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Alphaviruses have been engineered as expression vectors for vaccine development and gene therapy. Due to the

feature of RNA self-replication, alphaviruses can provide exceptional direct cytoplasmic expression of transgenes

based on the delivery of recombinant particles, naked or nanoparticle-encapsulated RNA or plasmid-based DNA

replicons.

alphavirus vectors  recombinant particles  RNA delivery

1. Introduction

During the last decade, immunotherapy has become an attractive alternative for cancer therapy . In this context,

viral vectors have also proven useful for immunotherapeutic applications . Alphaviruses have frequently been

engineered for the overexpression of suitable antigens and immunostimulatory genes for vaccine development and

cancer therapy . Additionally, the expression of cytotoxic and antitumor genes has been used for cancer therapy

applications. Semliki Forest virus (SFV) , Sindbis virus (SIN)  and Venezuelan equine encephalitis virus (VEE)

 are most commonly used for the engineering of expression systems. Additionally, the naturally occurring

oncolytic alphavirus M1  and engineered oncolytic versions based on SFV and SIN vectors  have been utilized

for cancer therapy. The evaluation of efficacy in appropriate animal models has provided proof of concept before

conducting clinical trials.

2. Alphavirus Lifecycle and Expression Vector Systems

Alphaviruses possess an enveloped structure of capsid and spike proteins encapsulating a single-stranded RNA

(ssRNA) genome of positive polarity . Upon the infection of host cells, the alphavirus ssRNA is released into the

cytoplasm, where translation can immediately occur requiring no delivery of RNA to the nucleus as is the case for

other RNA viruses such as the influenza virus and DNA viruses (Figure 1). In the cytoplasm, efficient self-

replication occurs through a minus-strand RNA template leading to the accumulation of approximately 10  copies

of subgenomic RNA per cell. Together with the utilization of the highly efficient 26S subgenomic promoter, high-

level expression of viral proteins occurs . The RNA self-replication and high-level expression of alphavirus

structural proteins generate high-titer virus progeny. Nucleocapsids comprising the capsid protein harboring full-

length alphavirus RNA are transported to the cell surface, where the envelope proteins are attached, and mature

viral particles are released by budding.
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Figure 1. Schematic presentation of the lifecycle of alphaviruses. Alphaviruses infect host cells by endocytosis

through endosomal fusion with the plasma membrane. The positive sense ssRNA is released into the cytoplasm for

translation of viral proteins and RNA replication. Full-length ssRNA genomes are packaged into nucleocapsids. The

alphavirus envelope proteins are transported to the plasma membrane through the endoplasmic reticulum and

Golgi. The nucleocapsids are encircled by the envelope proteins at the plasma membrane and released by

budding. ER, endoplasmic reticulum.

In the case of expression systems, the focus is on the expression of heterologous genes (Figure 2). In the context

of replication-deficient alphavirus particles, the structural protein genes have been replaced by the gene of interest

(GoI), and a helper vector is engaged in providing the structural proteins in trans (Figure 2A). Co-transfection of in

vitro transcribed RNA from expression and helper vectors into baby hamster kidney (BHK) cells leads to the

production of recombinant particles. As the RNA packing signal is located in one of the genes coding for the non-

structural proteins (nsPs), in the nsP2 gene of SFV and nsP1 of SIN , uniquely RNA from the expression vector

is packaged into viral particles, providing expression of the GoI but not the structural protein genes and thereby,

eliminating any production of viral progeny. In contrast, introduction of a second 26S subgenomic promoter and the

GoI into the full-length alphavirus RNA genome, either downstream of the nsP or the structural protein genes,

generates replication-competent particles capable of both high-level GoI expression and viral progeny production

(Figure 2B). In addition to the application of recombinant particles, RNA replicons can also be used for GoI

expression. As has been demonstrated for the recent BNT162b2  and mRNA-1273  COVID-19 vaccines,

RNA-based delivery is highly efficient. However, in contrast to this conventional mRNA approach, alphavirus RNA

replicons provide the additional advantage of RNA self-amplification leading to superior expression levels.
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Moreover, replacement of the SP6 RNA polymerase promoter by a CMV promoter, DNA replicon vectors for GoI

expression (Figure 2C) have been engineered for the transfection of cell lines and in vivo administration . The

use of DNA replicons eliminates any risk of the production of new virus particles but relies on the less efficient

delivery of DNA compared to viral vectors. Moreover, DNA molecules must be delivered to the nucleus for the in

vivo transcription of RNA (Figure 2C).

[14]
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Figure 2.  Schematic presentation of SFV expression systems.  (A)  Replication-deficient recombinant

particles. In vitro transcribed RNA molecules from the SFV expression vector carrying the non-structural protein

(nsP) genes, replicase genes (replicon) and the gene of interest (GoI) and the structural protein genes (capsid, 6K,

envelope E1, E2 and E3) from the helper vector are electroporated or transfected into BHK-21 cells. After RNA

replication, only the RNA from the expression vector containing the packaging signal is packaged into

nucleocapsids and transported to the plasma membrane, where budding of mature viral particles takes place.

Although the generated particles are capable of infecting new host cells, no viral progeny is produced due to the

absence of the structural protein genes. However, high-level expression of the recombinant protein of interest

(rPoI) takes place (B)  Replication-competent recombinant particles.  The in vitro transcribed full-length RNA

genome with the GoI introduced either downstream of the nsP genes or the structural protein genes is

electroporated or transfected into host cells for production of replication-competent viral particles and rPoI

expression. (C)  DNA replicon vectors.  The replacement of the SP6 RNA polymerase promoter by a CMV

promoter upstream of the nsP genes allows for direct transfection of host cells for rPoI expression. DNA replicons

in the form of DNA plasmids are transfected into host cells, and DNA replicons are delivered to the nucleus.
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Transcribed ssRNA molecules of positive polarity are delivered to the cytoplasm for RNA replication and

expression of the rPoI.

3. Alphavirus-Based Immunotherapy for Cancer

In the context of cancers, alphaviruses have been frequently used for prophylactic and therapeutic applications.

Immunization with alphavirus vectors overexpressing tumor-associated antigens (TAAs) has been a common

approach for cancer vaccine development. This approach has been used to provide both prevention against tumor

challenges and tumor regression and eradication. Moreover, overexpression of cytotoxic and antitumor genes has

been evaluated for cancer therapy. The delivery of immunostimulatory genes from alphavirus vectors has served

the means of cancer immunotherapy. Moreover, alphaviruses induce apoptosis through activation of caspases in

infected cells , which has resulted in tumor regression after administration of alphaviruses carrying no

therapeutic genes and has allowed the use of vectors with reporter genes to verify and localize expression in

animal tumor models. Finally, engineered or naturally occurring oncolytic alphaviruses have demonstrated tumor

cell-specific killing in animal models . Examples of cancer vaccinations, cancer therapy and immunotherapy are

given below and summarized in Table 1.

Table 1. Examples of alphavirus-based vaccines against cancer.

[15]

[16]

Cancer Vector Finding Ref

Reporter Genes      

Lung SFV-EGFP Tumor regression in mice

Colon SIN-LacZ Complete tumor remission

  SFV-LacZ RNA Tumor regression, protection

TAAs      

Cervical VEE-HPV-16 E7
Protection against tumor challenges in

mice

  SFVenh-HPV E6-E7
Tumor eradication, long-lasting CTL in

mice

  SFV-sHELP-E7SH Tumor regression, protection in mice

  SFV-HPV E6-E7 DNA 85% of immunized mice tumor-free

  SFVenh-HPV E6-E7 Phase I: Immunogenicity in all patients

Colon SFV-VEGFR-2
Inhibition of tumor growth, metastatic

spread
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Cancer Vector Finding Ref

  SFV-VEGR-2 + SFV-IL-4 Prolonged survival after coadministration

  VEE-CEA
Phase I: Ag-specific response, long-term

survival

Pancreatic VEE-CEA Phase I: Prolonged survival

Melanoma VEE-TRP-2 + DNA Superior to plasmid DNA vaccine in mice

  VEE-TRP-2
Humoral immune responses, protection in

mice

 
VEE-TRP-2 + CTLA-4

mAbs
Tumor regression in 50% of mice

 
VEE-TRP-2 + GITR

mAbs
Tumor regression in 90% of mice

 
SFV-VEGFR-2/IL-12

DNA
Synergistic antitumor activity from

combination of

 
+ SFV-Survivin/β-hCG

DNA
DNA replicons  

Ovarian SFV-OVA + VV-OVA
Immune responses, enhanced antitumor

activity

Prostate VEE-PSMA Th1-biased immune responses

  VEE-PSMA
Phase I: Good safety, weak

immunogenicity

  VEE-PSA PSA-specific Abs, delay in tumor growth

  VEE-mSTEAP + pcDNA
Prolonged survival, tumor challenge

protection

  VEE-PSCA Long-term survival of mice

Cytotoxic and Antitumor
Genes      

Glioblastoma SFV–Endostatin
Tumor growth inhibition, reduced

vascularization

Breast SIN-HER2/neu DNA
Significant tumor growth inhibition,

protection

  SIN-HER2/neu DNA
80% less DNA needed compared to

plasmid DNA
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LV101, Salmonella typhimurium AroC strain; mAbs, monoclonal antibodies; mSTEAP, mouse six-transmembrane

epithelial antigen of the prostate; OVA. Ovalbumin; PR, partial response; PSA, prostate-specific antigen; PSMA,

prostate-specific membrane antigen; rec IL-12, recombinant IL-12; SD, stable disease; SFV, Semliki Forest virus;

SIN, Sindbis virus; TRP-2, tyrosine-related protein-2; VEE, Venezuelan equine encephalitis virus; VEGFR-2,

vascular endothelial growth factor receptor-2; VV, vaccinia virus.
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