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Cancer is a leading cause of death worldwide. Despite treatment advances, high rates of tumor recurrence

emphasize the need for new therapeutic strategies. Tumors often acquire mechanisms to avoid detection by the

immune system, allowing them to develop and metastasize. Immunotherapy is a type of treatment designed to

overcome these mechanisms by reactivating the immune system to eliminate tumors. CD47 is a cell surface

protein and marker of “self” expressed on cells throughout the body and prevents them from being “eaten” by cells

of the immune system. CD47 has also been described to have immune-independent functions in normal and

malignant cells which could contribute to tumor growth and progression.

CD47  immune checkpoint inhibitors  non-small cell lung cancer

1. CD47 Is a Ubiquitously Expressed Transmembrane Protein
Upregulated in Cancer

CD47, also known as integrin-associated protein (IAP), is a 50 kDa cell surface protein with an IgV-like extracellular

N terminal domain, five transmembrane domains, and a C-terminal cytoplasmic tail with four isoforms .

Structurally, the IgV-like extracellular domain is composed of two beta-sheets linked by a cysteine bridge and

tethers CD47 to the cell membrane . A number of post-translational modifications on CD47 have been

identified, including ubiquitination, phosphorylation, and glycosylation, as well as pyroglutamate and heparan

sulfate modifications that alter its structure, expression, localization, and function . The extracellular

domain of CD47 binds to multiple ligands, while the cytoplasmic domain associates with Gi and other proteins 

. These interactions transduce signals that regulate a plethora of cellular processes in diverse cell types as

summarized below  (Figure 1).
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Figure 1. Intracellular signaling pathways regulated by CD47. (A) TSP-1 can indirectly activate integrin signaling

through CD47 to stimulate Cdc42, as well as the Ras/ERK and PI3K/Akt pathways via FAK/SRC to regulate tumor-

promoting processes such as cell proliferation, migration, invasion, and adhesion. CD47 signals through Gi

proteins to promote cell proliferation through the PI3K/Akt pathway and cell spreading via direct association with

ubiquilins. CD47-Gi interaction also regulates apoptosis by inhibiting cAMP-dependent signaling pathways, and

CD47 can induce apoptosis directly through its interaction with BNIP3. (B) TSP-1 mediated inhibition of

angiogenesis is CD47-dependent. Binding of TSP-1 to CD47 causes CD47 to dissociate from VEGFR2 and inhibits

phosphorylation of VEGFR2, thereby suppressing the angiogenesis pathway. (C) CD47 binding to SIRPα initiates a

signaling cascade that inhibits phagocytosis in macrophages and dendritic cells. Dashed lines indicate protein

interactions.
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CD47 is expressed in cells and tissues throughout the body, with relatively high levels on cells derived from the

hematopoietic system including erythrocytes (red blood cells, RBCs) and hematopoietic stem and progenitor cells

. CD47 is also expressed as a >250 kDa proteoglycan on T cells, endothelial cells, and vascular

smooth muscle cells . Oldenborg and colleagues reported CD47 as a “marker of self” after discovering that RBCs

lacking CD47 were eliminated by splenic macrophages . Subsequent studies found that CD47 expression on

RBCs decreases over their lifetime to mark aged cells for phagocytic clearance . Regulation of platelet

homeostasis via CD47 expression has also been described . Upon recognition of its role in inhibiting

phagocytosis, akin to CD31 disabling phagocytosis of viable cells, CD47 was later coined a “don’t eat me” signal

. CD47 is upregulated in many malignancies, and the first observations of cancer-associated CD47

overexpression were made in ovarian cancer . Since then, CD47 expression has been described in various

tumor types including NSCLC and SCLC, with numerous studies reporting its association with tumor stage and

patient survival.

2. Regulation of CD47 Expression in Cancer

Several mechanisms have been described to regulate CD47 transcription in cancer cells . Expression of CD47

can be controlled by cytokines, oncogenes, and micro-RNAs (miRNA). In liver and breast cancer cells, TNFα

induces CD47 expression through the transcriptional regulator, NF-κB . In melanoma models, CD47

expression was induced by IFNγ, although the exact mechanism remains to be elucidated . Interleukins also

appear to upregulate CD47 expression. IL-6 induced CD47 through STAT3 in hepatoma cells, and IL-1β induced

CD47 via NF-κB in cervical cancer cells . CD47 induction by IL-4, IL-7, and IL-13 has also been described,

but how these interleukins stimulate CD47 transcription is unknown . These immune-stimulating, pro-

inflammatory cytokines may be physiologically programmed to induce CD47 expression, like PD-L1, as a negative

feedback mechanism to prevent harmful overactivation of the immune response. Both MYC and HIF-1A oncogenes

have been shown to directly bind the CD47 promoter and induce its transcription in breast, leukemia, and

lymphoma models . On the contrary, multiple miRNA have been shown to negatively regulate CD47

expression in several cancer types by degrading CD47 transcripts or blocking protein translation. These include

miR-133a, miR-155, miR-192, miR-200a, miR-222, miR-340, and miR-708 . Two recent studies established

novel mechanisms of CD47 expression regulation by the oncogenic drivers, EGFR and KRAS. In NSCLC, KRAS

was discovered to upregulate CD47 by suppressing miR-34a . Specifically, KRAS-mediated activation of PI3K-

AKT signaling led to the phosphorylation of STAT3 and its transcriptional repression of miR-34a, thereby relieving

post-transcriptional inhibition of CD47 and increasing its expression. Similarly, EGFR was found to upregulate

CD47 by stabilizing its expression. In glioblastoma models, EGFR activation induced c-Src-mediated

phosphorylation of CD47, which prevented its interaction with the E3 ubiquitin ligase, TRIM21, and protected CD47

from ubiquitin-associated degradation .

3. CD47: Molecular Interactions, Signaling Pathways, and
Malignant Phenotypes
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CD47 regulates various signaling cascades by interacting with different proteins including those located intra- or

extracellularly, within the plasma membrane or in the extracellular matrix (ECM). These interactions occur in either

a cis (same cell) or trans (different cell) manner and are dependent upon CD47′s IgV-like, transmembrane, and

cytoplasmic tail domains. The most well characterized CD47 interaction partners include thrombospondin-1,

integrins, and members of the signal-regulatory protein (SIRP) family, which signal through CD47 to promote

various hallmarks of cancer.

3.1. Thrombospondin-1 (TSP-1)—Proliferation, Migration, Cell Death, and
Angiogenesis

TSP-1 is an extracellular matrix (ECM) glycoprotein secreted by platelets, macrophages, dendritic cells, endothelial

cells, smooth muscle cells, and epithelial cells in response to stress, as well as tumor and stromal cells in the TME.

TSP-1 interacts with many proteins including integrins, collagen, fibrinogen, laminin, proteases, and growth factors

to regulate diverse physiological processes such as vascular response to injury, inflammation, platelet activation,

and ECM remodeling . The cellular effects of TSP-1 are dependent on tissue-specific expression of its

receptors and other interacting partners in the local environment. The C-terminal domain of TSP-1 binds the

extracellular region of CD47 at picomolar concentrations to control motility, proliferation, and angiogenesis that

influence the invasive and metastatic properties of cancer cells . For example, CD47–TSP-1 interaction

promoted tumor progression in a T cell lymphoma model by supporting proliferation, survival, and migration via

activation of ERK, AKT and survivin signaling . Similarly, antibody-mediated cross-linking of CD47 on T cells

stimulates their activation and proliferation . In contrast, TSP-1-induced cell death in leukemia, lung, breast,

and colon cancer cell lines in a CD47-dependent, caspase-independent manner . In non-malignant T cells,

binding of CD47 by TSP-1 has been shown to induce caspase-independent apoptosis and stimulate migration, and

to suppress activation-induced proliferation, CD69 expression, and IL-2 production, further illustrating the context-

specific effects of CD47–TSP-1 interactions . CD47–TSP-1 binding has also been implicated in

mediating sensitivity to cancer therapies. Interaction of CD47 and TSP-1 blocked the escape of breast and

colorectal cancer cells from chemotherapy-induced senescence and sensitized melanoma cells to radiotherapy in a

cell autonomous manner . CD47 blockade also protected mice from lethal whole-body irradiation that was

associated with an increase in autophagy in surviving cells . However, the specific mechanisms explaining these

responses to therapy remain to be defined.

Studies in endothelial cell models have deduced a role for CD47 in regulating angiogenesis through the VEGFR2

signaling pathway . First, CD47 was found to be essential for TSP-1-mediated inhibition of nitric oxide-

stimulated responses in vascular cells . It was later discovered that CD47 physically associates with VEGFR2 in

endothelial and T cells, and that CD47 ligation by TSP-1 disrupts this physical interaction with VEGFR2, which

inhibits its phosphorylation and downstream signaling . It is unclear how the CD47–TSP-1–VEGFR2 axis

influences angiogenesis in tumors because of conflicting findings in tumor models, which may be confounded by

irregularities in tumor vasculature and the enigmatic role of nitric oxide in regulating tumor angiogenesis .

Studies in melanoma and breast tumors found that TSP-1 overexpression in cancer cells negatively regulated

tumor blood flow in response to vasoactive agents in a CD47-dependent manner . Recent studies reported that
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disrupting the CD47–TSP-1 interaction reduced angiogenesis in neuroblastoma and glioblastoma models, but

selectively depleting CD47 in stromal cells increased angiogenesis and tumor burden in a syngeneic prostate

cancer model . Furthermore, inhibition of CD47 normalized tumor vasculature in a multiple myeloma model,

which was associated with reduced expression of pro-angiogenic factors, increased expression of anti-angiogenic

factors, and tumor growth inhibition . Thus, the effects of TSP-1-CD47 interactions on angiogenesis may be

malignancy-dependent, and further studies are needed to fully understand them.

3.2. Integrins—Migration, Invasion, and Inflammation

CD47 was originally named integrin-associated protein (IAP) because it was discovered that it binds with several

members of the integrin family of transmembrane receptors, including integrins αvβ3, αIIbβ3, and αβ1 .

Subsequently, CD47 has been shown to interact with α5, α4β1, α6β1, among others . Integrins facilitate cellular

attachment to the ECM via the actin cytoskeleton and regulate focal adhesion kinase (FAK), integrin-linked kinase

(ILK), and SRC kinase signaling pathways including Ras-ERK, PI3K/AKT, and YAP/TAZ, which support tumor

growth and progression . Lateral (cis) interactions between CD47 and integrins form signaling complexes that

can activate integrins and influence binding to ECM proteins . They also promote migration and metastasis

phenotypes in a seemingly cancer-specific manner , which may be explained by differences in integrin

expression across cancer types. Interactions between CD47 and αvβ3 enhanced binding of ovarian and breast

cancer cells and spreading of melanoma cells on vitronectin-coated substrates, as well as chemotaxis of prostate

cancer and melanoma cells towards collagen . CD47-α4β1 interactions stimulated adhesion in

melanoma, lymphoma, and T cells, and promoted migration in B-cell leukemia models . Notably, many of

these processes are dependent on the ligation of CD47 by TSP-1, TSP-1-derived peptides (e.g., 4N1K), or anti-

CD47 antibodies. In addition to these cancer cell-intrinsic effects, CD47–integrin interactions can influence tumor

immunity by modifying the behavior of immune cells in the TME . For instance, CD47-blocking antibodies

inhibited CD23-stimulated secretion of several pro-inflammatory cytokines including TNFα, IL-1β, and PGE2 from

monocytes and IFNγ from T cells through a CD47–αvβ3 complex . Consistently, CD47 ligation with antibodies or

4N1K suppressed IL-12 release from monocytes and inhibited the transition of naive T cells to Th1 effector cells 

. Additional mechanistic studies to investigate CD47–integrin interactions in different cancer models are needed

to better understand the generalizability of their cellular effects.

3.3. SIRPα/γ—Phagocytosis and Tumor Immune Evasion

The SIRP family is a group of cell surface receptors primarily expressed on myeloid cells . Of the three identified

members, SIRPα binds CD47 with the highest affinity and is expressed on macrophages, dendritic cells, T cells,

hematopoietic progenitor cells, and neurons . Hatherley et al. identified five key residues (Y37D, D46K, E97K,

E100K, E106K) in the extracellular domain of human CD47 that are critical for binding to SIRPα . In addition, Gln-

19 must be enzymatically modified to pyrrolidone carboxylic acid (pyroglutamate) for SIRPα to bind CD47 .

CD47–SIRPα interaction initiates a signaling cascade that inhibits phagocytosis, and this pathway has been the

primary focus for developing CD47-targeted therapies. Upon CD47–SIRPα ligation, the intracellular

immunoreceptor tyrosine-based inhibitory motif (ITIM)-domain in the cytoplasmic tail of SIRPα is phosphorylated.
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This recruits the inhibitory phosphatases, SHP-1 and SHP-2, which dephosphorylate myosin II, thereby preventing

reorganization of the cytoskeleton that is required for phagocytosis to occur . Consequently, antigen uptake and

presentation by APCs and subsequent activation of the adaptive immune response is inhibited . In addition to

SIRPα, SIRPγ also binds to CD47 but with ten times lower affinity . SIRPγ is expressed on NK cells and

lymphocytes, and studies have shown that CD47–SIRPγ interactions positively regulate T cell transendothelial

migration, T cell activation, and apoptosis of Jurkat cells, which could be undesirably impaired by CD47 blockade

.

3.4. Intracellular Interactions and Signaling

Many of the interactions described above transduce extracellular signals to intracellular molecules bound to

CD47′s cytoplasmic tail to elicit associated cellular effects. Initially, CD47 was co-immunoprecipitated with

heterotrimeric Gi proteins in membranes isolated from platelets, melanoma, and ovarian cancer cells, which was

reversible by the potent inhibitor of receptor–Gi protein binding, pertussis toxin . Evidence that CD47 activates

Gi proteins was provided by the finding that 4N1K ligation decreased intracellular cAMP levels . Later studies

found that CD47 interacts with two ubiquitin-related proteins involved in protein degradation, ubiquilin-1 and

ubiquilin 2, via tethering to CD47 by Gβγ . This interaction induced cytoskeletal rearrangements and

enhanced spreading of Jurkat and ovarian cancer cells . Subsequently, the CD47–Giαβγ pathway was shown to

activate PI3K/Akt signaling to induce proliferation in astrocytoma cells . Additional cytoplasmic signaling

cascades regulated by TSP-1–CD47-mediated Gi activation and consequential reductions in cAMP levels include

the phosphorylation of SYK and LYN and their interaction with FAK during platelet aggregation; phosphorylation of

ERK during smooth muscle cell migration and T cell lymphoma migration and adhesion; and inhibition of PKA

during apoptosis in activated T cells . In addition to Gi proteins, the cytoplasmic domain of CD47 has

also been shown to directly interact with the BCL-2 family member, BNIP3, to induce a necrosis-like mode of

caspase-independent T cell death upon CD47 ligation with TSP-1 . Most recently, c-Src was reported to bind

and phosphorylate CD47 in an EGFR-dependent manner, which led to CD47 stabilization and immune evasion in a

glioblastoma model . Besides these direct physical associations, CD47 has been discovered to indirectly interact

with several other cytoplasmic proteins to regulate various cancer-relevant processes. These include interactions

with Cdc42, Drp1, and guanylate cyclase (GC), as well as regulation of autophagy proteins that collectively

influence cell death and survival, migration, invasion, and angiogenesis .
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