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Chronic inflammatory respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and
cystic fibrosis, present challenges in terms of effective treatment and management. These diseases are
characterized by persistent inflammation in the airways, leading to structural changes and compromised lung
function. To achieve optimal therapeutic outcomes while minimizing systemic side effects, targeted therapies and

precise drug delivery systems are crucial to the management of these diseases.

drug delivery chronic inflammatory respiratory diseases nanoparticle-based drug delivery systems

inhaled corticosteroids

| 1. Introduction

Chronic inflammatory respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD),
affect millions of people worldwide and are a leading cause for the increase in lung disease morbidity and mortality
[, Asthma, as a heterogeneous clinical syndrome, affects over 300 million people worldwide [&. COPD, a disease
mainly associated with long-term smoking, became the third leading cause of death globally in 2020 &l Although
there are several existing treatments, limited efficacy, side effects, and individual variability still cannot be ignored
[4I5181, | recent years, there has been a growing interest in the development of targeted drug delivery systems for
the treatment of these diseases [EIE Nanoparticle-based drug delivery systems, inhaled corticosteroids (ICSs),
novel biologicals, gene therapy, and personalized medicine have emerged as promising approaches to deliver

drugs more effectively and with fewer side effects.

Currently, the development of new nanoparticle-based drug delivery systems that can target specific cells such as
lung epithelial cells and macrophages, while minimizing systemic side effects, have received significant attention
(20 These systems utilize nanoparticles, which are tiny particles ranging from 1 to 100 nanometers in size, to
encapsulate and deliver drugs directly to the affected areas of the lungs 1. By modifying the surface properties of
nanoparticles, researchers can enhance their ability to selectively bind to specific cell types in the lungs, thereby
improving drug delivery efficiency and reducing off-target effects [12. Furthermore, nanoparticle-based drug
delivery systems can protect the drugs from degradation and enhance their stability, ensuring sustained release

and prolonged therapeutic effects 23!,
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In addition to nanoparticle-based systems, inhaled corticosteroids (ICSs) have long been used as a standard
treatment for chronic inflammatory respiratory diseases 141151, |CSs work by reducing inflammation in the airways,
thus alleviating symptoms and preventing exacerbation. Researchers are also exploring novel biological targets
and innovative methods for delivering biologicals to the lungs. Gene therapy approaches, including viral-vector-
based delivery systems and CRISPR-Cas9 technology, represent another exciting frontier in the treatment of
chronic inflammatory respiratory diseases 1871 Moreover, personalized medicine approaches take into account
an individual's unique characteristics, such as genetics, biomarkers, and lifestyle factors, to tailor treatments to
their specific needs B8l By utilizing advanced diagnostic tools like genomic sequencing and biomarker analysis,
healthcare providers can identify patient subgroups who are more likely to respond to a particular therapy, thus
optimizing treatment outcomes 22120 However, several challenges remain, including optimizing delivery efficiency,

ensuring safety, and addressing ethical considerations.

| 2. Nanoparticle-Based Drug Delivery Systems

The application of nanotechnology continues to provide effective strategies in treating various chronic diseases and
improving treatment outcomes. Using nanocarrier systems such as liposomes, micelles, and nanoparticles for
pulmonary drug delivery has been proven to be a promising noninvasive treatment strategy for achieving drug
deposition and controlled release in the lungs 19 (Figure 1). These systems involve the use of engineered
particles with dimensions on the nanometer scale to deliver drugs directly to target cells in the lungs [,
Nanoparticles have several advantages over conventional drug delivery methods, including improved

bioavailability, enhanced targeting, and reduced toxicity 22231,
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Figure 1. Nanocarrier systems can achieve drug deposition and controlled release in the lungs.

Liposomes are spherical vesicles composed of lipid bilayers that can encapsulate both hydrophilic and hydrophobic
drugs 24, The size, surface charge, and lipid composition of lipid nanoparticles (LNPs) can be tailored to enhance
drug stability, prolong circulation time, and improve biocompatibility 23, Furthermore, conjugating small-molecule
ligands, peptides 28, or monoclonal antibodies £ to the surface of an LNP can endow it with targeting ability. For
example, folate receptors are often found to be overexpressed on macrophages, which makes folate-coupled LNP
a great option for delivering anti-inflammatory drugs [28l. There are many factors that can affect the release of cargo
carried by LNPs, including temperature, changes in pH values, enzymes, light, etc. Among them, the mechanism of
pH change is the most studied, and can cause LNPs to undergo phase transition and achieve higher membrane

permeability 221,

In addition to LNPs, there are also some other nanoparticles that have their own characteristics (Table 1). Micelles
are another kind of nanoparticle consisting of amphiphilic molecules that form a core-shell structure B9, Their great
solubility allows them to easily penetrate the increased alveolar fluid barrier present in chronic inflammatory lung
diseases. A new kind of stabilized phospholipid nanomicelles (SSMs) can reach deep lung tissue and successfully
extend the half-life of budesonide in the lung to 18-20 h . Magnetic nanoparticles (MNPs) developed using the
magnetofection technique have wide-ranging applications in the fields of biological research and medicine,
including drug and gene therapy, magnetic targeting (such as in cancer therapies), and diagnostic imaging as
contrast enhancers [B2I23], A representative example is the superparamagnetic iron oxide nanoparticle (SPION), a
type of nanoparticle with special magnetism that can be guided through an external magnetic field to locations
within the body B4, They can accurately transport the drugs coated on their surface, mainly some inflammation-
related molecular antibodies like IL4Ra and ST2, to the site of the inflammatory lesion B2I38] A kind of selective
organ targeting (SORT) nanoparticle was designed to release its cargo in a controlled manner; it can target the site
of inflammation in the lungs and elsewhere while minimizing exposure of healthy tissue in other parts of the body
(871 This targeted drug delivery approach has the potential to reduce drug toxicity and improve patient outcomes
[38] Recently, a growing number of hybrid nanoparticles (HNPs) have emerged that can simultaneously possess
the characteristics of different nanoparticles 9. This has sparked a trend of exploring different combinations of

nanoparticles.

Table 1. Therapeutic applications of nanoparticles in chronic inflammatory respiratory diseases.

. Type of .
Diseases Nanoparticles Drugs Target Ligands Targets References
Asthma SPION None IL4Ra mpnoclonal ASMs [35]
antibody
SPION None Ant|-ST2 blpcklng Inflammatory [36]
antibodies lung tissue
PLGA-based Smart silencer of Exosome membrane M2 40]
nanoparticles Dnmt3aos of M2 macrophages macrophages
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. Type of ;
Diseases Nanoparticles Drugs Target Ligands Targets References
LNP Polyl'nos'|n|c-. None Lung epithelial [41]
polycytidylic acid cells
SIRNA against Lung epithelial
HNP SCNN1A and None gce'?ls [22]
COPD SCNN1B
LNP SiRNA ag:mst TNF- None None [43]
IPF LNP siRNA against IL-11 None MLFs [44]
(CAM-1 Lung epithelial
CF LNP Plasmid DNA targeting gep 2]
. cells
peptide

Despite the promise of nanoparticle-based drug delivery, there are still several research challenges that need to be
addressed. For example, there is a need to develop nanopatrticles with optimal physicochemical properties, such
AODEVIAI oD e ST AL THRFHRAAMAIRI A R RRARRLIGICK 'R Mereuking: Feserieh AR porM
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HB%@ @(SMYH'S I%ﬁ@%l&lﬁg&d%@g Hé?)gcgﬁiﬂﬁcant potential to serve as nanocarriers for pulmonary drug
delivery (481, Additionally, researchers need to carefully evaluate the safety and toxicity of nanoparticle-based drug
delivery systems. While some studies have shown promising results, others have raised concerns about the
potential for long-term toxicity and negative environmental impacts of nanoparticle-based drug delivery 9501,
Currently, it is widely believed that the cytotoxicity of nanoparticles is mainly related to their large surface area and
small size Bl Yuan et al. concluded through their study on the effects of 20, 30, and 40 nm zinc oxide
nanoparticles on human embryonic lung fibroblasts that cytotoxicity is concentration-dependent, therefore calling
for the minimum therapeutic concentration B2, Other researchers found that the surface charge and solubility are

also associated with the cytotoxicity of nanoparticles 231541,

Moving forward, researchers are exploring several future directions for nanoparticle-based drug delivery systems.
For example, considering that there is a large amount of mucus oozing out of the lungs during chronic inflammatory
diseases, researchers are developing new mucus-penetrating nanoparticles (MPPs). Uptake mechanism studies
revealed that caveolae-mediated endocytosis and macropinocytosis contributed to the absorption of MPPs 22, |n
vivo research results showed a more than five-fold increase in drug bioavailability 28l. Others are investigating new
methods for optimizing nanoparticle design and surface modification to improve targeting and drug release #9571,
Additionally, some researchers are investigating the potential of combining nanoparticles with other treatment
modalities such as gene therapy or immunotherapy 18581 Finally, there is growing interest in developing
personalized nanoparticle-based drug delivery approaches that can be tailored to individual patients based on their

unique disease characteristics and genetic profiles 52,

https://encyclopedia.pub/entry/48618 4/14



Drug Delivery Innovations for Chronic Inflammatory Respiratory Diseases | Encyclopedia.pub

Through targeted drug delivery, nanoparticles have the potential to improve therapeutic efficacy and reduce
systemic side effects. Overall, nanoparticle-based drug delivery systems hold great promise for the treatment of

chronic inflammatory respiratory diseases.

| 3. Inhaled Corticosteroids (ICSs)

Inhaled corticosteroids (ICSs) are widely used as a treatment option for chronic respiratory diseases such as
asthma and chronic obstructive pulmonary disease (COPD). These medications work by reducing the production of
inflammatory mediators in the airways, which helps prevent or reduce inflammation, bronchoconstriction, and
mucus production. According to the Global Initiative for Asthma (GINA) report 1, ICSs have been shown to

improve lung function, reduce exacerbation, and improve quality of life in patients with chronic respiratory diseases.

However, there are some current challenges with ICS delivery that limit their efficacy. One major challenge is
achieving the optimal distribution of the medication throughout the lungs. ICS particles can become trapped in the
mouth or throat, reducing their effectiveness in the lower airways [%. Patients may also have difficulty using their
inhaler correctly, leading to reduced medication delivery and efficacy (1. Moreover, selecting the appropriate ICS
dose for each patient can be challenging, as individual needs can vary significantly (62,

To optimize ICS delivery and improve its efficacy, several methods have been developed. One approach involves
the use of spacer devices, which help to slow down the speed of medication delivery and improve medication
deposition in the lungs 83, Another approach is the development of more efficient ICS formulations, such as fine-
particle ICSs, which have shown improved efficacy compared with conventional ICS formulations 4. Fine-particle
ICSs have greater deposition in the small airways compared with conventional ICSs 3. According to a meta-
analysis, fine-particle ICSs have significantly higher odds of achieving asthma control €. The combination of ICSs
and other drugs is also worth further optimization (Figure 2). Additionally, research advancements have explored
smart inhalers that can monitor medication adherence and provide feedback to patients 2. Nowadays, four kinds
of inhalers (nebulizers, dry powder inhalers (DPIs), pressurized metered-dose inhalers (pMDIs), and soft mist
inhalers (SMis)) are widely used (Table 2). Recently, artificial intelligence (Al)-based intelligent inhalers have
attracted much attention, as they can enable real-time regulation of inhalation plans. For example, intelligent dry
powder inhalers (DPIs) constructed based on artificial neural networks (ANNs) have effectively improved the
bioavailability of drugs 8], but additional data are still needed to train more advanced models to output better drug

delivery plans [62],
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Figure 2. The ECOPD rate reduction from ICSs combined with other drug regimens reported by some published
studies ILI2AZ3I7475] - Apbreviations: ECOPD: Exacerbation of chronic obstructive pulmonary disease; ICS:

Inhaled corticosteroid; LAMA: Long-acting muscarinic antagonist; LABA: Long-acting beta2-adrenergic agonist.

Type of
Inhaler Subtype
Nebulizers
Jet (or
pneumatic)
Ultrasonic

Table 2. Different kinds of ICS inhalers.

Characteristics

Use compressed
air or oxygen to
convert liquid
medication into a
fine mist for
inhalation.

Use high-
frequency
vibrations to
convert liquid
medication into a

Advantages

Versatile and
suitable for all ages.

Portable and
compact, have faster
administration times,

operate quietly.

Limitations

Longer
administration
times, produce
noise and 76]

vibration, require

power sources,
and need regular

maintenance.

Not suitable for vad
medications that
are heat-sensitive
or contain
suspensions.
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Type of o S
IKE aler Subtype Characteristics Advantages Limitations  References
fine mist for
inhalation.
Use a vibrating Have limitations in
mesh or Portable, lightweight, delivering higher
Mesh perforated plate to and operate silently viscosity (78]
generate a fine with faster medications or
aerosol mist from administration times. large medication
liquid medication. volumes.
Require adequate
Breath-activated, inspiratory flow for
. Deliver medication portable, and do not optimal drug
Dry powder Single- and . . o .
. I directly to the require coordination delivery, and can [79]
inhalers multi-unit . . . .
lungsina between inhalation be used only with
(DPIs) doses . S
powdered form. and device specific types of
activation. dry powder
medications.
. The presence of
Pressurized . L . .
. Deliver medication Deliver a consistent  propellants and the
metered- Single and in a pressurized dose, require inability to assess
dose combined P . - - feq . Yo (0l
. aerosol form using ~ minimal preparation remaining
inhalers drugs : N
propellants. time. medication levels
(pMDls) .
easily.
Provide consistent . .
. . Potential clogging
and precise dosing, .
if not used
generate a slow- roerlv. hiaher
. . — moving mist suitable properly, hig
Soft mist Deliver medication . . cost compared
. . for patients with . ' [81]
inhalers None as a slow-moving . o with other inhalers,
. diverse inspiratory -
(SMis) aerosol mist. L and limited
abilities, and are -
availability of

equipped with dose

medications in soft

counters to monitor
medication levels.

mist formulation. imitations
le studies
have suggested that long-term use of ICSs may increase the risk of pneumonia and cataracts 283l Moreover,

further research is needed to determine the optimal ICS dose and duration of treatment for individual patients (4],

Future directions for research in ICS delivery are focused on several areas. Personalized ICS dosing strategies
based on individual patient characteristics and disease severity are being explored 82, Investigations are currently
underway to explore new ICS formulations that utilize innovative drug delivery technologies, including
nanotechnology and microencapsulation 88,

Thus, ICSs remain an effective treatment option for chronic respiratory diseases, but proper delivery optimization is
crucial to their efficacy and safety.
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