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Primary chondroprogenitors obtained from standardized cell sources (e.g., FE002 clinical grade cell sources) may be

cultured in vitro and may be cytotherapeutically applied in allogeneic musculoskeletal regenerative medicine. Multicentric

translational research on FE002 human primary chondroprogenitors under the Swiss progenitor cell transplantation

program has notably validated their robustness and high versatility for therapeutic formulation in clinically compatible

prototypes, as well as a good safety profile in diverse in vivo preclinical models. Therein, stringently controlled primary cell

source establishment and extensive cell manufacturing optimization have technically confirmed the adequation of FE002

primary chondroprogenitors with standard industrial biotechnology workflows for consistent diploid cell biobanking under

GMP. Laboratory characterization studies and extensive qualification work on FE002 progenitor cell sources have

elucidated the key and critical attributes of the cellular materials of interest for potential and diversified human

cytotherapeutic uses. Multiple formulation studies (i.e., hydrogel-based standardized transplants, polymeric-scaffold-

based tissue engineering products) have shown the high versatility of FE002 primary chondroprogenitors, for the

obtention of functional allogeneic cytotherapeutics. Multiple in vivo preclinical studies (e.g., rodent models, GLP goat

model) have robustly documented the safety of FE002 primary chondroprogenitors following implantation. Clinically,

FE002 primary chondroprogenitors may potentially be used in various forms for volumetric tissue replacement (e.g.,

treatment of large chondral/osteochondral defects of the knee) or for the local management of chondral affections and

pathologies (i.e., injection use in mild to moderate osteoarthritis cases). Overall, standardized FE002 primary

chondroprogenitors as investigated under the Swiss progenitor cell transplantation program were shown to constitute

tangible contenders in novel human musculoskeletal regenerative medicine approaches, for versatile and safe allogeneic

clinical cytotherapeutic management. 
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Musculoskeletal diseases in general and chondral/osteochondral affections, in particular, are highly incident in aging

patient populations . While conservative orthopedic best practices enable the successful clinical management of

critical cases of cartilage injury or degeneration (e.g., prosthetic replacement), effective regenerative medicine

interventions and solutions are necessary in the cases of moderate to severe affections . Therefore, many

natural and artificial biomaterials or bioengineered constructs have been successfully clinically applied for chondropathies

and cartilage tissue defects, with extensive available hindsight (i.e., intervention safety, quality, efficacy) 

. Parallelly, important translational efforts, deployed over the past 40 years, have led to the implementation of

diverse clinical protocols for several generations of autologous chondrocyte implantation (ACI) 

. While initial and successful approaches to ACI may have relied on the use of cultured cells or minimally

manipulated chondrocyte suspensions, current commercially available clinical approaches to cartilage regenerative

medicine often comprise the use of a matrix/scaffold component (i.e., combination products, e.g., cells in a hyaluronan-

based hydrogel scaffold or bilayer collagen constructs) .

Vast arrays of potential cell sources (e.g., various stem and progenitor cells, somatic cells, platelets, etc.) and processing

methods (e.g., preparation of cell suspensions, spheroids) have been investigated for the high-quality cytotherapeutic

management of chondropathies and chondral/osteochondral defects . Recently, multiple genetically

modified cell lines, designed for enhanced chondrogenic function, have been studied and clinically proposed for cartilage

tissue engineering . From a technical standpoint, the scientific knowledge of the in vitro behavior and functional

evolution (i.e., transiently reduced chondrogenesis potential in monolayer cellular expansion) of cultured chondrocytes

has rapidly increased . For therapeutic cell manufacturing purposes, numerous

studies have enabled and have validated (i.e., from technical, quality, and functional standpoints) the substitution of fetal

bovine serum (FBS) by human platelet lysates (HPL) as cellular growth medium supplements .
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Notwithstanding, despite enormous progress in the biotechnological and bioengineering approaches to cell-based

combination products for cartilage repair and regeneration, important regulatory and clinical bottlenecks have recently

been documented . Indeed, specific quality-oriented and process-based approaches to cell

therapy manufacturing have become the norm (e.g., application of cGMPs for cellular active substances and finished cell-

based product manufacture) . Importantly from the clinical standpoint, the cartilage lesion localization, the surgical

approach, and the patient follow-up management plan have been identified as critical factors for consistently attaining

long-term clinical success with cytotherapies for cartilage tissue affections .

Human primary chondroprogenitors (e.g., FE002 clinical grade cell sources) have been extensively investigated under the

Swiss progenitor cell transplantation program as a potential cytotherapeutic solution for the optimal homologous

allogeneic management of diverse cartilage tissue disorders . Human FE002 primary chondroprogenitors are

cultured diploid cells, inherently pre-terminally differentiated, which display monomodal and stable phenotypes in vitro 

. Homogeneous and robust cryopreserved cell banks and cell lots of FE002 primary chondroprogenitors may be

exploited as highly sustainable tools and material sources for allogeneic musculoskeletal cytotherapeutic applications

under modern restrictive quality requirements . Importantly, human FE002 primary chondroprogenitors are highly

biocompatible with diverse biomaterials, possess an inherent immune privilege, and present no known tumorigenic

behaviors .

Such standardized biological materials are biotechnologically manufactured and are formulated following best practices in

pharmaceutical sciences and cell-based bioengineering, with the central therapeutic objectives of rapidly and optimally

restoring chondral tissular structures and functions . Overall, the FE002 primary chondroprogenitors investigated under

the Swiss progenitor cell transplantation program were shown to present high robustness and versatility in an array of

potential therapeutic uses (e.g., fresh or off-the-freezer cell therapies) in human musculoskeletal regenerative medicine

. A succinct overview of the currently published body of knowledge (i.e., scientific peer-reviewed elements) on

FE002 primary chondroprogenitors is presented in Table 1.

Table 1. Summary of the published peer-reviewed reports describing the collaborative and multicentric translational work

(i.e., characterization, qualification, validation) on FE002 primary chondroprogenitors under the Swiss progenitor cell

transplantation program. This constantly evolving body of knowledge has established FE002 primary chondroprogenitors

as standardized and versatile cytotherapeutic contenders for human musculoskeletal regenerative medicine, for repair

promotion and/or regeneration support in chondral/osteochondral affections. CAM, chorioallantoic membrane model; GLP,

good laboratory practices; HA, hyaluronic acid.

Study Subject/Domain Scope of the Study/Investigated Parameters/Main Data References

1. Progenitor Cell Source
Establishment

Biological starting material procurement (i.e., controlled organ donation within
the Swiss progenitor cell transplantation program) and establishment of
FE002 primary progenitor cell sources in a cryogenically preserved multi-
tiered cell bank system.

2. In Vitro Cell Type
Characterization

Characterization of progenitor cell type key and critical attributes (e.g., cellular
proliferative behavior in culture, cellular lot homogeneity and purity, cell
genetic and phenotypic stability, proteomics, chondrogenic potential, in vitro
safety parameters).

3. Characterization of In Vitro
Mechanobiological Cellular
Behavior

Study of the influence of physical (i.e., mechanical) parameters on cellular
biology and functional attributes . Optimization of physical processing
workflows for cytotherapeutic material lots.

4. In Vitro Cell Banking &
Biotechnological
Manufacturing

Optimization and standardization of in vitro progenitor cell manufacturing
workflows (i.e., industrial-scale cellular lots). Confirmation of progenitor cell
source sustainability at passage levels for clinical use .

5. Formulation Studies for
Functional Cytotherapeutic
Products

Formulation and translational characterization/qualification of hydrogel-based
(e.g., modified HA-based gels) standardized transplants and polymeric
scaffold-based tissue engineering products yielding viable/functional
progenitor cells.

6. In Vivo Preclinical Safety
Assessments

Study of progenitor cellular material or cytotherapeutic combination product
safety in ovo (i.e., standardized CAM model) and in vivo (e.g., subcutaneous
rodent implantation models, GLP study of knee chondral defect management
in goats).

 It is noteworthy that the considered tissue engineering products/prototypes were reported to be characterized by

endpoint mechanical attributes which did not match those of native chondral tissues. This aspect has not been interpreted

negatively, based on the fact that such orthopedic cell-based approaches aim to stimulate repair and/or support
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regeneration processes, rather than exclusively structurally replacing the damaged cartilage. Therefore, while the

implanted constructs must be able to bare weight, sufficient potential for mechanical adaptation to the local healing

environment must remain, for optimal graft integration and therapeutic deployment of functional attributes.  The

established models have outlined that a single clinical grade primary chondroprogenitor cell source could potentially yield

several million therapeutic bioengineered cartilage grafts or injectable viable cell suspensions, without the need for

repetition of the cell type establishment phase.

Notably, multiple in vivo preclinical studies (e.g., in rodent and goat models) have robustly documented the safety of

FE002 primary chondroprogenitors following implantation, which may therefore be safely considered for investigational

human cytotherapeutic use (i.e., international first-in-man clinical trials) . From a clinical indication standpoint,

such cellular materials and combinations thereof may potentially be used for volumetric tissue replacement (e.g.,

treatment of extensive chondral/osteochondral defects of the knee) or the local management of mild to moderate chondral

affections and pathologies (i.e., injectable hydrogels in osteoarthritis patients) . Overall, the aggregated multicentric

translational work on FE002 primary progenitor cell sources, performed over the past decade in Switzerland, has

confirmed their high versatility and safety for application as cellular active ingredients within the development of novel

cytotherapeutic products and standardized transplants for human use (Table 1) .
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