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CYP1B1 is a cytochrome P450 monooxygenase involved in oxidative metabolism of different endogenous lipids and

drugs. The loss of function (LoF) of this gene underlies many cases of recessive primary congenital glaucoma (PCG), an

infrequent disease and a common cause of infantile loss of vision in children. CYP1B1 loss of function (LoF) is the main

known genetic alteration present in recessive primary congenital glaucoma (PCG), an infrequent disease characterized by

delayed embryonic development of the ocular iridocorneal angle; however, the underlying molecular mechanisms are

poorly understood.
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1. Introduction

CYP1B1 is a cytochrome P450 monooxygenase that participates in the oxidative metabolism of different endogenous

lipids including steroids , arachidonic acid  (the primary source of fatty acids) and retinoids , and it is also involved

in drug metabolism . The human CYP1B1 gene is located on chromosome 2p22-21 and comprises three exons, with the

coding region starting in the second exon and ending in the last exon . This gene encodes an approximately 50-kDa

transmembrane protein that is anchored to the endoplasmic reticulum membrane and the inner mitochondrial membrane

by a transmembrane amino terminus domain . Structurally, the protein consists of several domains such as a

hydrophobic amino-terminal region, a proline-rich region (hinge region) and a carboxyl-terminal portion. This last region

contains a set of conserved core structures and a substrate-binding region, including an iron protoporphyrin IX (heme)

prosthetic group ligated to cysteine thiolate .

Loss-of-function (LoF) variants in the human CYP1B1 gene  are the main known genetic cause of autosomal recessive

congenital glaucoma (CG) in different populations . Although CG is an infrequent disease, it is the most

common glaucoma in the neonatal and infant period and it is also a major cause of visual loss in children . Abnormal

development of the embryonic iridocorneal angle underlies CG through poorly understood mechanisms, although

CYP1B1 is hypothesized to metabolize a yet unidentified compound required for normal formation of iridocorneal

structures . An altered ECM of the TM, a general feature of PCG , is also present in patients carrying null and

hypomorphic CYP1B1 genotypes . In addition to CYP1B1, other genes such as LTBP2 , MYOC , TEK ,

FOXC1  and CPAMD8  are involved in a few congenital glaucoma cases. Genes such as GPATCH3  and

GUCA1C  have been identified as candidate CG genes, although their role in the disease remains to be confirmed.

Remarkable phenotypic variability is also present in CYP1B1-associated glaucoma, ranging from mild adult-onset

goniodysgenesis to agenesis of the Schlemm canal  and complete aniridia . This phenomenon suggests the

existence of modifier factors in the phenotypic outcome. In fact, rare variants of FOXC2 and PITX2 associated with mild

functional alterations have been identified as possible modifiers in congenital glaucoma . Previously, we reported that

approximately 30% of Spanish CG patients carry either homozygous or compound heterozygous CYP1B1 LoF variants,

often resulting in null genotypes . Even among the cases with null CYP1B1 enzymatic activity which can be considered

natural human knockouts, remarkable phenotypic variation is present . These facts, along with the existence of

incomplete penetrance and the discovery of a significant proportion of patients who carry nondominant heterozygous

CYP1B1 mutations , support the importance of genetic and/or environmental modifier factors in CG pathogenesis.

The function of CYP1B1 has been explored in different animal models. Cyp1b-KO mice have ocular drainage structure

abnormalities resembling those reported in human PCG patients, and in this animal model, tyrosinase gene (Tyr)
deficiency increases the magnitude of dysgenesis, indicating that Tyr is a modifier of the ocular drainage structure

phenotype, although no intraocular pressure increase was detected in these animals . Further studies have reported

modest elevation of the intraocular pressure in Cyp1b1-KO mice  and altered distribution of TM collagen 

associated with decreased levels of periostin , as well as TM endothelial dysfunction . Oxidative stress 

, cell adhesion and migration  and lipid metabolism  are also altered in Cyp1b1-KO mice, suggesting a
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multifunctional role of this gene in development and homeostasis. Cyp1b1 LoF has been explored in zebrafish mainly by

morpholino (MO)-mediated knockdown . This approach, which inhibits protein expression only in early

developmental stages, results in heart malformations and pericardial edema and also affects the development of neural

crest cell-derived tissues , indicating the role of cyp1b1 in early embryo development. Overexpression of cyp1b1 leads

to craniofacial and ocular defects, inhibited ocular fissure closure via an RA-independent pathway and disruption of ocular

neural crest cell migration. Interestingly, these studies support the existence of functional conservation between the

human and zebrafish cyp1b1 genes .

To the best of our knowledge, herein we report the first cyp1b1-KO zebrafish model for exploring the pathogenic

mechanisms involved in cyp1b1 LoF. We show that cyp1b1 inactivation does not mimic congenital glaucoma but leads to

adult-onset and variable craniofacial alterations. Transcriptomic analysis reveals alteration of genes participating in

extracellular matrix (ECM) and cell adhesion, developmental signaling pathways, lipid metabolism and inflammation. The

established cyp1b1-KO zebrafish line provides a new model with which to investigate the biological function of this gene

and opens new avenues for studying the molecular mechanisms underlying cyp1b1 LoF-associated pathogenesis.

2. Current Insights

CYP1B1 LoF mutations are the main identified genetic cause of CG; however, the pathogenic mechanisms are not clear.

To the best of our knowledge, this is the first cyp1b1-KO zebrafish model generated to analyze the mechanisms

underlying cyp1b1 LoF. The CRISPR/Cas9 cyp1b1-KO zebrafish line carried the c.535_667del133 deletion. RT-qPCR

demonstrated a remarkable reduction in cyp1b1 mRNA. In addition, this mutation was predicted to lead to a frameshift (p.

(His179Glyfs*6)) and to a truncated cyp1b1 enzyme translated from residual mutant mRNA. The truncated protein lacks

important functional domains, including the enzyme active center, which is located downstream of the premature

termination codon. Altogether, these data support that the obtained mutation results in a complete cyp1b1 LoF.

Approximately 25% of F0 cyp1b1 crispant larvae presented variable microphthalmia and lower jaw underdevelopment at

144 hpf. These early defects might have been due to disrupted migration of neural crest-derived cells, which are involved

in cranial and jaw morphogenesis . Consistent with this idea and with our results, cyp1b1 has been described to be

expressed in the developing eye and pharyngeal arches both in zebrafish  and in chicken  embryos, and zebrafish

cyp1b1 knockdown affects the development of neural crest cell-derived tissues in zebrafish, resulting in early mild ocular

defects . In contrast, the established cyp1b1-KO zebrafish line did not manifest these early phenotypes, although at 24

hpf, all the embryos presented two new features: egg volume reduction and transitory developmental delay that

completely recovered at 48 hpf. Accordingly, craniofacial and ocular developmental delay observed in zebrafish cyp1b1-

knockdown in the first 48 hpf also recovers by 96 hpf . Interestingly, the egg and growth abnormalities in the cyp1b1-

KO zebrafish line were exclusively observed in the offspring of cyp1b1-KO females and correlated with cyp1b1 mRNA

levels during early embryonic development, demonstrating their maternal inheritance and suggesting the participation of

maternal cyp1b1 mRNA in early embryo development. Remarkably, the early morphological phenotypes were absent in

the established cyp1b1-KO zebrafish line, which might be explained by lethality and/or compensating mechanisms.

Cyp1b1 LoF may be lethal in F0 zebrafish with susceptible genetic backgrounds, leading to selection of animals with

compensating genetic backgrounds. Consistent with this hypothesis, we did not observe morphological defects among

adult F0 crispants (>one year), suggesting that phenotypically affected larvae probably died due to feeding limitations

associated with craniofacial defects. In addition, phenotypic differences between F0 crispants and established KO

zebrafish lines are not uncommon  and may result from functional replacement of the deactivated gene by

functionally related paralog or non-paralog compensatory genes . These compensatory genes may be more easily

upregulated in stable genetically engineered KOs than in microinjected F0 mosaic KOs . Moreover, mutations that

activate NMD mechanisms, such as those present in our cyp1b1-KO zebrafish line, are more prone to triggering

compensatory mechanisms  than posttranscriptional interferences, such as those produced by MO knockdown.

The main phenotype detected in the cyp1b1-KO zebrafish line comprised variable adult-onset jaw and craniofacial

alterations (increased head height and reduced jaw length), suggesting that disrupted ECM alterations may underlie these

defects. Consistent with this hypothesis, defects in ECM remodeling, more than deposition failures, have been proposed

to cause progressive TM atrophy associated with fragmentation and irregular distribution of collagen fibers present in

aging Cyp1b1-KO mice and absent in young animals (< two weeks old) . We were not able to determine the exact age

onset of the craniofacial phenotype. Further work is required to determine when these defects start to manifest. The adult

craniofacial alterations observed in our cyp1b1-KO zebrafish line also presented incomplete penetrance and variable

expressivity characterized by uni- (Ph1) or bilateral (Ph2) jaw shortening. Inbreeding increased the penetrance from

26.6% to 86.6%, indicating that the phenotype is strongly influenced by the genetic background. The typical human

phenotype associated with CYP1B1 LoF, i.e., PCG, also presents phenotypic variability  and incomplete penetrance
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, illustrating that although the phenotypes are different in these two species, they are also highly influenced by the

genetic background. Another interesting parallelism between this cyp1b1 LoF zebrafish model and human CG  is the

unexpected presence of abnormal phenotypes in some heterozygotes, which again indicate the role of modifiers in these

phenotypes. In contrast to humans, we did not observe ocular glaucoma-related histological defects associated with

complete cyp1b1 LoF in zebrafish, which might be due to developmental species differences and shows that zebrafish are

not adequate to model cyp1b1-associated glaucoma. In accordance with our results, 48-hpf zebrafish embryos with MO

cyp1b1 knockdown did not present glaucoma; they only manifested mild ocular phenotypes that recovered by the larval

stage  and presented minimal effects on zebrafish craniofacial development at 96 hpf . Nevertheless, microinjection

of human wildtype CYP1B1 mRNA but not of LoF mutant versions reproduces phenotypes resulting from cyp1b1
overexpression in zebrafish larvae , showing the functional equivalence between the human and zebrafish ortholog

proteins. Mammalian species such as mice or even other species with ocular developmental pathways phylogenetically

closer to those of humans may be needed to develop appropriate CG models. In this regard, Cyp1b1-KO mouse models

show subtle iridocorneal angle abnormalities also dependent on modifier factors such as Tyr deficiency, but these defects

result in undetectable  or modest intraocular pressure elevation . Interestingly, Tyr is not a modifier of the PCG

phenotype in humans , supporting that CYP1B1-associated phenotypes are species-specific. Keeping in mind these

limitations, the zebrafish may provide valuable information to determine the precise biological functions of cyp1b1 as well

as to understand the general pathogenic processes underlying cyp1b1 LoF.

To characterize the molecular basis of the phenotypes associated with cyp1b1 LoF, we performed a transcriptomic

analysis in the offspring (seven dpf) of cyp1b1-KO zebrafish with craniofacial defects. The functional enrichment analysis

of DEGs identified a consistent alteration of genes involved in three biological processes that could be directly related to

the observed phenotypes: (i) the ECM and cell adhesion, (ii) the regulation of cell proliferation and (iii) lipid metabolism

(retinol, steroids and fatty acids). In addition, metabolic-related oxidation–reduction processes, which included many

cytochrome P450 genes, and immune response and inflammation were also significantly enriched in our analysis.

In the first group, we found altered expression of a repertoire of matrix metalloproteinase (MMP)-encoding genes that may

disrupt ECM assembly and remodeling, playing a direct role in adult and early craniofacial phenotypes observed in

cyp1b1-KO zebrafish. Some of these MMPs participate in neural crest-derived cell migration (ADAMTS20A or

LOC101886654) , regulate fibronectin levels in zebrafish (mmp11b)  or break down elastin and other proteins

(cela1.3, a serine-type endopeptidase orthologous to the human chymotrypsin-like elastase 1 or CELA1) . Similarly, the

identification of cell adhesion DEGs, such as those encoding protocadherins (Pcdh1g30, Pcdh1g3, Pcdh1gb9, Pcdh1g2
and Pcdh1g26), desmosomal proteins (desmoglein (Dsg2.1) and desmocollin (Dsc2l)) and periostin (Postna) indicate

possible dysregulation of developmental signaling and developmental processes, including morphogenesis . In fact,

Postna modulates ECM organization  and is involved in ocular developmental defects observed in the Cyp1b1-KO

mice , and MO-mediated dsg2.1 knockdown is associated with head development disruption .

Functionally enriched DEGs playing a role in cell proliferation pathways and craniofacial morphogenesis suggested an

alteration in development signaling in the cyp1b1-KO zebrafish that might also contribute to the craniofacial phenotypes

observed in adult mutant zebrafish and maybe in F0 crispant larvae. Among these genes, we found members of the c-

Jun/AP-1 (junba and junbb) canonical Wnt (wnt9b) signaling pathways, indicating that those members were altered.

Interestingly, wnt9b knockdown produces jaw and craniofacial defects in zebrafish larvae . On the other hand,

downregulation of some genes of this group (grhl3, furina, ahrra and cdk6) leads to craniofacial maldevelopment in

different animal models . Three of these genes (grhl3, furina and ahrra) were upregulated in our animal model,

suggesting they might participate in possible genetic compensation of cyp1b1 LoF. Additional downregulated genes such

as fosl1a and relb participate in bone matrix remodeling  and osteoclast differentiation , respectively.

Regarding lipid metabolism, we identified four DEGs (rbp1, rbp2b, ugt2a2 and ugt1ab) involved in retinol transport and

metabolism , suggesting that retinol metabolism alteration might be an additional mechanism contributing to the

observed phenotypes. Retinoid signaling plays a key role in embryonic development of different organs, including the eye

, and alteration of this pathway may disrupt migration of cranial neural crest cells, leading to ocular and craniofacial

defects , similar to those observed in our cyp1b1-KO zebrafish line. In addition, and consistently with this idea,

cyp1b1 has been described to metabolize retinol to retinaldehyde and then to retinoic acid (RA) in vitro , and

treatment of zebrafish with exogenous RA results in prognathic jaw development, while inhibition of endogenous RA

decreases head height , resembling the phenotypes observed in the cyp1b1-KO zebrafish. Further investigations are

necessary to elucidate the involvement of retinoids in our cyp1b1-KO zebrafish model. Genes involved in steroid hormone

biosynthesis and functionally related with cyp1b1 were also differentially expressed in the cyp1b1-KO zebrafish, although

only three of them (i.e., cyp24a1, ugt2a2 and hsd11b2) were upregulated, indicating their possible participation in cyp1b1
LoF compensation. Cyp24a1 participates in vitamin D hydroxylation and fatty acid omega oxidation and it is associated
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with hyperlipidemia in rats . Alteration in lipid metabolism is further supported by the identification of several DEGs of

the lipid metabolism-modulating PPAR signaling pathway , including, for instance, cyp7a1 and cyp8b1, which are

involved in bile acid biosynthesis . In line with our findings, Cyp1b1-KO mice present PPAR pathway dysregulation ,

although some key genes followed different trends in our study. For instance, igfbp1, a regulator of liver fatty acid

homeostasis, was overexpressed in our study and downregulated in KO mice. Igfbp1 expression is affected by diet and

sex , therefore, differences in these variables may explain the discrepancy. The finding of altered expression of lipid

metabolism genes and lipid composition in Cyp1b1-KO mice is also consistent with our results . Similarly

interesting is the identification of differentially expressed redox genes, including several upregulated cytochrome P450

family members (e.g., cyp24a1), suggesting that they may compensate, at least partially, cyp1b1 LoF. Finally,

inflammation pathways were also affected in cyp1b1-KO zebrafish, which is in line with the inflammatory response

inhibition reported in Cyp1b1-KO mice . Alteration in inflammatory pathways in the cyp1b1-KO zebrafish is supported

by the reported roles of this cytochrome in inflammation. In fact, cyp1b1 is induced in response to inflammation  and,

along with Cyp1a1 and Cyp1a2, it participates in lipid mediator pathways that regulate neutrophilic inflammation in mice

. Further work is required to confirm the status of inflammatory pathways in the zebrafish cyp1b1 mutant.
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