operations (AE,AEEO), the type of each operation (AE), the

parameters of the operations (all algorithms), the length of the data sequence (AE,AEEO), and its content (all

algorithms). As already mentioned, the implementations of operations are predefined. According to CCEGA, each

evolved component of AEP evolves in a separate population, that is, an AEP with n operations and the sequence of

data evolves in n+1 populations (see Figure 2) .

Figure 2. Evolution of AEPs according to CCEGA

To construct a complete AEP, NDM, and finally, a network, the operations and the data are combined together

according to the procedure applied in CCEGA. An individual (for example, an operation) from an evaluated

population is linked to the best leader individuals from the remaining populations that evolved in all previous

CCEGA iterations. Each population maintains the leader individuals, which are applied as building blocks of all

AEPs constructed during the evolutionary process. In order to evaluate newborn individuals, they are combined

with the leader individuals from the remaining populations .

Even though all the AE family applies CCEGA to evolve neural networks, HCAE does it in a different way from the

remaining AE algorithms. In AE/AEEO, the networks evolve in one potentially infinite loop of CCEGA. Throughout

the evolution, AEPs can grow or shrink, that is, they adjust their complexity to the task by changing in size. Each

growth or shrinkage entails a change in the number of populations in which AEPs evolve. Unfortunately, such an

approach appeared to be ineffective for a greater number of operations/populations. Usually, an increase in the

number of operations/populations to three or more does not improve results, which is due to the difficulties in the

coordination of a greater number of operations.

[1]

Algorithm 3 Pseudo-code of Oper2 .

Input: operation parameters (p), data sequence (d), NDM
Output: NDM

1:  filled← 0;
2:  where← p[6];
3:  holes← 0;
4:  if p[1] mod 2 = 0 then
5:    for k∈<0..NDM.numberOfColumns) do
6:      for j∈<0..NDM.numberOfRows) do
7:        NDM[j,k] ← fill(k,j,param,data,filled,where,holes);
8:      end for
9:    end for
10:  else
11:    for k∈<0..NDM.numberOfRows) do
12:      for j∈<0..NDM.numberOfColumns) do
13:        NDM[k,j] ← fill(j,k,p,d,filled,where,holes);
14:      end for
15:    end for
16:  end if
17:  Return NDM.

[1]

Algorithm 4 Pseudo-code of fill () .

Input: number of column (c), number of row (r), operation parameters (p),
data sequence (d), number of updated items (f),
starting position in data (w), number of holes (h)
Output: new value for NDM item

1:  if f < p[5] and c ≥ p[4] andr≥ p[3] then
2:    f++;
3:    if h = p[2] then
4:      h ← 0;
5:      w++;
6:      Return d[w mod d.length];
7:    else
8:      h++;
9:      Return 0.
10:    end if
11:  end if

[1]

[2][3]

[1]

[1]

Hill Climb Assembler Encoding | Encyclopedia.pub

https://encyclopedia.pub/entry/26142 5/6

In contrast to AE/AEEO, HCAE is a hill climber whose each step is made by CCEGA (see Algorithm 5). A starting

point of the algorithm is a blank network represented by a blank NDM (line (1)). Then, the network as well as NDM

are improved in subsequent evolutionary runs of CCEGA (line (5)). Each next run works on the best network/NDM

found so far by all earlier runs (each AEP works on its own copy of NDM), is interrupted after a specified number of

iterations without progress (MAX_ITER_NO_PROG), and delegates outside, to the HCAE main loop, the best

network/NDM that evolved within the run (tempNDM). If this network/NDM is better than those generated by earlier

CCEGA runs, a next HCAE step is made—each subsequent network/NDM has to be better than its predecessor

(line (7)).

In order to avoid AE/AEEO problems with the effective processing of complex AEPs, HCAE uses constant-length

programs of a small size. They include, at most, two operations and the sequence of data; the number of

operations does not change over time. Such a construction of AEPs affects the structure of CCEGA. In this case,

AEPs evolve in two or, at most, three populations; the number of populations is invariable. One population includes

sequences of data, i.e., chromosomes data, whereas the remaining populations contain encoded operations, i.e.,

chromosomes operations. The operations are encoded as integer strings, whereas the data as real-valued vectors,

which is a next difference between HCAE and AE/AEEO that apply binary encoding. Both chromosomes

operations and chromosomes data are of constant length.

In HCAE, like in AE/AEEO, the evolution in all the populations takes place according to simple canonical genetic

algorithm with a tournament selection. The chromosomes undergo two classical genetic operators, i.e., one-point

crossover and mutation. The crossover is performed with a constant probability Pc, whereas the mutation is

adjusted to the current state of the evolutionary process. Its probability (Pdm—probability of mutation in data

sequences; Pom—probability of mutation in operations) grows once there is no progress for a time and it

decreases once progress is noticed .

The chromosomes data and chromosomes operations are mutated differently, and they are performed according to

Equations (1) and (2) .

(1)

[1]

Algorithm 5 Evolution in HCAE .

Input: CCEGA parameters, for example crossover probability
Output: Neural network

1:  NDM ← 0;
2:  numberOfIter← 0;
3:  fitness← evaluation of NDM;
4:  while numberOfIter < maxEval and fitness < acceptedFitnessdo
5:    tempNDM ← CCEGA.run(NDM,MAX_ITER_NO_PROG);
6:    if tempNDM.fitness > fitness then
7:      NDM ← tempNDM;
8:      fitness ← tempNDM.fitness;
9:    end if
10:    numberOfIter ← numberOfIter + 1;
11:  end while
12:  Return Neural network decoded from NDM.

[1]

[1]

[1]

dnew = {
d + randU(−a, a) if randU (0, 1) ≤ P

d
m

d otherwise

Hill Climb Assembler Encoding | Encyclopedia.pub

https://encyclopedia.pub/entry/26142 6/6

(2)

where d—is a gene in a chromosome-data; o—is a gene in a chromosome-operation; randU(−a,a)—is a uniformly

distributed random real value from the range <−a,a>; randI(−b,b)—is a uniformly distributed random integer value

from the range <−b,b>; Po,zerom—is a probability of a mutated gene to be zero.

4. Complexity Analysis

Although algorithms no. 1, 2 and 3 present the traditional iterative implementation style, which is due to the ease of

analysis of such algorithms, the actual HCAE implementation is parallel. This means that the algorithm can be

divided into three parallel blocks executed one after the other, namely: the genetic algorithm (CCEGA + CGA), the

AEP program and the evaluation of neural networks. The complexity of the algorithm can therefore be defined as

O(O(CCEGA + CGA) + O(AEP) + O(Fitness)). The parallel implementation of the genetic algorithm requires, in

principle, three steps, i.e., selection of parent individuals, crossover and mutation, which means that the

researchers obtain O(3). In addition, it also requires l(n+n1n2) processors or processor cores, where l is the

number of chromosomes in a single CCEGA population, n1 is the number of AEP operations, and n and n2 are the

number of genes in chromosome data and chromosomes operations, respectively. The AEP program is executed

in n1 steps (O(n1)) and requires a maximum of Z processors/cores, where Z is the number of cells of the NDM

matrix. The last block of the algorithm is the evaluation of neural networks, the computational complexity of which

depends on the problem being solved. Ignoring the network evaluation, it can be concluded that the algorithm

complexity is O(3 + n1) and requires max(l(n+n1n2),Z) processors/cores.

References

1. Praczyk, T. Hill Climb Modular Assembler Encoding: Evolving Modular Neural Networks of fixed
modular architecture. Knowl.-Based Syst. 2022, 232.

2. Potter, M. The Design and Analysis of a Computational Model of Cooperative Coevolution. Ph.D.
Thesis, George Mason University, Fairfax, VA, USA, 1997.

3. Potter, M.A.; Jong, K.A.D. Cooperative coevolution: An architecture for evolving coadapted
subcomponents. Evol. Comput. 2000, 8, 1–29.

Retrieved from https://encyclopedia.pub/entry/history/show/63348

onew =

⎧⎪⎨⎪⎩o + randI(−b, b) if randU (0, 1) ≤ P
o

m
and

randU (0, 1) ≥ P
o,zero
m

0 if randU (0, 1) ≤ P
o
m and randU (0, 1) ≤ P

o,zero
m

o otherwise

