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An effective alternative for water purification is reverse osmosis (RO). Laboratory-scale RO modeling is widely applied
worldwide, and allows the evaluation of the behavior of the system to find the most convenient operating variables to be
applied in future industrial scale-ups. Statistical models provide a wide range of information that allows a statistical prediction
of the operation of the plant, and allows people to obtain efficiency indices in its development; these are useful in the
planning, operation and monitoring process in RO plants. The mathematical models describe the physical behavior of the
membrane and allow the identification of optimal operating conditions, taking into account economic aspects, guaranteeing a
greater implementation of RO technology in developing countries which have problems with water contaminated with toxic
heavy metals. A comparative method is proposed to establish the advantages and selection criteria to apply the different
models in 0.

reverse osmosis mathematical model statistical model

| 1. Introduction

Throughout the world, water scarcity is recognized as a present and future threat to humanity; as a consequence, the new
trend is to recover water from wastewater or the sea through different technologies. Likewise, financial viability is often a
concern in water reclamation projects [, Recent studies have shown membrane filtration technology to be a promising
process for drinking water treatment and recovery 2IBI4IE! One membrane filtration process that has drawn particular
attention in the last few years is RO [BIIE! Feria-Diaz et al. [ states that RO is the most advanced technology used for water
desalination in the world, due to its high efficiency, flexibility, and ease of operation. In contrast, RO has become a tool with
industrial applications, and its research is currently being deepened, with the aim of guiding this process towards sustainability
1191 |n making reverse osmosis a more economically efficient technology, research has allowed advances in materials, better

pumping efficiency, and the creation of energy recovery devices (111,

In order to understand the separation in a membrane process, it is necessary to build models. These models are especially
useful when the transport coefficients are not functions of the driving forces, that is, pressure and concentration gradients [£2],
The variables of the models are discussed by different authors seeking to reach an exact understanding of the process. For
example, Sherwood et al. 13 define the coefficients in the solution—diffusion and solution-diffusion-imperfection models to be
functions of both pressure and concentration, while the coefficients in the Kedem model 24 are relatively insensitive to
pressure and concentration. On the other hand, Abbas [£3] specifies two key variables that must be monitored and controlled
for the correct performance of the RO system. One is product flow rate, and the second is conductivity (a measure of quality).
However, there are many other variables that need to be monitored and/or controlled, including the feed rate, operating

temperature, permeate pressure, and solute concentration.

Subramanni and Panda (8 state that steady-state statistical models in RO are built using flow, concentration, and pH data
over a period of time. This indicates that statistical models are useful for the formulation of operational control strategies in
real-time in the plant. On the other hand, laboratory-scale pilot plants are useful in order to understand the solute separation
mechanism in water in an RO process. Mathematical models of the integrated process can be useful in the design and
operation of plants at various levels. It should also be noted that phenomenological models derived from real-time plant data
are useful for the calculation of the permeate and rejection characteristics that also incorporate concentration polarization 18,
However, the behavior of a real plant must be ascertained by analyzing its input and output data through statistical tools.
Regression models were used to predict the performance index, which takes into account the consumption of energy

depending on different variables.

| 2. Model Concentration Polarization

In membrane-based water treatment processes, membrane fouling is an unavoidable fact that can significantly affect the
performance, operation, sustainability, and economic viability of the processes, with concentration by polarization being one of
these mechanisms. There are several correlations for a quantitative description of this phenomenon L7,
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The main research topic in mass transfer is the transfer process near the membrane, where concentration-polarization (CP)
significantly affects this process. Therefore, the study of mass transfer to the outer membrane focuses on CP modeling to
predict the RO separation process (2.

The phenomenon of concentration-polarization (CP) remains a challenge that generates problems in the operational process,

such as increases in feed pressure, decreases in permeate, increases in energy consumption, and membrane fouling [EIL8]
[19]

When a membrane separation process is carried out, as time progresses, solutes remain near the membrane on the feed
side; they belong to dissolved salts that did not pass through the permeate. These solutes must be dragged by the rejection
current; however, as this speed is almost zero, they can only pass into the rejection current by diffusion that is generated in
the opposite direction to the permeate flow, which is also called retro diffusion. This causes a zone in the membrane called
the boundary layer, where the concentration of the salt is greater than that of the rest of the solution. The explained
phenomenon is called membrane polarization, and when the concentration of this solution in contact with the membrane
increases, a concentration by polarization is generated 22211,

Concentration polarization and the corresponding theory allow the simultaneous evaluation of the three characteristic
parameters of the Spigler-Kedem 22 model: reflection coefficient o, solute permeability Lp, and mass transfer coefficient K. In
addition, the variable rate method gives quite good results, similar to those of the Spiegler-Kedem polarization model. The
latter also provides information on the reflection and permeability of solutes (23!,

Al-Obaidi et al. 24 show that a mathematical model applied in the processes of the separation of diluted aqueous solutions by
RO can be used to predict and analyze the flow, pressure, concentration, and temperature in the membrane, in addition to
facilitating the estimation of the behavior of the flow of water and the concentration of the solute.

Temperature is a very difficult parameter to control in a natural environment. However, in a plant operation process it is
important to evaluate its effect on the operation of the RO (23], Transport through dense films can be viewed as an activated
process that can generally be represented by an Arrhenius-type equation. Temperature has an important effect on membrane
permeability and solute transport, and the Arrhenius equation shows the temperature dependence of the membrane
permeability in RO processes 28],

Alanod et al. 270 point out that the increase in pressure and temperature in a brackish water desalination process by RO
allows better recovery but decreases when the feed flow increases. They also point out that lower energy consumption can be
achieved with lower values of flow and pressures.

Ahmed et al. 28 point out that more than 60% of desalination processes installed in the world are operated by RO. New
membrane materials, improved pretreatment methods, and novel process design have enabled the technology to operate
near the theoretical energy limit. In turn, Lim and Elimelec 22 indicate that innovations in the system configuration, such as
the use of multiple stages and/or passes, have been incorporated in large-scale RO plants to overcome the drawbacks of the
RO process of a single stage in which the large, applied pressure results in avoidable energy dissipation and a high initial
permeate flux.

In membrane-based water treatment processes, membrane fouling is an unavoidable fact that can significantly affect the
performance, operation, sustainability, and economic viability of the processes, with concentration by polarization being one of
these mechanisms. Several correlations exist for a quantitative description of this phenomenon LJEJE1],

2.1. Mathematical Modeling

For Ersoy and Moscardini 22, a mathematical model is used to describe real problems as mathematical equations, and they
are solved using different approaches. Sarker and Newton 33! indicate that the most frequently applied mathematical model is
optimization or mathematical programming. This consists in maximizing or minimizing an objective function by systematically
choosing input values within a set that stratifies some restrictions. They also point out that optimization is the way to find the
best solution to a problem by analyzing several alternatives.

For Walker et al. 341, mathematical modeling and optimization in engineering allow the manipulation of design parameters to
meet certain objectives and/or to help predict system performance. For their part, Yang and Koziel 5 state that the
uncertainty of real systems and the costs involved in pilot experimental plants make mathematical models valuable, but more
complex, such that they must be developed in a way that matches reality.

The development of a mathematical model that adequately expresses the performance of the RO process is essential in order
for the final design of the system to be implemented to be optimal and efficient, whilst also allowing a reduction in costs during
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its implementation B8 In this sense, several mathematical models have been proposed to describe mass transfer and
hydrodynamic permeability in RO systems &I,

2.2. Membrane Modeling Approaches

Ahmed et al. [28 states that mathematical modeling techniques for membrane desalination processes have improved
significantly in the last decade. Van der Bruggen BZ points out three benefits in modeling pressure-driven membrane
separation processes. In the first instance, it helps to predict the behavior of the system and compare the different
membranes. Secondly, the modeling allows a better understanding of the mechanisms that govern the permeate and rejection
in the system. Thirdly, the models allow the generation of a monitoring process to find the factors that affect the performance

of the process.

The modeling and optimization of solute separation processes by membranes has been critically studied in the last five years
regarding the phenomena of transport and mass transfer, energy consumption, and fouling, etc. in technologies such as RO
or multistage flash (MSF) (28,

2.3. Mathematical Modeling in Reverse Osmosis

In the 1960s, the solution diffusion model was developed, which—to date—continues to be the most widely used in RO
separation processes. The model describes transport through a semi-permeable RO membrane 28], In this model, the transfer
of the solution (solute and solvent) through the membrane occurs in three steps: absorption to the membrane, diffusion

through the membrane, and desorption from the membrane.

| 3. RO Optimization Modeling

Ahmed et al. and Zarzo and Prats 28139 state that energy consumption in an RO system is between 50 and 60% of the total
cost of the process, with this being the key factor for the use of any technology.

Between 1970 and 2022, the energy consumption in an RO system was reduced by 80% due to lower energy consumption in
each of the components of the RO plant. Such is the case for the pretreatment system, high-pressure pumps, the material
and configuration of the membrane, energy recovery devices, and post-treatment 32, Initially, the energy consumption
exceeded 15 kwh/m?3; today, and with the new advances in general, the consumption is in the order of 2.5 kwh/m3 29,

Ahmed et al. 28 point out that an adequate optimization of the system and greater energy reductions can be achieved with an
adequate plant configuration, which can be achieved first through simulations before pilot-scale experimental tests. Geise et
al. 9 state that the configuration of the membrane is fundamental for the reduction of energy consumption, where part of the

driving force is the balance between the selectivity and permeability of the membrane.

In terms of energy consumption, several alternatives for the operation of the system were compared. Lin and Elimelech 1]
compared two-stage reverse RO (SSRO) systems against a single-stage closed-loop (CC-RO). In the first case, the reject
stream from the first stage is converted into feed for the second stage, while for the single-stage system, the reject is mixed
with the feed stream that passes back through the membrane. The results show that the single-stage system in a closed
circuit is less efficient than a two-stage system because it needs more energy to reduce the entropy generated by the mixture
of the rejection to the feed flow 2.

In another investigation, Chong and Krantz 42! propose a low-consumption (EERO) system in which they seek to increase the
overall water recovery by sending the retentate from one or more two-stage (SSRO) systems as feed to a countercurrent
membrane cascade with recycling (CMCR). This consists in one or more low-salt-rejection RO stages (Stage 1) and high-salt-
rejection stages (Stage 2). The results show a lower osmotic pressure differential and thus a lower net specific energy
consumption (281,

King and Hong 3! propose a partial split single-pass system (SSO-RO) in which permeate from only the back RO elements in
a pressure vessel is mixed with the RO feed to dilute the feed. This results in a high-quality permeate with lower energy
demand. The modeling carried out shows that the energy efficiency is maximized for the process when the permeate of the
last element is mixed with the feed. This modified process is up to 15% more efficient in permeate purity and energy efficiency
than a normal two-step system [28],

An improvement to the RO system which is proposed to achieve a more uniform flow distribution throughout a pressure
vessel is to use a hybrid membrane configuration known as internal staged design (ISD). This system involves the use of low-
flux membranes in the front and high-flux membranes in the rear elements 241451, This system allows a significant reduction in
permeate costs by requiring fewer pressure vessels and fewer membranes 48147,
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Han et al. #3 improved the system using three different types of RO membranes: high rejection, standard, and high flux. In an
experimental boron rejection process, they showed that using three standard membranes at the front and four high-flow
membranes at the back, energy savings of 0.41 kw/m? were achieved.

Jeong et al. 48 proposes a model based on a finite difference approximation that allows a better numerical optimization of the
ISD system in the presence of colloidal fouling. Compared to conventional designs in which the same membrane is
incorporated throughout the vessel, the ISD resulted in higher water flow and higher energy efficiency for long-term operation,
without compromising the permeate quality (<400 mg/L).

Kotb et al. 49 point out that optimization studies require complex or highly non-linear models with many restrictions. They
implemented a simple transport model to determine the operating parameters corresponding to the optimal structure of the
RO system, that is, one-, two-, and three-stage arrangements with respect to the minimum cost of permeate production for a
given permeate flow rate with the maximum total dissolved solids [28!.

They suggest that the optimal permeate flow rate increases with the number of stages; while a single-stage RO system is
suitable for up to 6 m3/h, three-stage modules are suitable for production up to 20 m3/h [28],

| 4. Statistical Modeling

The use of statistical models to analyze the separation process in RO is essential to knowing the behavior of an RO plant and
analyzing the input and output data (28],

Subramanni and Panda 18], in their research carried out on a desalination process by RO, use statistical regression for the
analysis of the experimental modeling. Among the most important conclusions, they point out that the statistical model allows
a better understanding of the behavior of the plant's mechanism and the interaction between the input and output variables
through the formulation of statistical models. The ANOVA analysis shows that the total dissolved solids of the permeate is
affected by the change in the system recycle ratio. They also point out that the proposed statistical model is useful for the
planning, monitoring, and analysis of the separation system.

Miyamoto et al. B9 statistically examined the performance of the sediment density index (SDI) and defined a new fouling
index, defined as the “coefficient of permeation”. The research was carried out in a desalination process under normal
environmental conditions, where they statistically analyzed the relationships between the amount of filtered water, the elapsed
time, and the environmental factors in order to obtain new knowledge about the performance and deficiencies of the use of

SDI from a statistical point of view.

Khajet and Cojocaru B performed the modeling and optimization of the air-gap membrane distillation process using the
response surface methodology. The optimization of a solar-powered desalination plant was evaluated through the response
surface methodology 521,

Khajet et al. 52 investigated the optimization of an RO plant using solar-powered energy through statistical response surface
modeling. They applied the orthogonal type methodology 3! for the design of the experiments and a minimum number of
experimental runs—as proposed by Taguchi et al. 54—with simultaneous temperature variations, which allowed them to
develop a predictive model of salt rejection, permeate flux, and the RO specific performance index. The results obtained from
the analysis of variance (ANOVA) confirm that the response surface models developed are statistically validated in order to
simulate the Ol process. They establish, for example, that for a drinking water production of 0.2 m3/day they use an energy
consumption of only 1.2 to 1.3 kWh/m3.

In another investigation, Mohsen and Salen 52 evaluated the performance of an RO plant in Wadi Ma'in, Zara, and Mujib to
present the state of the art of its operation and maintenance. They collected detailed information on plant design and
engineering, water quality, plant personnel, and the cost of operation and maintenance since the plant was commissioned.
They analyzed for 150 days the performance of the RO desalination process in terms of recovery, permeate flux, normalized
permeate flux during the erratic period, normalized differential pressure throughout the RO system, and salt rejection, and
obtained the state of the system operation and maintenance.

Khajet and Cojocaru 1 used the response surface methodology for the statistical design of the experiment, which allowed
them to evaluate an air gap membrane desalination process. They developed and statistically validated two regression
models, one for the performance index and one for the specific performance index that considers energy consumption. The
temperature is the one that has the greatest positive effect on the performance index and the feed flow rate for the specific
performance index.
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De-wei et al. B8, meanwhile, used quadratic dynamic matrix control (QMDC), which is a model-based predictive control
(MPC) strategy to evaluate and control an RO desalination system. For the QMDC controller, they installed a field-
programmable gate array (FPGA) chip and operator using software developed for this purpose. The results showed that the
proposed system performs better than the traditional proportional, integral and derivative (PID) controller systems.

Feo et al. 37 analyzed the production capacities and costs in production lines in small RO plants in the Canary Islands. For
this purpose, they developed a mathematical model based on expressions related to costs based on production capacity.
They collected and processed statistical data. They plotted all of the cost data on bar charts and box-and-whisker plots. They
performed the study of outliers, as well as Kolmogorov-Smirnov and Shapiro-Wilk tests based on the Hubera M-wave, Tukey
biweight, Hampel M, and Andrew’s estimators. Subsequently, factorial analysis was performed using the Bartlett and Kaiser-
Meyer-Olkin tests; they then analyzed the possible mathematical models.

The response surface model was proposed by Box and Wilson 58] and is very useful for the modeling and analysis of the
results obtained in applications where the response of interest is influenced by different variables, and where the objective is
to optimize said response. Its main advantage, compared to other models that relate a variable at three levels, is that it
provides the minimum number of experimental runs. An economic design does so from the point of view of reagents, sample
quantification, the payment of external checks, and energy, among others 2,

In order to form the MSR, it is necessary to consider several phases or steps, one of them being the exploration of the optimal
response region, through 2k full factorial experiments or the option of 2k—p fractional factorial designs. This is necessary in
order to determine a smaller number of experiments €9,

Taguchi contributed to the dissemination of the design of experiments because this, unlike what happens with classical
design, does not require being an expert in the method in order to be able to apply it 241,

Taguchi’'s method manages to solve design of experiments problems in a practical way. The use of the classic design
generally implies the allocation of more resources to experimentation (a greater number of experimental units, more
personnel involved, more time, a special place may even be required for experimentation because there are more replicas,
and efforts to maintain a homogeneous the experimental conditions, among others). In some cases, the Taguchi method
constitutes the only possible way for companies to carry out experimentation 611,

Likewise, it should be pointed out that Taguchi’'s method would not be viable if its conclusions were not certain. The reliability
of the results obtained through the design of experiments proposed by Taguchi 24l is given by the power of the AO, that is, the
power of the ANOVA (ANalysis Of Variance).
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