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Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their

antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific

and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly.
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1. Introduction

Traditionally, CD8  T cells have been considered to exist along a single spectrum; resting naïve CD8  T (T ) cells, upon

recognition of cognate antigen and subsequent activation, differentiate into effector T cells, which contract upon antigen

clearance, leaving a conventional memory T (T ) cell population. The T  cell population is comprised largely of

effector memory T cells (T ), found predominantly in tissues and primed for rapid effector function, and central memory T

(T ) cells, found mainly in lymph nodes and responsible for self-renewal and supplying the pipeline of effector T cells  .

T  cells are quiescent but poised for activation, and present at a relatively high antigen-specific frequency. These

features of CD8  T cell memory underpin their ability to respond rapidly after reencounter with the same antigen and are a

hallmark of adaptive immunity. Recently, a novel population(s) of CD8  T cells has been identified, referred to variously as

virtual memory T (T ) cells, memory phenotype (MP) T cells, antigen-inexperienced memory T (T ) cells, and innate

memory T (T ) cells, that exhibit many characteristics of T  cells - including cell surface phenotype and rapid

responsiveness to both antigen-specific and innate stimuli - despite having not previously encountered specific antigen.

Herein, we generally refer to this population of antigen-naïve memory phenotype CD8+ T cells as T  cells. The interest

in T  cells stems from their ability to exert robust and rapid effector functions never previously attributed to antigen-

inexperienced T cells, their responsiveness to both antigen-specific and innate stimuli, their superior survival capacity and

their intrinsic dysfunction in elderly mice and humans . The following review highlights how T  cells have

blurred the traditional boundaries between T  cells and T  cells and have driven the need for a re-evaluation of

conventionally accepted T  characteristics. In addition, we discuss recent advances in our understanding of T  cells,

including their development as a distinct cell lineage and their biological relevance in protection from infection and

cancers .

2. Conflation of Mouse T  cells with Conventional T  cells

In mice, the phenotype of conventional T  cell populations is well established  with all antigen-experienced

memory T cells expressing the definitive activation marker, CD44, and differential expression of the lymph node homing

receptor, CD62L, allowing distinction between T  and T  subsets . However, the discovery of T  cells has revealed

a substantial overlap in the cell surface phenotype of conventional T  cells and T  cells in mice, with both expressing

high levels of CD44 and CD62L . Consequently, T  cells have historically fallen into the conventional phenotypic

definition of antigen-experienced CD8  T  population (Figure 1a). This can be easily overcome by the inclusion of

CD49d, an integrin involved in cell trafficking, which is stably upregulated on T  cells but, even with advanced age or

certain infection models, remains low on T cells. T  cells can also be identified by high level expression of IL-2Rβ/IL-

15Rβ (CD122) compared to lower expression on T  cells, reflecting T  cell sensitivity to IL-15 . It has recently been

demonstrated that conventionally defined T  cells are, in both young and aged mice, comprised predominantly (~80%)

of T cells. Even in mice recently infected with LCMV, which induces a robust CD8  T cell memory population, over 60%

of CD8  CD44  CD62L  cells (i.e. conventionally defined T  cells) are T cells . Findings regarding the T

population may therefore be influenced by the inclusion of T cells.
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Figure 1. The Differentiation Continuum and Defining Phenotype of Steady-State CD8  T cells. CD8  T  cells are a

semi-differentiated yet antigenically naïve T cell population, indicating the potential for antigen-independent T cell

differentiation and representing a link between antigen naïve (yellow shaded) and antigen-experienced (red shaded)

memory T cells. T  cells have historically been phenotypically included within (a) the T  cell population in mice, and (b)

the T  cell population in humans. Lineage-defining markers (in bold), in conjunction with other additional markers,

demarcate T  cells and reinforce their phenotypic and functional uniqueness.

Inaccurate attribution of characteristics as a consequence of the conflation of T and T  cells is exemplified by our

understanding of the reliance of CD8  T  cells on IL-15 for survival. The current paradigm indicates that IL-15 is critical

for T  cell survival. However, recent studies have shown that in young and aged mice lacking IL-15 there is a complete

loss of T cells (CD44  CD49d ) whilst T  (CD44  CD49d ) cells are relatively unaffected . Similarly, in mice

lacking CD122, the generation and maintenance of T  cells remains relatively intact whilst T cells fail to develop 

These findings call into question other widely accepted characteristics of T  cells. Of particular interest is the

dependence of T and T  cells on tonic peptide + Major Histocompatibility Complex I molecule (MHCI)-TCR signalling

for survival in the periphery. It has long been appreciated that circulating naïve CD8  T cells require low affinity self-

pMHCI:TCR interactions in order to provide tonic signals for survival , contrasting memory cells whose survival is

independent of MHCI but dependent on homeostatic cytokines such as IL-7 and IL-15 . However, the requirements for

survival of T  cells is contentious. Early adoptive transfer experiments demonstrated the survival of LCMV-specific

memory phenotype (MP) cells in β2m  hosts . However, transferred MP cells in this experiment were defined only by

high expression of CD44. Expanding on this finding, later adoptive transfer experiments demonstrated that MP cells

expressing high levels of CD122 (characteristic of T cells) were maintained in the periphery of MHC-Ia  mice, whilst

MP cells expressing low levels of CD122 failed to survive . These CD122  MP cells expressed a cell surface

phenotype reminiscent of recently activated effector CD8  T cells, including low expression of CD62L. Similarly, inspection

of the endogenous population of peripheral CD8  T cells in MHC-I hosts revealed the majority of these cells exhibited

CD44  CD122  phenotype reminiscent of T  cells . Thus, the extent to which conventional T  cells and T cells

rely on MHC-I for peripheral survival is yet to be definitively determined.
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3. T cells are Contained within the Human T  cell Population

While largely characterized in mice, a putative T  population has also been identified in humans, which displays both

functional and phenotypic similarities to mouse T  cells . These human T  cells display a differentiated phenotype

typically associated with effector memory T cells re-expressing CD45RA (T ) (CD45RA CD27 ), express NK cell

receptors (NKRs) such as KIRs and NKG2A, show high expression of Nur77 (indicative of high self-pMHCI affinity), and

show high expression of the transcription factor Eomes, with rapid production of IFNγ upon innate-like stimulation.

Furthermore, human T  cells accumulate with age and acquire defects in TCR-mediated proliferation. In addition to

these parallels with mouse T  cells, human T  cells have been detected in human cord blood and thus their

development appears to be independent of antigen exposure . The limited study of human T  cells can be attributed

to the lack of definitive surface markers that distinguish them from T  cells (CD8 CD45RA CCR7 ). Currently,

identification of human T  cells is based on the additional expression of NK cell markers, pan-KIR2D and KIR3DL,

and/or NKG2A, which separates T  cells from the entire CD45RA  subset of CD8  T cells. Non-T  CD45RA  cells are

further subdivided into T  cells (CD27 CD45RA CD95 ), T  cells (CD27 CD45RA CD95 )  and T  cells. Owing

to the overlap in surface marker expression between T  and T  cells, and the lack of routine inclusion of defining

NKRs, T  cells are typically included within the T  population  (Figure 1b).

Despite their apparent similarities, there are key differences that distinguish T  cells from T  cells. Firstly, T  cells

are considered to be antigen-inexperienced  whilst T  cells are antigen-experienced memory cells, as evidenced by

the observation that they can comprise up to 39% of the CD8  T cells within a given epitope-specific population .

Secondly, T  cells have a higher proliferative capacity than T  cells which are non-proliferative in both young and

aged individuals. Thirdly, although a direct comparison between human T  and T  cell metabolism has not been

performed to date, our recent work in mouse models have shown that T  cells not only have the highest oxygen

consumption rate (OCR) of all CD8  subsets in steady state but that it is further increased with infection and ageing. In

addition, our study indicates that there is no difference in basal mitochondrial characteristics, such as mitochondrial mass

and number of mitochondria per cell, between T  cells compared to other CD8  subsets. In contrast, T  cells have a

lower basal OCR and extracellular acidification rate (ECAR), following overnight CD3 stimulation , as well as lower

basal mitochondrial mass and fewer mitochondria per cell compared to conventional memory subsets .

The inclusion of NKRs to separate putative T  cells from T  cells in humans marks the beginning of the quest to

better investigate this distinct cell population. It is clear that this putative T  population parallels many of the functional

characteristics observed in murine T  cells, emphasising the need to identify unique and definitive markers for future

studies. Indeed, a recent single cell transcriptional analysis of human memory T cells has identified novel subsets of stem-

like CD8  memory T cells, highlighting the heterogeneity that has confounded a complete understanding of memory

phenotype T cells in humans.

4. Heterogeneity within the T cell Compartment

Broadly, two populations of antigen-inexperienced MP cells have been described – T  cells and T  cells. Whilst T

cells and T  cells were originally distinguished from one another by the thymic expression of CD49d, their dependence

on IL-15 vs IL-4, and their emergence in the periphery versus the thymus, the two populations are indistinguishable once

in the periphery . It is likely that these cells represent the same population, but their original identification in different

mouse strains has resulted in the attribution of distinct characteristics. T  cells are highly abundant in BALB/c mice due to

the ability of unconventional PLZF  NKT cells in this strain to produce large amounts of IL-4, facilitating T  differentiation

 In contrast, T  cells are not  readily detectable in C57Bl/6 mice, however, genetic alterations in these mice, such

as knockout of tyrosine kinases ITK and RLK, increases the number of IL-4 producing PLZF  NKT cells and, in turn,

increases the number of detectable T  cells within the thymus and periphery . Moreover, while not readily

detectable in a WT C57Bl/6 mouse thymus, recent evidence indicates T  cell differentiation is programmed during thymic

development (see below) .

Although peripheral T cells in mice are readily identified using cell surface markers such as CD49d, CD44 and CD122,

whether or not this population represents a homogenous population of cells or an amalgamation of disparate cell subsets

is unclear. Heterogeneity within the T population has been suggested by a recent study which used tamoxifen-induced

time stamping to analyse T cells generated in the neonatal period (day 1) or later in life (day 28) . T  cells

generated early in life (day 1) exhibit a transcriptional profile more akin to a short-lived effector cell (SLEC), as indicated

by expression of tbx21, Ifng and gzma genes, compared to those generated later in life (day 28). This heterogeneity

translated to differences in functionality, with day 1 T cells responding more rapidly to antigen and inflammatory cues
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linked with increases in effector molecules such as granzyme B and IFNγ. This exaggerated effector response also

translated to a greater propensity to adopt a terminally differentiated (KLRG1  CD62L ) phenotype 41 days post-

infection.

Functional heterogeneity is further observed in a subset of T cells that selectively express NK cell markers. NKR

expression is a distinguishing feature of mouse T cells , and a defining characteristic of human T  cells. Whilst NKR

expression on memory CD8  T cells has conventionally been associated with senescence , in T cells this subset

appears to show heightened functionality, as evidenced by an increased ability to kill MHC-I deficient tumour cells

following chemotherapy treatment in both humans and mice(Figure 2).

Figure 2. Virtual memory CD8 T cells (T ) participate in various immune responses to pathogens and tumors and may

be involved in immune regulation. Boxes indicate the role and possible mechanism of action of T cells in different

disease or immune contexts.

Adding to evidence of functional heterogeneity within the T population, a number of studies have indicated a regulatory

role of a subset of CD8 CD44 CD122  cells. Early reports have suggested MP CD8  T cells function similar to that of

CD4 T  cells via IL-10-induced suppression of effector function in activated CD4 and CD8  cells   (Figure 2). Later

studies revealed that only the PD-1 negative MP subset displayed regulatory functions . In addition, Akane and

colleagues characterised these CD8 CD44 CD122  T  cells and determined they could be further defined from other

CD8  MP cells via a lack of CD49d expression, suggesting they were in fact T cells . Taken together, these data

suggest both phenotypic and functional heterogeneity within the T population.

5. Heightened TCR Reactivity and Cytokine Sensitivity are Key T cell
Characteristics

TCR reactivity appears to be a key determinant in driving T differentiation, phenotype and effector function. Firstly, T

cells have been shown to express heightened levels of CD5 in mice , and Nur77 in humans , which are surrogate

markers for TCR signal strength  and thus are indicative of heightened TCR self-reactivity . In addition, TCR

repertoire analyses shows a TCR bias in CD8  MP cells , further suggesting the TCR dependence of T

differentiation. It is likely that this high self-peptide:MHCI reactivity during T  cell development drives the heightened T

cell cytokine sensitivity in the periphery, which can, at least in part, be attributed to Eomes expression. Eomes is a Tbox

transcription factor which, in CD8  T cells, shows increased expression following activation . In a study by Miller and

colleagues, it was shown that Eomes expression could be upregulated during thymic maturation of CD44 CD122  cells,

which was attributed to heightened TCR reactivity to self-ligands . Eomes expression has also been shown to bind to

the il2rb promoter leading to activation and a subsequent increase in CD122 expression . Thus, the heightened self-

peptide MHC reactivity of T  cells appears to upregulate Eomes expression, which in turn leads to increased CD122

expression, driving T  cell dependence on, and sensitivity to, IL-15. This is also supported by Gett and colleagues who

showed that strong TCR engagement, and subsequent signalling, enhanced survival and responsiveness to IL-15, and

other cytokines, through increased expression of cytokine receptors .

Eomes expression in T  cells has also been shown to be augmented by type I IFN signaling . Indeed, IFNb signalling

resulted in an Eomes-dependent increase of both peripheral T  cells and thymic T  cells, and T  cells were

significantly diminished in IFNAR  mice . Given the observation that tonic type I IFN signalling is received by SP

thymocytes as a normal part of T cell development , it seems plausible that type I IFN signalling is essential both in the

thymus for T  lineage differentiation at this SP stage , as well as in the periphery for the peripheral maintenance of

Eomes expression.

Although a characteristic of memory cell subsets in general, T  cells are particularly sensitive to a range of homeostatic

cytokines, such as IL-12, IL-18, IL-4, and IL-7 . As mentioned, their particularly high sensitivity to IL-15 is likely to

be due to increased expression of CD122 , which increases further with age, and leads to a downstream increase in

STAT5 phosphorylation following stimulation with IL-15, compared to T  cells . Although the selective impact of

cytokines on T  cells may correspond in part to changes in cytokine receptor expression, age-related changes in T

cell frequency and function may also be explained by an increase in the levels of these cytokines with aging. For example,

there is evidence for elevated IL-15, IL-6, IL-18 and TNF cytokine levels with advanced age, as part of the ‘inflammaging’

process . Outside of IL-15, T  cells from both mice and humans can be directly activated by other cytokines.

Previous in vitro studies of T  cells have shown that IFNγ production in these cells can be driven by IL-12 and IL-18

stimulation and result in an antigen-independent acquisition of cytotoxic capacity.
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The role of cytokines in mediating the expansion and effector function of T  cells is further reinforced in vivo in the

context of infection. Baez and colleagues demonstrated that mice infected with Trypanosoma cruzi showed enhanced

expansion of CD44  CD8  T cells, owing to increased levels of thymic IL-15 and IL-4, which ultimately promoted antigen-

independent proliferation and subsequent protection from parasitemia by this population  (Figure 2). Furthermore, the

ability of CD44 NKG2D  CD8  T cells to directly kill Listeria monocytogenes-infected target cells occurred independently

of strong TCR signalling, but was instead NKG2D-dependent and promoted by direct cytokine exposure (IL-12, IL-15 and

IL-18)  (Figure 2). This innate-like response was required for effective bacterial clearance during the acute stages of

infection [71]. In the context of helminth infections, studies have shown that the robust IL-4 production following infection

of B6 or BALB/c mice drives antigen-independent T  cell expansion, which in turn offered significant protection following

subsequent viral or bacterial infections, via either innate or antigen-specific mechanisms .

Given the heightened cytokine sensitivity of T cells, it will be of interest to determine whether changes in the cytokine

milieu associated with infections over a life course, or that occur as a natural part of the aging process (‘inflammaging’),

are responsible for changes in T  cell number and function with age. In this way, it seems possible that the same

cytokine responsiveness that may impart the rapid responses and semi-differentiated phenotype in T cells from young

mice and humans, might also be responsible for the acquisition of a senescent phenotype in advanced age.
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