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Pesticides have been extensively used in agriculture to protect crops and enhance their yields, indicating the need

to monitor for their toxic residues in foodstuff. To achieve that, chromatographic methods coupled to mass

spectrometry is the common analytical approach, combining low limits of detection, wide linear ranges, and high

accuracy. However, these methods are also quite expensive, time-consuming, and require highly skilled personnel,

indicating the need to seek for alternatives providing simple, low-cost, rapid, and on-site results. In this study, we

critically review the available screening methods for pesticide residues on the basis of optical detection during the

period 2016–2020. Optical biosensors are commonly miniaturized analytical platforms introducing the point-of-care

(POC) era in the field. Various optical detection principles have been utilized, namely, colorimetry, fluorescence

(FL), surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). Nanomaterials can

significantly enhance optical detection performance and handheld platforms, for example, handheld SERS devices

can revolutionize testing. All in all, despite being in an early stage facing several challenges, i.e., long sample

preparation protocols, such POC diagnostics pave a new road into the food safety field in which analysis cost will

be reduced and a more intensive testing will be achieved.

pesticide residues  optical detection  screening methods  point-of-care diagnostics

biosensors

1. Introduction

The ever-increasing demand for food production unfortunately still requires a widespread use of pesticides.

According to the European Commission (EC), pesticides “prevent, destroy, or control a harmful organism (“pest”) or

disease, or protect plants or plant products during production, storage, and transport”. Pesticides can be clustered

on the basis of the target pest (Table 1), for example, compounds combating insects are called insecticides .

Another useful classification was proposed by the World Health Organization (WHO) and is based on hazard

expressed as lethal dose (LD) in rat specimen (Table 1) . Alternatively, pesticides can be classified focusing on

how they enter into the target pest, for instance, systemic pesticides are absorbed by tissues (leaves, roots, etc.)

(Table 1) .

Table 1. Summary of various classification systems for pesticides.
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Regardless their classification, pesticide residues are related to toxicity issues, which can be either acute or

chronic. The various pesticide classes can potentially affect their targets in different ways, including humans. In the

case of organochlorine (OC) pesticides, which were extensively used during the 20th century, nervous system

stimulation has been noticed. For example, lindane inhibits the calcium ion influx and Ca- and Mg-ATPase, causing

a. Based on Target Pest
Pesticide Type Pest

Algicide Algae

Avicide Birds

Bactericide Bacteria

Fungicide Fungi

Herbicide Weeds

Insecticide Insects

Miticide Mites

Molluscicide Snails

Nematicide Nematodes

Piscicide Fish

Rodenticide Rodents

b. Based on Toxicity

Type Toxicity Level
LD  for Rats (mg kg  Body Weight)

Oral Dermal

Ia extremely hazardous <5 <50

Ib highly hazardous 5 to 50 50–200

II moderately hazardous 50–2000 200–2000

U unlikely to present acute hazard >5000

c. Based on the Way of Entry into a Pest

Ways of Entry Details

Systemic Absorption by tissues such as leaves, stems, and roots

Non-systemic Physical contact between the pesticides and the target organism

Stomach poisoning Pesticide digestion

Fumigants Target organism killing through vapors

Repellents Inhibit the ability of pests to

50
−1
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release of neurotransmitters  and acting as a hormone disruptor causing both acute and chronic adverse effects

ranging from dermal irritation or headache to cancer, Parkinson’s disease, or deficit immune system . In the case

of carbamate (CM) and organophosphate (OP) insecticides, their toxicity is related to the inhibition of

acetylcholinesterase (AChE), a vital enzyme in the neural system of insects or mammals, including humans.

Normally, AChE hydrolyzes the neurotransmitter acetylcholine into choline and acetic acid, an essential reaction

that enables the cholinergic neuron to return to its resting state after activation. However, AChE activity is reduced

in the presence of CMs and OPs due to carbamylation or phosphorylation of the serine hydroxyl group in the

enzyme active cite , respectively. This results in acetylcholine accumulation, which can lead to serious health

problems, including respiratory and myocardial malfunctions . Another example of pesticide toxicity it is the class

of pyrethroid pesticides. Pyrethroids cause neuronal hyperexcitation, resulting in repetitive synaptic firing and

persistent depolarization. Their molecular targets are similar in mammals and insects, and include voltage-gated

sodium, chloride, and calcium channels; nicotinic acetylcholine receptors; and intercellular gap junctions .

Therefore, it is obvious that the presence of pesticide residues in food has to be strictly regulated and monitored to

protect consumer health.

2. Optical Screening Methods

2.1. Biochemical Assays

Biochemical assays using antibodies or enzymes as recognition elements have been traditionally used in a

microplate format, which provides high-throughput, simplicity, good sensitivity, and ease of operation. The enzyme-

linked immunosorbent assay (ELISA) is a striking example of such bioassays. ELISA is based on the specific

interaction between an enzyme-labelled analyte-specific antibody and its antigen. Owing to the labelling of the

antibody with an enzyme, upon the addition of a substrate, a measurable color change is initiated. A recent review

by Wu et al.  is recommended for a deeper understanding of the ELISA mechanism, various types (Figure 3a), as

well as recent advances. ELISAs have been developed for the screening of various pesticide residues in food

matrices, for example, OPs , CMs , neonicotinoids , or fungicides . In terms of cholinesterase

microplate assays, cholinesterases have been employed as recognition elements (both AChE  and

butyrylcholinesterase, BChE ) to screen for CM and OP. Considering that, in vitro, cholinesterases hydrolase

colorless substrates to colored products, the presence of CMs and OPs can be correlated to a color decrease

similarly to competitive ELISAs. A great variety of substrates, resulting in different colored products (Figure 3b),

have been used including acetylthiocholine and butyrylthiocholine halides for AChE and BChE, respectively;

indoxyl acetate; α-naphthyl acetate; 2,6-dichloroindophenol acetate; and others . Importantly, reduced sample

and reagent consumption (typically less than 100 μL) as well as low LODs at the μg kg  level , depending

on the matrix, were achieved by cholinesterase microplate assays. However, biochemical assays are still

applicable in laboratories as they require certain apparatus and well-trained operators (commonly such assays

contain multiple steps).

a. Based on Target Pest
Pesticide Type Pest

localize in crops

[4]

[5]

[6]

[7]

[8]
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[37][38] [39] [40] [41]
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[43]

[44]

−1 [42][45][46]
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Figure 3.  (a) Multistep direct and indirect ELISA protocols for pesticide residues screening. Reprinted with

permission from . Copyright 2013 American Chemical Society. (b) In vivo and in vitro acetylcholinesterase

hydrolytic activity producing, in vitro, various colored products depending the catalyzed substrate. Reprinted from

 under CC BY 4.0.

2.2. Biosensors

Biosensors are analytical platforms that convert a biological response into a quantifiable and processable signal.

Besides the described attractive characteristics of biochemical assays, biosensors can be miniaturized and

automated, indicating their potential for on-site testing. On the basis of the biorecognition element, we can

distinguish three main groups of biosensors, i.e., immunosensors , cholinesterase  and lipase sensors

(enzymatic recognition), and aptasensors . It is of note that aptamers emerge as an alternative to counter

problems related to antibodies, such as the challenge to trigger an immune response for small molecules or their

higher temperature stability, a problem related to biomolecules . Biomolecules can be negatively affected by

organic solvents (e.g., denaturation problems resulting in decreased activity), certain pH values (commonly neutral

pH values are the optimum for antibodies and enzymes), or hydrostatic and osmotic pressure. Nevertheless,

increased stability can be accomplished by immobilizing biomolecules on surfaces as in the case of biosensors .

For instance, the immobilization of AChE on cellulose strips resulted in retained enzyme activity over a two-month

period . Other less used recognition elements include, but are not limited to, molecularly imprinted polymers

(MIPs, synthetic molecules), cells, and DNA probes. In the following paragraphs, further discussion on various

biosensors is provided on the basis of the detection principle used, and tables summarizing interesting publications

in the field during the period 2016–2020 are presented.

2.2.1. Colorimetric Biosensors

Colorimetry is probably the simplest approach as a biorecognition event is related to a color development. This fact

significantly increases colorimetric platforms potential for on-site analysis as colorimetric signals can be monitored

even by the naked eye or they can be easily coupled to a smartphone readout (see Section 4.3). On the downside,

[47]

[42]

[20] [21] [48]

[49][50]

[51]

[52]

[34]
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colorimetric signals are vulnerable to minor lighting variations while most of the food extracts are colored, which

negatively effects method detectability. Of importance is the ever-increased use of analytical platforms commonly

based on colorimetric responses such as membrane-based assays (lateral flow (LF) or paper-based assays),

microfluidic chips, or lab-on-a-chip (LOC) devices (Table 2). LF assays are membrane tests consisting of various

polymeric zones on which various substances can be accommodated and react with an analyte . Liquid samples

or extracts containing an analyte move through this lateral device due to capillary forces. Two different formats of

LF assays can be distinguished, namely, competitive and sandwich formats. Competitive assays are used for low

molecular weight analytes, i.e., pesticide residues, and a positive result is related to the absence of a test line due

to the blocking of antibody binding sites to protein conjugates by the analyte. In terms of big molecules, for

example, allergens, the sandwich format is used, and the analyte is immobilized between two complementary

antibodies. Besides research studies using LF assays for pesticide residue screening , LF assays are one of

the few cases that have reached the commercialization stage . Regarding microfluidics, this is a relatively new

field that was established in 2006 following the publication of G.M Whitesides in the prestigious Nature journal .

In this way, microfluidics are related to the manipulation of fluids in channels with dimensions of tens of

micrometers. Fluidic behavior under these micro-level confined regions significantly differs from fluidic behavior in

the macroscale. In this context, essential parameters such as viscosity, density, and pressure need to be strictly

controlled to reach optimum microfluidic performances . Although no strict criteria have been proposed to define

microfluidic systems, the length and internal size of the channels is considered of critical importance. Microfluidic

channels are combined to LOC devices to develop fully portable and autonomous analytical platforms. In fact, LOC

systems are able to mimic different apparatus such as reactors and pumps to carry out injection, filtration, dilution,

and detection in a reduced portion, eliminating handling errors and enhancing robustness while retaining the

analysis cost low . Regarding the application of colorimetric microfluidic and LOC platforms, paper-based

microfluidics can combat problems related to intolerance towards organic solvents that are used to extract

pesticide residues by spontaneous evaporation on the paper-platform before loading an enzyme solution for

pesticide recognition . However, overall, such platforms are still in an early stage, with the majority of the studies

focusing on proof-of-concept applications . Unfortunately, the majority of colorimetric analytical platforms utilize

traditional sample preparation protocols, highlighting the need to automate and simplify sample pretreatment to

increase the applicability of such methods in the field.

Table 2. Selected studies on pesticide residue screening using colorimetric biosensors.

[53]

[54][55]

[19]

[56]

[57]

[58]

[32]

[59]

Analyte Matrix Analytical
Platform

Sample
Preparation LOD EU MRL Reference

Methyl-
paraoxon

and
chlorpyrifos-

oxon

cabbage
and dried
mussel

paper-based
device coated

with
nanoceria
using an
enzyme
inhibition

assay with

methanol
vortex

extraction,
centrifugation,
PSA clean-up,
centrifugation,
evaporation

0.040 mg kg 0.010 mg kg−1 −1 [60]
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2.2.2. Fluorescent Biosensors

Biosensors with fluorescent detection combine the selectivity provided by the recognition part to the sensitivity of

fluorescence (FL), as it is a zero-background method and only specific compounds (based on their structure) are

able to fluoresce. Fluorescent biosensors (Table 3) are based on the principle that the interaction of a fluorescent

probe (chemical or physical) with an analyte leads to either fluorescence enhancement or quenching , which is

also known as analyte-induced “on–off” fluorescent behavior . A great variety of fluorescent probes have been

used, namely, fluorescent dyes, nanocomposite materials, rare earth elements, or semiconductors . The great

advancements in nanomaterial field have further improved fluorescent detection, as they have countered, at a

certain extent, bottlenecks related to dyes, e.g., high photobleaching. Quantum dots, which are semiconductor

Analyte Matrix Analytical
Platform

Sample
Preparation LOD EU MRL Reference

AChE and
ChOX

Carbofuran
and

carbofuran-
3-hydroxy

water
LF

immunoassay
none

7 μg
L  (carbofuran)

and 10 μg
L  (carbofuran-

3-hydroxy)

0.1 μg L

Malathion apple

aptasensor
employing

gold
nanoparticles

methanol
extraction,
filtered and
evaporation

5.2 pM (or
0.001 μg kg )

0.02 mg kg

Paraoxon
vegetable
irrigation

water

enzyme
cascade and
iodine starch
color reaction

filtration 10 μg L n.a.

Ethoprophos tap water

gold
nanoparticle
aggregation
combined to
adenosine

triphosphate

no
4 μM (or 0.96

mg L )
0.1 μg L

Paraoxon
rice and
cabbage

AChE assay
coupled to

carbon dots

acetonitrile
ultrasonic
extraction,

centrifugation,
filtration
through
sodium

sulfate and
evaporation

0.005 mg kg

0.01 mg
kg  (cabbage)

and 0.02
kg  (rice)

Acetamiprid spinach
aptamer with
DNA probe

ethanol
ultrasonic
extraction,

centrifugation,
filtration, and

20-times
dilution

0.1 nM (or
0.022 μg kg )

0.6 mg kg

−1

−1

−1 [54]

−1
−1 [61]

−1 [62]

−1
−1 [63]

−1
−1

−1

[64]

−1
−1 [65]

[66]

[67]

[68]
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crystalline nanomaterials with unique optical properties due to quantum confinement effects, are an example of

nanocomposite probes that have enhanced fluorescent detection for pesticide residue screening . This was

recently demonstrated for the detection of four OP pesticides, namely, paraoxon, dichlorvos, malathion, and

triazophos, using CdTe quantum dots as the fluorescent probe coupled to an AChE-choline oxidase enzyme

system . In this case, when AChE was active (resulting in choline production), H O  was produced by choline

oxidase, which in turn “turned off” the FL of the CdTe quantum dots. However, in the presence of an OP, the FL

induced by CdTe quantum dots was retained and a correlation between OP concentration and FL signal was

feasible. Impressively, a LOD of 0.5 ng mL   was achieved in water, tomato juice, and apple juice, while the

fluorescent biosensor could be regenerated using pyridine oximate. In another study, an “off−on−off” strategy was

applied by using AChE as the recognition element and lanthanide-doped upconversion nanoparticles (UCNPs) with

Cu  as the fluorescent probe . This analytical platform achieved an LOD of 0.005 mg kg  for diazinon detection

in apple and tea powder and, importantly, the results were cross-confirmed to GC–MS. It should be kept in mind

that although it is necessary to benchmark the results attained using screening methods, this practice is commonly

omitted in the published literature as it is comprehensively discussed in our previous study . In conclusion, FL

biosensors can attain sensitive results, which is extremely important in the food safety field. However, their

principles and analytical configuration are commonly more complicated than colorimetric platforms that may

influence their applicability within the point-of-care (POC) testing concept.

Table 3. Selected studies on pesticide residue screening using fluorescent biosensors.

[66]

[69]
2 2

−1

+2 [70] −1

[9]

Analyte Matrix Analytical
Platform

Sample
Preparation LOD EU

MRL Reference

Acetamiprid tea aptasensor
methylene chloride
extraction, filtration,

and evaporation
0.002 mg kg

0.05
mg
kg

Dichlorvos
cabbage
and fruit

juice

carbon dots–
Cu(II) system

PBS extraction 0.84 ng mL n.a.

Paraoxon water BChE assay no 0.25 μg L
0.1
μg
L

Imidacloprid

Chinese
leek, sweet
potato, and

potato

LF
immunoassay

PBS extraction and
supernatant dilution

with PBS
0.5 ng g

0.5
mg
kg

Diazinon
cucumber
and apple

aptasensor
Dilution with water,
water-heated bath,

centrifugation

0.13 nM (0.039
μg kg )

0.01
mg
kg

Aldicarb ginger AChE-based
assay

QuEChERS 100 μg kg 0.05
mg

−1

−1

[71]

−1 [72]

−1

−1

[73]

−1

−1

[74]

−1
−1

[75]

−1 [76]
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2.2.3. Surface Plasmon Resonance Biosensors

Surface plasmon resonance (SPR) biosensors are based on an optical phenomenon that happens on a thin

conducting film at the interface between media of different refractive index . SPR provides label-free sensing,

which is a great advantage as labeling procedures are omitted, resulting in reduced cost and prevention against

false positive signals related to labeling. Moreover, SPR is especially useful to calculate association (or

dissociation) kinetics and affinity constants or bounded analyte content in the case of immunorecognition .

Interestingly, only a few enzyme-based biosensors have employed SPR detection . Detecting pesticide residues

in trace amounts is a challenging task as it is difficult to attain a measurable change in the refractive index due to

their low molecular mass. To face this problem, sensor surface modification using nanoparticles is commonly

applied since nanomaterials can enhance SPR signals due to their high refractive index. Furthermore,

nanomaterials are also preferred because of their facile synthesis, high surface to volume ratio, and high

biocompatibility and photostability . The nanomaterials commonly utilized in such analytical platforms include, but

are not limited to, metal nanoparticles, i.e., Au or Ag; carbon nanoparticles; and quantum dots. Besides signal

enhancement using nanomaterials, SPR phase-measurement instead of amplitude (which is the case in

conventional SPR systems) is an alternative approach that is based on the topological nature of the phase of a

system. Considering that our study focuses on the analytical developments and applications in pesticide residue

analysis, no further discussion on the physics behind phase sensitive SPR measurement is provided, and two

studies   are recommended for a deeper understanding of the phenomenon. In any case, SPR biosensors

have found several applications in pesticide residue analysis based mainly on immunorecognition (Table 4). It can

be noticed that the problem of laborious sample preparation when analyzing solid food matrices was also the case

for SPR-based biosensors. In addition, the low molecular weight of pesticides set a great challenge in terms of

detectability and compliance to regulatory limits for SPR-based analytical platforms. More effort is definitely needed

to further improve such platforms, considering the miniaturization potential (handheld SPR systems or coupling to

smartphones)  that can be highly beneficial for the field.

Table 3. Selected studies on pesticide residue screening using fluorescent biosensors.

Analyte Matrix Analytical
Platform

Sample
Preparation LOD EU

MRL Reference

kg

Eight
rodenticides

wheat

LF
immunoassay
combined with
quantum dots

acetonitrile
ultrasonic
extraction,

centrifugation,
filtration, and filtrate
10-times dilution in

PBS

1–100 μg
kg  depending

the analyte

0.01
mg
kg

−1

−1

−1

[77]

[78]

[79]

[80]

[81]

[82][83]

[84]

Analyte Matrix Analytical
Platform

Sample
Preparation LOD EU

MRL Reference

Acetamiprid tea aptasensor
methylene chloride
extraction, filtration,

and evaporation
0.002 mg kg

0.05
mg
kg

Dichlorvos
cabbage
and fruit

juice

carbon dots–
Cu(II) system

PBS extraction 0.84 ng mL n.a.

−1

−1

[71]

−1 [72]
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2.2.5. Surface-Enhanced Raman Spectroscopy
Although some consider surface-enhanced Raman spectroscopy (SERS) as an optical biosensor due to its

coupling to biorecognition events , SERS is in principle a spectroscopic method based on light scattering,

specifically to inelastic collisions occurring between a sample and incident photons emitted by a monochromatic

light source, such as a laser beam . Combining biorecognition events to SERS can significantly enhance the

analytical performance of such methods, but also it increases method complexity and cost. For example, a

multiplexed immunochromatographic assay for the simultaneous detection of cypermethrin and esfenvalerate

(pyrethroid pesticides) achieved impressive results in milk matrix . Specifically, the acquired LOD was at the

parts per trillion level (LOD = 0.005 ng mL ), a performance that would not be possible without using SERS-based

detection considering that immunochromatographic assays mostly provide qualitative results. Regarding direct

SERS screening, this is feasible as molecules provide specific Raman spectra due to their unique structure, which

is also called “Raman fingerprint”. However, Raman signals are not strong enough, with only 1 out of 10 million of

the scattered photons experiencing Raman scattering when incident light interacts with an analyte . Therefore, it

is necessary to enhance such signals by employing nanocomposite substrates resulting in electromagnetic and

chemical enhancement . Two different types of substrates can be distinguished, namely, colloidal and solid

substrates. Although the synthesis of colloidal substrates such as Ag or Au nanoparticles is quite facile and cost-

effective, poor reproducibility of signals remains a problem . In terms of solid substrates, these provide more

robust signals and counter the risk of nanoparticle aggregation, which is a problem for colloidal substrates. Solid

substrates can be immobilized on various surfaces for example paper  or hydrogels . In fact, paper-based

SERS substrates can further increase the method potential to be applied on-site as such substrates can be used to

swab the surface of a sample and then screen using a portable Raman spectrometer. In this way, paper SERS

substrate coated with a monolayer of core-shell nanospheres was recently developed and was successfully used

for the detection of thiram in orange juice . This simple and non-destructive method achieved a LOD of 0.25 μM

Analyte Matrix Analytical
Platform

Sample
Preparation LOD EU

MRL Reference

Paraoxon water BChE assay no 0.25 μg L
0.1
μg
L

Imidacloprid

Chinese
leek, sweet
potato, and

potato

LF
immunoassay

PBS extraction and
supernatant dilution

with PBS
0.5 ng g

0.5
mg
kg

Diazinon
cucumber
and apple

aptasensor
Dilution with water,
water-heated bath,

centrifugation

0.13 nM (0.039
μg kg )

0.01
mg
kg

Aldicarb ginger
AChE-based

assay
QuEChERS 100 μg kg

0.05
mg
kg

Eight
rodenticides

wheat

LF
immunoassay
combined with
quantum dots

acetonitrile
ultrasonic
extraction,

centrifugation,
filtration, and filtrate
10-times dilution in

PBS

1–100 μg
kg  depending

the analyte

0.01
mg
kg

−1

−1

[73]

−1

−1

[74]

−1
−1

[75]

−1

−1

[76]

−1

−1

[77]

[20]

[91]

[92]

−1

[93]

[94]

[95]

[96] [97]

[98]
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or 0.060 mg L  by using 4-methylthiobenzoic acid (4-MBA) as the internal standard (IS) to attain quantitative

results. Similarly, in another study, 4-MBA was accommodated in Au@Ag nanocubes and exploited as the IS .

Moreover, it was noticed that water molecules can be used as a IS since their Raman scattering signal is quite

stable . Alternatively, the use of anisotropic nanoparticles, e.g., nanocubes, nanorods, and nanostars, positively

affected SERS quantification capabilities by achieving more stable signals . Nevertheless, SERS can mostly

detect analytes on the surface of food, which does not correspond to the whole amount of a pesticide in a food

matrix. Pesticide residues depending their polarity can be found in the non-polar peel or the polar-aquatic inner part

of a fruit. Moreover, LODs have been mostly expressed using the “ng cm ” unit  because pesticide residues

were measured on a surface. Nevertheless, such a concentration expression is not in line to the regulated MRL

units (mg kg ). There were also cases in which QuEChERS extraction   or other long sample preparation

protocols (Table 5) were used prior to SERS screening, an approach that comes in contrast to the non-destructive

and direct measurements than can be acquired using SERS. In conclusion, SERS can highly improve the current

status of pesticide residue screening at the point of need due to the discussed merits and the ever-decreased price

of such portable platforms (approximately EUR 35,000 to 50,000 at the moment).

Table 5. Selected studies on pesticide residue screening using SERS methods.

−1

[99]

[100]

[101]

−2 [102]

−1 [103]

Analyte Matrix Analytical
Platform Sample Preparation LOD EU MRL Reference

Methyl
parathion

apple
portable
SERS

none
0.011 μg

cm
0.010 mg kg

Prometryn and
simetryn

wheat
and
rice

MIP-SERS QuEChERS
20

μg·kg
0.010 mg kg

Thiram lemon

SERS with
nanowire Si
paper as a
substrate

none
72 ng
cm

0.100 mg kg

Difenoconazole
pak
choi

portable
SERS

acetonitrile
extraction,

centrifugation, dSPE
clean-up,

evaporation, and
reconstitution to ethyl

acetate

0.41 mg
kg

2.0 mg kg

Paraquat

apple
and

grape
juice

portable
SERS

none
100 nM
(0.025

mg L )
n.a.

Dimethoate
olive

leaves
portable
SERS

none
5 ×

10  M n.a.

−2
−1 [102]

−1
−1 [103]

−2
−1 [104]

−1
−1 [105]

−1

[106]

−7
[107]
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