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Energy plays a crucial role in the sustainable development of modern nations. Hydrogen is considered the most promising

alternative fuel as it can be generated from clean and green sources. Moreover, it is an efficient energy carrier because

hydrogen burning only generates water as a byproduct. It is generated from natural gas. However, it can be produced

using other methods, i.e., physicochemical, thermal, and biological. The biological method is considered more

environmentally friendly and pollution free.
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1. Feedstock for Biohydrogen Production

Biological hydrogen production has been carried out using several waste materials and lignocellulosic materials,

depending upon their availability and suitability in particular geographic situations. Numerous raw materials such as

sugarcane and sugar beet molasses , cheese whey powder , coffee drink manufacturing wastewater , corn

stalk , crude glycerol , rice slurry , starch wastewater , paper and pulp industry effluent , baggase , dairy

wastewater , vegetable waste , palm oil mill waste , distillery wastewater, and waste barley  have been

reported.

2. Diversity of Biohydrogen-Producing Bacteria

There are numerous types of fermentative hydrogen-producing bacteria. Clostridium sp. is one of the most common

anaerobic bacteria. Different species of Clostridium, such as Clostridium butyricum, Clostridium beijerienckii, Clostridium
amygdalinum, Clostridium cellolosi, and Clostridium acetobutylicum, have been reported for fermentative hydrogen

production . Anaerobic bacteria utilize glucose to produce hydrogen, while butyric acid or acetic acid is

produced as the product—Chong et al. isolated Clostridium butyricum from POME . The optimum hydrogen production

was obtained at pH 5.5.

Some facultative anaerobic bacteria (e.g., Enterobacter aerogenes) have also been recognized as H  producers since the

hydrogenase enzyme was found in these bacteria . The critical parameters, such as substrate concentration,

temperature, pH, inoculum size, and yeast extract, were optimized to obtain a maximum H  yield of 0.21 L H  /g glucose.

The culture and maintenance of facultative anaerobes are more feasible than obligate anaerobes.

These microorganisms are further classified into mesophylls and thermophiles based on their growth temperatures.

Although thermophiles are cultivated at elevated temperatures, with highly intensive energy requirements, their H

production can be closer to the theoretical yield than mesophylls by overwhelming the thermodynamic barrier .

Some photofermentative bacteria require light energy to produce H  in anoxygenic conditions. Without O , these

photoautotrophs, including cyanobacteria and green algae, produce H  through biophotolysis using their specific

metabolic routes advantageously under defined conditions . Mixed cultures are also considered the best choice for

maximum H  yield. A study by Nicolau shows hydrogen production using heat-treated mesophilic anaerobic sludge

inoculum instead of pure culture . The hydrogen yield at pH 5.5 was 0.37 mol H /mol of carbohydrate, equal to 18.14 L

H /kg of dry solid.

3. Enzymes

Life depends on several chemical reactions, most of which are slow. Therefore, enzymes are naturally occurring catalysts

to speed up biochemical reactions. The two enzymes involved in hydrogen production are hydrogenase and nitrogenase.

The enzyme hydrogenase catalyzes the consumption and generation of H . After the discovery of this enzyme in 1930 by

Stephenson and Stickland, numerous experiments have been conducted to learn more about it. Despite this, its crystal

structure was elucidated approximately 20 years ago . It is present in dark fermentative hydrogen-producing bacteria,
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green algae, and cyanobacteria. The hydrogenase enzyme is classified into three types based on the structure of active

sites: NiFe-, Fe-Fe-, and Fe-hydrogenase. The NiFe-hydrogenase is only present in bacteria and archaea, while algae

and bacteria have FeFe-hydrogenase. Hence, Fe-hydrogenase is a homodimer and is only present in methanogenic

archaea .

Nitrogenase is another enzyme responsible for the production of H . It is found in purple non-Sulfur bacteria, archaea, and

cyanobacteria . Most atmospheric nitrogen is fixed by cyanobacteria and generates H  as a byproduct. There are three

forms of nitrogenase enzyme: Molybdenum, iron, and vanadium. They are located at the active sites of nitrogen reduction

and bind with rare metal centers. Mo-nitrogenase consists of two proteins: dinitrogenase (MoFe protein) and

dinitrogenase reductase (Fe protein). The nitrogenase helps to generate ammonium from nitrogen, but in nitrogen-

deficient conditions, it starts producing hydrogen in an anaerobic environment . The structure of iron and vanadium

nitrogenases are similar to the structure of the Mo form, but they have FeFe and VFe cofactors, respectively. The FeFe

and VFe nitrogenases enhance hydrogen production compared to Mo nitrogenase. Only one type of photofermentative

bacteria, R. palustris, has been reported to have all three types of these nitrogenases .

4. Factors Affecting the Production of Hydrogen

4.1. Pretreatment Methods

The use of food waste and food processing wastewater as feedstock provides several organic compounds and nutrients

with enhanced hydrogen production, but some inhibitory compounds affect the production and yield of hydrogen . In

addition, different pretreatment methods have been reported to increase the utilization of raw materials for successive

hydrogen generation.

Among the pretreatment methods, hydrolysis and preheating are the most preferred methods. Hydrolysis can be

acid/alkaline or ultrasound-assisted. The six-hour alkaline hydrolysis increases H  generation 206 times at a pH level of

12 . Meanwhile, acid 12 h hydrolysis enhances the production of H  three-fold at a pH of 2. Hence, the main

disadvantages are the utilization of chemicals in large quantities and the requirement of some other processes to

neutralize the pH . The ultrasonication of food waste, assisted with hydrolysis, increases H  yield by 75–88% 

, but investment in equipment and energy cost are the major hurdles to commercializing this method.

The preheating of food waste is another pretreatment method . The results depicted that, prior to starting fermentation,

heating waste for at least 20 min at 90 °C could increase the H  yield.

4.2. Effect of Substrate Concentration

The substrate concentration plays a vital role in H  production by dark fermentation. When substrate concentration

increases, it creates unfavorable conditions and consequently changes the pH, H  partial pressure, and the concentration

of volatile fatty acids. Therefore, substrate inhibition may be minimized by arranging the optimum initial concentration of

the substrate . Many researchers have reported inhibition by substrate concentration, but the main focus was on the

sources of carbohydrates. The use of wastewater and organic waste as a substrate has rarely been reported in the

literature . The fed-batch reactors can be used to avoid substrate inhibition. Some bacteria, such as Enterobacter
aerogens, can reduce substrate inhibition by stimulating the microbial activity of H  production . The effect of substrate

concentration on hydrogen production by Lactobacillus casei and Clostridium butyricum was also evaluated . Glucose

and galactose were used as carbon sources during the batch process. The results were based on the inoculum utilization

of a single species or a mixture. It was observed that L. casei could not utilize galactose properly when used alone, while

C. butyricum gave a fast response to galactose usage as a carbon source. On the other hand, the response for glucose

utilization was faster by L. casei than C. butyricum under low concentrations of glucose, and, in turn, low hydrogen

production was observed because Lactobacillus outcompeted the most significant H -generating bacteria.

4.3. Effect of Initial pH

Initial pH is another essential factor to be considered in the dark fermentation process, and it is noted that each microbe

can function effectively in different conditions. For example, the effective pH for hydrogen production is 5–8. When the

initial pH becomes lower than 5, hydrogen production reduces by half . A pH range of 5–9 also has been used during

the batch fermentation process, but a PH range of 5–6 has been reported as the initial optimum pH . During

fermentation, volatile fatty acids reduce the pH of the medium. Therefore, the initial pH was set from 6-7 to compensate

for the end of the process .
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The effect of pH on hydrogen production by green algae was evaluated . The results showed that the pH of the medium

affects the activity of the hydrogenase enzyme. They controlled the pH by adding NaOH and HCl over the range of 6.5–

9.0, which does not affect algae growth. It was observed that an increased yield of 2.4% was obtained at a pH of 6.5. A

considerable pH value is also required for Purple non-Sulfur bacteria (PNSB) to produce hydrogen via photofermentation.

According to studies on hydrogen production during the photo-biological fermentation process, a pH of 7 is best for

transporting electrons to the nitrogenase enzymes for H  generation in the media .

4.4. Effect of Operational Temperature

The operational temperature significantly affects the production of hydrogen and the activity of enzymes involved in

hydrogen generation . Thermophilic bacteria observed an enhanced biosynthesis of hydrogen at high temperatures

compared to mesophilic bacteria during dark fermentation. The temperature range of 30–55 °C has been reported as

optimal for enhanced biohydrogen production . Hence, it has been reported that the activity of H  producers is

inhibited at a very extreme temperature of more than 60 °C. Only hyperthermophilic bacteria (Pyrococcus furiosus and

Thermotoga maritime) can produce H  at extreme temperatures. These bacteria can produce H  at temperatures greater

than 80 °C .

PNSBs are also sensitive to different ranges of temperature. For example, a study conducted to show the effect of cultural

conditions on H  production by photofermentation described that the growth rate and the rate of H  production initially

increased with an increase in temperature up to 30 °C. However, after 30 °C, the production rate of H  gas decreased

rapidly because the higher temperature above 30 °C inhibits the activity of the enzyme nitrogenase .

4.5. Effect of Nutrients

The macronutrients also play a vital role in the growth of bacteria to produce H . The essential nutrients are sulfur,

phosphorus, and nitrogen. The common form of inorganic sulfur in many organic wastes is sulfate (SO ) . The

sulfate-reducing bacteria reduce sulfate into sulfide during the process of fermentation. The sulfur-containing proteins also

produce sulfide in the fermentation medium. Studies have been reported about the toxic effects of high sulfide levels in a

medium, which inhibit the activity of microorganisms from producing H . The increased sulfide concentration also

decreases the bioavailability of some trace elements .

Another essential nutrient for the growth of anaerobic bacteria is nitrogen. The high concentration of ammonia hydrogen

decreases the activity of fermentative bacteria and the rate of H  production . The degradation of proteins and amino

acids also produces a high amount of ammonia in the fermentation media. The high concentration of nitrogen also

interferes with the intracellular pH and affects the performance of microbes responsible for H  production. The inhibition of

nitrogen can be overcome by diluting the feedstock . Besides nitrogen and sulfur, phosphorus is another nutrient

required to enhance hydrogen production . It was observed that a high rate of H  can be obtained in the presence of

600 mg L  K HPO  . A 40% increase in the production of H  was observed at a 30% increase or decline in the

respective chemical compound.

4.6. Effect of Light Intensity

Light intensity plays a significant role in producing H  by PNSB. It was shown that the performance of PNSB increases

with an increase in light intensity from 2500–5000 lx, but a further increase in light intensity reduces the growth and

production of hydrogen . It was also observed that the photosynthetic system of PNSB demanded more ATP and

reduced power with increasing illumination intensity . The enzyme nitrogenase also requires high ATP to sensitize the

cells and produce H . Hence, the high intensity can become a limiting factor in photohydrogen production.

Photoinhibition in PNSB was also investigated . They suggested that hydrogen production decreased when light

intensity was increased above 200 Wm , while a study conducted by Cai and Wang found that the H  production

decreased at an illumination intensity of 6000 lx. The favorable light source is LED because it has a wavelength range of

770–920 nm, which is considered best for the activity of PNSB. Furthermore, LED light is cost-effective in terms of heat

generation, energy consumption, and life expectancy .

4.7. Effect of Metal Ions

Different metal ions are used for microbes’ growth and to optimize the activity of the enzyme during dark- and

photofermentation. These metal ions are required only in a moderate amount. When they are used in high quantities, they

inhibit the fermentation process by inhibiting the growth of the bacteria. The effects of using higher concentrations of

metals include destroying membrane function and eliminating the transmission of valuable ions and nutrients to the cell
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and intracellular accumulation of metals . A study was conducted to describe the importance of Fe for metabolic

changes and its involvement in the expression of non-Fe-S and Fe-S proteins in hydrogenase enzymes. However, when

the concentration of Fe increases in the medium, it makes cell clumps and reduces the mass transfer activity. It has been

reported that the pure culture requires very little Fe, while mixed culture can tolerate high doses of Fe without an inhibitory

effect .

Trace metal ions, such as sodium, magnesium, and calcium, are also needed for the growth of bacteria. High amounts of

these trace metals slow down the growth of microbes and become toxic at higher concentrations. The authors of 

observed a high hydrogen yield in the absence of sodium. The higher concentrations of sodium raise the osmotic

pressure, affect the activity of bacteria, and sometimes cause bacterial death. It has been recommended that the sodium

concentration should be kept under 20 g L  to achieve a maximum level of hydrogen production . Ca n is another

trace element required for the growth of bacteria and H  production . Mg  is also responsible for cell function and

reaction. It is the most demanding ion as a cofactor for 10 types of enzymes involved in the glycolysis process. The Ni

has no inhibitory effect on the yield of H  at a level of 0.1 mg L . Hence, no significant measure has been taken to control

metal inhibition during fermentation, but a few pretreatment techniques, such as biosorption, electrodialysis, and

cofermentation, can effectively overcome metal inhibition problems .

5. Nanotechnology and Biohydrogen

The vast and newly emerging field of nanotechnology deals with nm-sized particles. The nanoparticles (NPs) have been

utilized in several fields, such as biosensors, medicines, immobilization, and the production of biofuels . The NPs

also help produce biohydrogen by influencing the metabolic activities of microbes under aerobic conditions .

Nanoparticles prepared by different methods (biological, physical, and chemical) have been reported for H  production.

The NPs of gold, silver, copper, nickel, iron, zinc oxide, palladium, titanium, silica, carbon nanotubes, and activated carbon

have been used to enhance H  production . These nanoparticles provide a larger surface area to adsorb

electrons and, hence, enhance the production rate of H  by stimulating the hydrogen-producing enzymes .

Enhancement of Biohydrogen by Metallic Nanoparticles

Zhang’s group was the first to use gold nanoparticles to enhance the biosynthesis of H  . They used artificial

wastewater for H  production via dark fermentation. The preheated and non-heat-treated cultures were used as inoculum.

It was observed that the gold nanoparticles successfully increased the metabolic activity of the microbes, enhancing the

rate of H  compared to the control. The cumulative hydrogen yield was maximum when 5 nm gold particles were used .

A study evaluating silver NPs for hydrogen production has also been conducted . They used mixed culture and Ag-NPs

to produce H  from glucose. When the concentration of the Ag-NPs was increased up to 20 nM, it affected the activity of

the bacteria for enhancing H  generation. However, there was no increase in hydrogen production rate at more significant

concentrations. The higher yield of H  observed at 20 nM Ag-NPs was 67.6%. The Ag-NPs also increased cell biomass

and decreased the lag phase for H  production.

Han and colleagues investigated the effect of hematite NPs and initial pH on hydrogen production in mixed bacteria in an

anaerobic fed-batch process. The maximum observed H  yield was 3.21 mol H /mol  sucrose. A transmission electron

microscope was used to check the slow discharge of hematite nanoparticles and their effect on the shape of bacteria.

Furthermore, a study was conducted utilizing biogenic palladium nanoparticles and palladium ions . The leaf extract of

Cortandrum sattvum was used to synthesize palladium nanoparticles. They obtained a maximum H  yield of 1.48 mol

H /mol  glucose using a 5 mg L  palladium nanoparticles concentration because of the higher activity of the

hydrogenase enzyme. On the other hand, palladium ions showed a negative impact on the yield and lag phase of

hydrogen.

Many bacterial cultures have been investigated for producing H  via iron NPs. For example, Fe-NPs and iron ions were

used to investigate their possible enhancement effect on the production of H  . Both showed a positive impact on the

hydrogen yield compared to the control. However, Fe  ions and Fe-NPs illustrated different behavior towards the

generation of intermediate metabolites. The propionate production declined by 75% with Fe-NPs compared to a 35%

reduction by the Fe  ions. The enhancement effect of phytogenic iron nanoparticles and iron ions was also investigated.

The green Fe-NPs were prepared using the extract of leaves and bark of Syzygium cumini and FeSO . The mesophilic

bacterial strain of Enterobacter cloacae DH-89 was isolated from the soil and used to produce hydrogen. A 100% increase

in hydrogen production (1.9 mol H /mol  hexose) was observed under 100 mg L  Fe-NPs compared to the control (0.95

mol H /mol  glucose). Meanwhile, Fe  ions helped to raise the yield of hydrogen to 1.45 mol/mol  glucose) .
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Similarly, some other researchers have also reported Fe, Fe O , and Fe O  NPs prepared by different physical, chemical,

and biological methods for the enhanced biosynthesis of hydrogen .

The effect of ZnO nanoparticles on hydrogen production was also reported . The ZnO-NPs were synthesized by the

typical precipitation method. The pretreated biomass of water hyacinth was saccharified by the enzyme activity and used

for the fermentative production of H . It was observed that the ZnO-NPs reduced the hydrogen yield compared to the

control. On the other hand, metallic NPs (copper, nickel, silicon dioxide, and titanium dioxide) positively affected the rate

of generation and yield of H  .

Many studies have reported an enhancement of H  production via metallic NPs using the dark fermentation process, but

few studies have been found in the literature for enhanced photofermentative H  production by nanoparticles. Zhao et al.

investigated the effect of TiO -NPs on photofermentative H  production using the effluent of the dark fermentation process

as a feedstock . It was observed from the results that the TiO -NPs enhanced the activity of PNSB for the production of

H  and reduced the activity of the uptake of hydrogenase enzyme. Another study by Pandey et al. reflected a similar

enhancement effect of TiO -NPs for photofermentative H  production . Meanwhile, Kanwal and colleagues investigated

the effect of a phytofabricated nanoscale iron complex for H  production using photofermentative PNSB . The use of

carbon nanotubes (CNTs) has also been reported for improved hydrogen generation by H -producing bacteria .
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