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The ongoing SARS-CoV-2 pandemic is a serious threat to public health worldwide and, to date, no effective treatment is

available. Thus, we herein review the pharmaceutical approaches to SARS-CoV-2 infection treatment. Numerous

candidate medicines that can prevent SARS-CoV-2 infection and replication have been proposed. These medicines

include inhibitors of serine protease TMPRSS2 and angiotensin converting enzyme 2 (ACE2). The S protein of SARS-

CoV-2 binds to the receptor in host cells. ACE2 inhibitors block TMPRSS2 and S protein priming, thus preventing SARS-

CoV-2 entry to host cells. Moreover, antiviral medicines (including the nucleotide analogue remdesivir, the HIV protease

inhibitors lopinavir and ritonavir, and wide-spectrum antiviral antibiotics arbidol and favipiravir) have been shown to reduce

the dissemination of SARS-CoV-2 as well as morbidity and mortality associated with COVID-19
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1. Introduction

Coronaviruses contain positive-sense, single-stranded RNA, with a genome size ranging from 26–32 kb, and five

structural proteins, and are classified into four categories: alpha, beta, gamma, and delta . Human coronaviruses are

alpha and beta coronaviruses which can cause respiratory and gastrointestinal tract infections . The severe acute

respiratory syndrome (SARS) outbreak between November 2002 and July 2003 (nine months) resulted in more than 8000

total cases and 774 deaths, with a fatality rate of 9.6% . Middle East respiratory syndrome (MERS) was reported in 2012

resulting in more than 2400 cases and 858 deaths, with a fatality rate of 34.4%. Subsequently, in late December 2019, an

unspecified case of pneumonia was reported in Wuhan, Hubei Province, the People’s Republic of China . COVID-19

is the official name given by the WHO to the disease caused by SARS-CoV-2 infection. It has since been observed that

the virus could spread from human to human . Its incubation period is 2 to 14 days with various clinical presentations:

asymptomatic, mild to severe illness, and mortality . Symptoms include fever, cough, difficulty breathing, malaise and

fatigue, gastrointestinal symptoms (decreased appetite, vomiting, watery diarrhea, and dehydration), loss of taste and

smell, sore throat, rhinorrhoea, severe pneumonia, and acute respiratory distress, which can lead to multiple organ failure

and death. The SARS-CoV-2 virus is mainly spread via airborne/aerosol particles; the virus has been observed to remain

viable and infective for over 3 h in the air . SARS-CoV-2 infection is a highly communicable disease, and this

pandemic has been designated a world public health emergency by the World Health Organization (WHO) . However,

SARS-CoV-2 has many potential natural, intermediate, and final hosts, as do other viruses; thus, major problems in the

prevention and diagnosis of viral infection are raised . In this paper we discuss the genetic structure of SARS-CoV-2 and

its mechanism of pathogenesis. We include consideration of the phylogenetic analysis of the SARS-CoV-2 genome,

multiple sequence alignment analysis, and therapeutic approaches to SAR-Co-V-2 infection.

2. SARS-CoV-2 Genetic Structure and Pathogenic Mechanism

The SARS-CoV-2 genome codes for more than 20 distinct proteins. At least four structural proteins are present in

coronaviruses, namely spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins (Figure 1). S proteins,

which are involved in host attachment and virus-cell membrane fusion, determine the host range for viral infection (Figure
2) .
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Figure 1. Genome structure of SARS-CoV-2. Figure was created by using BioRender (https://biorender.com, accessed on

15 September 2021).

Figure 2. Crystallographic structure SARS-CoV-2. Figure was created using by BioRender (https://biorender.com,

accessed on 15 September 2021).

The SARS-CoV-2 main protease (Mpro) is recognised as one of the most essential viral proteins. SARS-CoV-2 Mpro is

more than 96% similar to SARS-CoV Mpro. During viral translation, SARS-CoV-2 Mpro cleaves 11 polyproteins to

polypeptides that are required for transcription and replication . Some of the candidate drugs that can prevent SARS-

CoV-2 viral replication target Mpro, such as remdesivir, griffithsin, nafamostat, disulfiram, lopinavir/ritonavir, nelfinavir,

danoprevir and favipiravir .

3. Phylogenetic Analysis of SARS-CoV-2 Genome

A sequence alignment and phylogenetic analysis of SARS-CoV-2 genome is shown in Figure 3. The phylogenetic tree is

primarily divided into three clades . Clade I consist of SARS-CoV and Bat-SL-CoV genomes which share a sequence

identity ranging from 88% to 99%. Clade II consist of 13 complete genomes of coronavirus and MERS-CoV genomes

which share a sequence identity from 78% to 89%. Clade III consist of 23 SARS-CoV-2 and Bat-SL-CoV complete

genomes which share a sequence identity ranging from 89% to 100%; the SARS-CoV-2 genomes isolated from human

samples show a sequence identity ranging from 98% to 100% . A particularly interesting observation from the analysis

was that there is no major divergence in the SARS-CoV-2 genome sequence of different SARS-CoV-2 virus genomes

isolated from different countries, as shown in Figure 3. The sequence alignment of the SARS-CoV-1 (Bat, PDB ID: 3TNT)

and the SARS-CoV-2 (human, PDB ID: 7MBI) main proteases reveals that the amino acid sequence is conserved with a

sequence identity of 96%; differences between these genomes are shown in Figure 4 at specific positions .
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Figure 3. The phylogenetic tree was generated using the latest complete genome sequences of different neighbors,

MERS-CoV, SARS-CoV, and Bat-SL-CoV. The tree is divided into three major clades according to the grouping of

clusters: Clade I: Bat-SL-CoV-2 and SARS-CoV viruses showing a close evolutionary relationship with each other. Clade

II: Human and bat coronaviruses, including MERS-CoV. Clade III: All of the SARS-CoV-2 genomes isolated from humans

—it was observed that these genomes show a close evolutionary relationship with Bat-SL-CoV-2.

Figure 4. Multiple sequence alignment analysis of the amino acid sequence of SARS-CoV-1 and SARS-CoV-2 Mpro.

Amino acids marked underneath with an arrow represent catalytic residues; residues marked underneath with * represent

substrate-binding residues of various subsites.

4. Therapeutic Approaches to SAR-COV-2 Infection

To identify therapeutic agents that are effective against SARS-CoV-2 infection, extensive research on the structure and

pathogenesis of COVID-19 is in progress . Therapeutic approaches to COVID-19 can be categorized into virus-based

therapy and host-based therapy, as shown in Figure 5.
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Figure 5. Therapeutic approaches to SARS-CoV-2 infection.

4.1. Virus-Based Therapy

Viral nucleic acids consist of nucleosides and nucleotides. Drugs capable of attacking nucleotides, nucleosides, or viral

nucleic acids can affect the activity of a broad range of coronaviruses and other viruses, as shown in Table 1 . Possible

targets for antiviral therapy include major enzymes and proteins involved in SARS-CoV-2 viral replication. The PLpro

enzymes and papain-like protease of SARS-CoV and MERS-CoV have been shown to exert proteolytic, deubiquitylating,

and deISGylating activities. Studies have shown that lopinavir-ritonavir is the most potent protease inhibitor as shown in

Table 1 . The main SARS-CoV-2 immunogen antigen is the Spike glycoprotein with membrane anchor, which plays an

important role in the interaction between host cells and viruses. Studies have shown that certain monoclonal antibodies

can target the receptor binding domain (RBD) subunit epitopes and inhibit viral cell receptor binding, whereas other

monoclonal antibodies bind to the S2 subunit and disrupt viral cell fusion . A study using the CR3022 neutralising

antibody of SARS-CoV shown in Table 1 . Earlier trials also showed that adoptive transfer of plasma containing anti-

MERS-COV-S antibodies had the ability to prevent infection and accelerate viral clearance.

Table 1. Virus-based therapy: Drugs capable of attacking nucleotides, nucleosides, or viral nucleic acids of a broad range

of coronaviruses and other viruses.

Antiviral Agent Drug Target Mechanism of Action Infectious Disease References

Remdesivir RdRp Terminates the non-
obligate chain SARS-CoV-2, MERS-CoV, SARS-CoV

Favipiravir RdRp Inhibits RdRp SARS-CoV-2, Influenza

siRNA RdRp Short chains of dsRNA
that interfere SARS-CoV, MERS-CoVWu

Galidesivir RdRp Inhibits viral RNA
polymerase function by Galidesivir SARS-CoV-2,

Ribavirin RdRp
Inhibits viral RNA
synthesis and mRNA
capping

SARS-CoV-2, MERS-CoV, SARS-CoV,

LJ001 and
JL103

Lipid
membrane

Membrane-binding
photosensitizers that
induce

Enveloped viruses (IAV, filoviruses,
poxviruses, arenaviruses, bunyaviruses,
paramyxoviruses, flaviviruses and HIV-1)

CR3022 Spike
glycoprotein

Immunogenic antigen
against Spike protein SARS-CoV-2, SARS-CoV

Griffithsin Spike
glycoprotein

Griffithsin binds to the
SARSCoV-2 spike SARS-CoV-2

Peptide (P9) Spike
glycoprotein

Inhibits spike protein-
mediated cell-cell entry
or

Broad-spectrum (SARS-CoV, MERS-CoV,
influenza)

Nafamostat Spike
glycoprotein

Inhibits spike-mediated
membrane fusion A SARS-CoV-2, MERS-CoV

Ritonavir 3CLpro Inhibits 3CLpro SARS-CoV-2, MERS-CoV
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Antiviral Agent Drug Target Mechanism of Action Infectious Disease References

Lopinavir 3CLpro Inhibits 3CLpro SARS-CoV-2, MERS-CoV, SARS-CoV, HCoV-
229E, HIV, HPV

Darunavir and
cobicistat 3CLpro Inhibits 3CLpro SARS-CoV-2

4.2. Host-Based Therapy

Viral entry of SARS-CoV-2 depends on the priming of its spike protein and on transmembrane protease 2 (TMPRSS2).

Further studies have shown that camostat mesylate, a serine protease inhibitor, can block TMPRSS2 activity and is thus

considered as a therapeutic candidate as shown in Table 2 . Other research indicates a pH- and receptor-dependent

endocytosis when coronavirus is introduced into the host cell. AP-2-associated protein kinase 1 (AAK1), a host kinase,

controls clathrin-mediated endocytosis . Since the virus structure is now established, various inhibitors have been

tested in cell-based systems for their ability to prevent viral entry and replication within the host body, as shown in Table 2
. These include spike (S) protein inhibitors, S-cleavage inhibitors, helicase and protease inhibitors, fusion core

blockers, HCB monoclonal antibodies, RBD–ACE2 blockers, antiviral peptides, siRNAs, and antifreeze eutralizati

antibodies . The following section concentrates on the possible therapeutic treatment options based on our limited

knowledge of SARS-CoV-2.

Table 2. Host-based therapy: Drug target and mechanism of action against infectious diseases.

Antiviral Agent Drug Target Mechanism of Action Infectious Disease References

Baricitinib Clathrin-mediated
endocytosis Baricitinib Clathrin-mediated

endocytosis

Chloroquine Endosomal
acidification

A lysosomatropic base that appears to
disrupt intracellular trafficking and viral
fusion events

SARS-CoV-2,
SARS-CoV, MERS-
CoV

Convalescent
plasma - Inhibits virus entry to the target cells SARS-CoV, SARS-

CoV-2, Influenza

Camostat
Mesylate Surface protease Potent serine protease inhibitor SARS-CoV, MERS-

CoV, HcoV-229E

Corticosteroids Pulsed
methylprednisolone

Patients with severe MERS who were
treated with systemic corticosteroid with
or without antivirals and interferons had
no favorable response

SARS-CoV, MERS-
CoVL

Nitazoxanide Interferon response Induces the host innate immune response Coronaviruses,
SARS-CoV-2

Recombinant
interferons Interferon response Exogenous interferons

SARS-CoV-2,
SARS-CoV, MERS-
CoV

4.2.1. Neutralizing Antibodies

In general, coronavirus infection begins with the entry of the viral S protein, which binds to the cell surface. This S protein

fuses with the cell membrane and facilitates the syncytial development and transmission of viral nucleocapsids into the

cell for further replication . Studies have shown that neutralization of the S protein RBD of SARS-CoV  and MERS-

CoV  by antibodies can be effective against these diseases. Neutralisation of antigens can be highly useful in

COVID-19 treatment, given that the S protein RBD sequence of SARS-CoV-2 is similar to those of SARS-CoV and

MERS-CoV . Critical COVID-19 patients are currently treated with immunoglobulin G . FcR plays a role in

inflammation in the lung; therefore, inflammation in COVID-19 can be reduced by blocking FcR activation. Thus,

intravenous administration of immunoglobulins can be effective in the treatment of pulmonary inflammation, as shown in

Table 3 and Figure 6 .
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Figure 6. Schematic of binding mechanism of SARS-CoV-2 spike protein to the receptor.

Table 3. Neutralizing antibodies against SARS-CoV-2.

S.N. Antibody
Name

Antibody
Type Origin PDB

ID Epitopes Neutralizing
Mechanism

Cross
Neutralizing
Activity

Protective
Efficacy Ref

1 CV30 Human
IgG

Infected COVID-19
patients 6XE1

D420-
Y421,
Y453,
L455-
N460,
Y473-
S477,
F486-
N487,
Y489,
Q493,
T500,
G502,
Y505

Block hACE2-
RBD

interaction
no

IC50 value
of 0.03
µg/mL

2 REGN10933
Recombinant

full-
human

antibodies

Humanized mice
and COVID-19-
convalescent

patients

6XDG

R403,
K417,
Y421,
Y453,
L455-
F456,
A475-
G476,
E484-
Y489,
Q493

Block hACE2-
RBD

interaction,
ADCC &
ADCP

no IC50 value
of 37.4 pM  
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S.N. Antibody
Name

Antibody
Type Origin PDB

ID Epitopes Neutralizing
Mechanism

Cross
Neutralizing
Activity

Protective
Efficacy Ref

3 B38 Human
IgG

COVID-19-
convalescent

patient
7BZ5

R403,
D405-
E406,
Q409,
D420-
Y421,
Y452,
L454-
N460,
Y473-
S477,
F486-
N487,
Y489-
F490,
Q493-
G496,
Q498,
T500-
V503,
Y505

Block hACE2-
RBD

interaction
no

A single
dose of B38
(25 mg/kg)

4 CC12.1 Human
IgG

COVID-19-
convalescent

patient
6XC3

R403,
D405-
E406,
R408-
Q409,
D420-
Y421,
Y453,
L455-
N460,
Y473-
S477,
F486-
N487,
Y489,
Q493-
G496,
Q498,
T500-
V503,
Y505

Block hACE2-
RBD

interaction
no

IC50 value
of 0.019
µg/mL

5 CB6 Human
IgG

COVID-19-
convalescent

patient
7C01

R403,
D405-
E406,
R408-
Q409,
D420-
Y421,
L455-
N460,
Y473-
S477,
F486-
N487,
Y489,
Q493,
Y495,
N501-
G502,
G504-
Y505

Block hACE2-
RBD

interaction
no

A single
dose of

CB6-LALA
(50 mg/kg)
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S.N. Antibody
Name

Antibody
Type Origin PDB

ID Epitopes Neutralizing
Mechanism

Cross
Neutralizing
Activity

Protective
Efficacy Ref

6 C105 Human
IgG

COVID-19-
convalescent

patient

6XCN,
6XCM

R403,
D405,
R408,
D420-
Y421,
Y453,
L455-
N460,
Y473,
A475-
G476,
F486-
N487,
G502,
Y505

Block hACE2-
RBD

interaction
no

IC50 value
of 26.1
ng/mL

7 CC12.3 Human
IgG

COVID-19-
convalescent

patient
6XC7

R403,
D405,
D420-
Y421,
Y453,
L455-
N460,
Y473-
S477,
F486-
N487,
Y489,
Q493,
G496,
N501,
Y505

Block hACE2-
RBD

interaction
no

IC50 value
of 0.018
µg/mL

8 CR3022 Human
IgG

SARS-
convalescent

patient

6YOR,
6 W41

Y369-
N370,
F374-
K386,
L390,
F392,
D428,
T430,
F515-
L517

Trapping RBD
in the less
stable up

conformation
while leading

to
destabilization

of S

SARS-CoV,
SARS-CoV-

2

ND50 value
of 0.114
µg/mL

9 EY6A Human
IgG

Late-stage COVID-
19 patient

6ZDH,
6ZER,
6ZCZ

Y369,
F374-
S375,
F377-
K386,
N388,
L390,
P412-
G413,
D427-
F429,
L517

destabilization
of S

SARS-CoV,
SARS-CoV-

2

ND50 value
of ~10.8
µg/mL

10 VHH-72

Llama
single

domain
antibody

llama immunized
with

prefusionstabilized
betacoronavirus

spikes

6WAQ

Y356-
T359,
F361-
C366,
A371-
T372,
G391-
D392,
R395,
N424,
I489,
Y494

Trapping RBD
in the less
stable up

conformation
while leading

to
destabilization

of S, Block
hACE2_RBD
interaction

SARS-CoV,
SARS-Co-V-

2

IC50 values
of 0.14

µg/mL and
0.2 mg/mL.
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S.N. Antibody
Name

Antibody
Type Origin PDB

ID Epitopes Neutralizing
Mechanism

Cross
Neutralizing
Activity

Protective
Efficacy Ref

11 BD23 Human
IgG

COVID-19-
convalescent

patient
7BYR

G446,
Y449,
L452,
T470,
E484-
F486,
Y489-
F490,
L492-
S494,
G496,
Q498,
T500-
N501,
Y505

Block hACE-
RBD2

interaction
no

IC50 value
of 8.5
µg/mL

12 Fab 2–4 Human
IgG

Infected COVID-19
patients 6XEY

Y449,
Y453,
L455-
F456,
E484-
F486,
Y489-
F490,
L492-
S494,
G496

Locking RBD
in the down

conformation
while

occluding
access to

ACE2

no

Neutralizing
SARS-CoV-
2 live virus
with IC50
value of

0.057
µg/mL
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