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Hydrogen-based energy can play a vital role in this aspect. This energy is green, clean, and renewable.

Electrochemical hydrogen devices have been used extensively in nuclear power plants to manage hydrogen-based

renewable fuel. Doped zirconate materials are commonly used as an electrolyte in these electrochemical devices.

These materials have excellent physical stability and high proton transport numbers, which make them suitable for

multiple applications. Doping enhances the physical and electronic properties of zirconate materials and makes

them ideal for practical applications. 

perovskite oxide  proton-conducting oxide  zirconate

1. Introduction

As a result of the Industrial Revolution and technological advancements, the globe requires alternative energy

sources to supply the ever-increasing demand for energy . In addition, With the rapid depletion of fossil fuel

resources and the negative impact of fossil fuel combustion on the environments , scientists have turned

their attention to other renewable sources, such as electrochemical hydrogen devices based on proton-conducting

materials . Proton conductors typically have positively charged protonic species, such as H , H O , and

NH  . Proton-conducting materials provide higher conductivity at lower temperatures with longer lifetimes

and less expense than traditional oxide ionic electrolyte conductors . In addition, these conductors lose

conductivity at higher temperatures due to reversible or irreversible loss of carriers . These characteristics

enable these materials to operate at narrow ranges of temperature.

Proton conductors can be used in various electrochemical energy devices, such as batteries, fuel-cell electrolytes,

water electrolyzers’ membrane, hydrogen pumps, hydrogen sensors, and hydrogen gas separation systems 

. Organic polymer, inorganic oxides, and lattice defect oxides are examples of the different types of proton

conductors. Compared to the other proton conductors, lattice defect-type oxides, i.e., perovskite-type proton-

conducting oxides, are the promising proton conductors due to having the highest proton conductivity and chemical

stability within desired temperatures . A typical chemical formula of a perovskite proton conductor is ABO

(A = Ba, Ca, Sr, etc.; B = Zr, Ce, Tb, Th, etc.) . In addition, perovskite materials have higher conversion

efficiency and are less expensive than other proton conductors . These unique properties of perovskite

materials have increased their utility in renewable energy applications, especially in solar cells . Among different
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types of perovskite proton-conducting materials, zirconate materials are the most widely studied/used due to their

high chemical stability and excellent proton conductivity .

Zirconate materials such as BaZrO -based materials are considered promising proton-conducting materials and

are widely used in chemical and electrical sectors. However, many studies have shown that cerate-based proton

conductors such as BaCeO  have high proton conductivity among perovskite-based materials . The drawback of

BaCeO -based materials is that they are unstable in CO  and water vapor atmospheres, making them unsuitable

for applications . In contrast, BaZrO -based proton conductors are stable in CO  and water vapor

environments which are attractive properties for electrochemical device application in harsh atmospheres .

Moreover, BaZrO -based materials have better physical properties, including chemical stability and higher

mechanical hardness than BaCeO -based proton-conducting material . Ken Kurosaki et al. reported that BaZrO

exhibits high thermal conductivity due to the high strength between Zr and O . However, the BaZrO -based

proton conductor’s proton conductivity is lower than the BaCeO -based proton conductor, which can be improved

by doping with trivalent cations such as Gd , Y , In , Yb  . Pergolesi et al. have reported that Y  doped

in BaZrO  enhances chemical stability, but the poor sinterability increases grain-boundary resistance, which is

responsible for reducing proton conductivity . Therefore, the sintering temperature must be increased with

decreased grain-boundary resistance to improve electrical properties in zirconate-based proton conductors .

Recent research has shown that In-doped zirconate-based perovskite proton conductors exhibit better sintering

activities with excellent chemical stability . Consequently, experiments with different doping concentrations and

synthesis methods are used to develop high-performing doped BaZrO  material.

Zirconate materials have low thermal conductivity, low dielectric loss, and very low thermal expansion coefficient

, making them more favorable for electrochemical devices than other proton-conducting oxide materials.

Furthermore, compared to other proton-conducting materials in hydrogen sensors, zirconate-based hydrogen

sensors have been demonstrated to be affordable, portable, and temporally correct due to their high chemical

stability, smaller dimensions, and cheapness . Hydrogen can be separated in zirconate-based proton

conductors in a controlled way simply by changing the applied current in the electrochemical cell; thus, they can be

utilized as hydrogen pumps . Zirconate proton conductors can be used as membrane separators at high

temperatures, enabling them to act as a sensitive tritium monitor system . Such a device is helpful in removing

inference from radionucleotides and concentrating tritium, since it can operate like an electrochemical hydrogen

isotope pump . In addition, tritium release has been reported in zirconate proton-conducting material spheres as

far back as 30 years ago, and scientists are making more advancements in that technology .

2. Proton-Conducting Zirconates

Perovskite proton-conductor oxides, i.e., zirconates and cerate-based materials, are well-known proton conductors

for electrochemical device applications due to their excellent physical properties . BaZrO  is a promising

zirconate proton conductor widely used in refractory and electrical sectors. This material has excellent stability in a

harsh environment, low proton migration, high melting temperature, high thermal expansion coefficient, excellent

structure, and mechanical properties at high temperatures . Furthermore, BaZrO  does not show any phase
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transition between low and high temperatures, making it suitable for electrochemical devices, including tritium

monitoring systems, tritium recovery systems, hydrogen sensors, and hydrogen pumps .

Although cerate-based proton conductor like BaCeO  has the highest proton conductivity among other proton-

conductor materials, it is unstable in water vapor and CO  atmosphere, whereas BaZrO  materials show stability in

harsh weather (water vapor and CO ) . Alkaline earth zirconates, such as those found in CaZrO , BaZrO , and

SrZrO , are typically more chemically stable and have more mechanical strength than alkaline earth cerate

ceramics . Many studies have shown that doping with BaZrO  can enhance proton conductivity and high

chemical stability. The general formula of doping zirconate is AZr D O , where trivalent dopant D is used to

replace the tetravalent Zr to create oxygen vacancy, which is crucial for proton-conduction perovskite (ABO ) lattice

structure . The proton conductivity of the BaZrO  is greatly affected by the type and amount of the dopant used

in the barium zirconate. With increasing Zr materials, the electrolyte sintering temperature is also increased, and as

a result, the ionic conductivity is decreased . Moreover, BaZrO  has high grain-boundary resistance which

hinders electrochemical applications. Therefore, to improve the proton conductivity, it is essential to maintain a

minimum grain-boundary resistance and high sintering temperature .

Studies have shown that Y-doped BaZrO  (BaZr Y O ) exhibits excellent chemical stability with high proton

conductivity . For example, Liu et al. investigated BaZr Y O  electrolyte by partially replacing Zr  with

neodymium (Nd ) to enhance the sinterability and conductivity of the electrolyte . The results showed that

BaZr .  Nd Y O  had higher proton conductivity than BaZr Y O  electrolyte and that Nd  doping increased

the chemical stability. However, neodymium (Nb) is a rare-earth element and expensive, which is not feasible for

commercial application. On the other hand, mixed BaCeO -BaZrO  with dopant shows higher chemical stability but

enriched Zr, restricting applications due to poor sintering and high grain-boundary resistance . Therefore,

further modification is required in zirconate to improve its proton conductivity with suitable stability for

electrochemical application.

3. Electrochemical Hydrogen Device

Electrochemical devices are an essential scientific innovation enabling the development of an electric vehicle for

the future. The principles of electrochemistry have materialized in hydrogen storage , hydrogen sensor , and

hydrogen compressor  applications, as well as different chemical sensor applications. The basic electrochemical

hydrogen devices have the following components: anode (electrode), electrolyte (proton-conducting solid), and

cathode (electrode) (Figure 1) . Electrochemical hydrogen devices use two fundamental principles:

electromotive force (EMF) and the hydrogen transport phenomenon of the electrolyte. Recently, electrochemical

devices have extensively used proton-conducting zirconates . The small radius of protons enables the ions to fit

into the interlayer structure of the cathode.
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Figure 1. The fundamental design and operation of a proton-exchange membrane (PEM)-based electrochemical

hydrogen device. Reprinted with permission from Ref. . Copyright 2019 Elsevier.

These electrochemical devices utilize EMF the same as the principle of galvanic cells. The device is called a

hydrogen sensor when EMF is used to produce signals. On the other hand, if the EMF force of the electrochemical

cell is used to separate hydrogen, it is called a hydrogen pump. Radioactive isotopes like tritium ( H) can be

separated using the same principles. An electrochemical reactor is necessary to convert water vapor and methane

to tritium. Similarly, tritium can be monitored as a function of applied current, thus making this electrochemical

device a platform for tritium monitoring. Moreover, separating radioactive molecules like Rn and enrichment of

tritium can be effective for lower levels of tritium detection .
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